apgov

Question Paper Name:COMMON FOR CIVIL AND MECHANICAL ENGINEERINGSubject Name:COMMON FOR CIVIL AND MECHANICAL ENGINEERING

Creation Date: 2016-12-28 20:23:45

Duration:150Total Marks:150Display Marks:No

COMMON FOR CIVIL AND MECHANICAL ENGINEERING

Group Number:

Group Id: 57996510

Group Maximum Duration:

Group Minimum Duration:

Revisit allowed for view?:

No
Revisit allowed for edit?:

No
Break time:

O
Mandatory Break time:

No
Group Marks:

COMMON FOR CIVIL AND MECHANICAL ENGINEERING

Section Id: 57996510

Section Number: 1
Section type: Online
Mandatory or Optional: Mandatory

Number of Questions:150Number of Questions to be attempted:150Section Marks:150Display Number Panel:YesGroup All Questions:No

Sub-Section Number: 1

Sub-Section Id: 57996520 Question Shuffling Allowed: Yes

Question Number: 1 Question Id: 5799651378 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

Correct: 1 Wrong: 0

The resultant of two perpendicular forces each equal to P/2 will be equal to

Options:

 $\sqrt{2}I$

Question Number: 2 Question Id: 5799651379 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

Correct: 1 Wrong: 0

The axial forces in the members CE and DE of the plane truss shown in the figure below are equal to

Options:

10, 10 in KN

20, 20 in KN

8.7, 8.7 in KN

0, 0

Question Number : 3 Question Id : 5799651380 Question Type : MCQ Option Shuffling : Yes Display Question Number : Yes Single Line Question Option : No Option Orientation : Vertical

Correct: 1 Wrong: 0

If two concurrent forces P and Q having an angle of α between them, then the direction of their resultant defined by angle θ with reference to the direction of P is given by $\tan \theta$ which is equal to

$$\frac{QSin \ \alpha}{P + Q \cos \alpha}$$

$$\frac{PSin \alpha}{Q + Pos \alpha}$$

$$\frac{PSin\alpha}{Q + Q\cos\alpha}$$

$$\frac{QSin\alpha}{P + P\cos\alpha}$$

Question Number: 4 Question Id: 5799651381 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

Correct: 1 Wrong: 0

The maximum angle of inclination of the plane (with horizontal) at which a body remains in equilibrium under the action of friction only is termed as

Options:

Angle of wedge

Angle of equilibrium

Angle of repose

All the given answers

Question Number : 5 Question Id : 5799651382 Question Type : MCQ Option Shuffling : Yes Display Question Number : Yes Single Line Question Option : No Option Orientation : Vertical

Correct: 1 Wrong: 0

If the number of members (m) are more than that required by the equation m= 2j-3 (j is number of joints) such frames are called

Options:

Redundant frame

Weak frame

Perfect frame

Ideal frame

Question Number : 6 Question Id : 5799651383 Question Type : MCQ Option Shuffling : Yes Display Question Number : Yes Single Line Question Option : No Option Orientation : Vertical

Correct: 1 Wrong: 0

A compound bar having two members X and Y of length L when subjected to tensile force P would have elongation equal to (in usual notations)

$$\frac{PL}{A_X E_X + A_Y E_Y}$$

$$\frac{PL}{A_X E_X} + \frac{PL}{A_Y E_Y}$$

$$\frac{PL}{A_X E_X - A_Y E_Y}$$

$$\frac{PL}{A_X E_X} - \frac{PL}{A_Y E_Y}$$

Question Number: 7 Question Id: 5799651384 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

Correct: 1 Wrong: 0

A vertical prismatic bar fixed at the top end and loaded with P at the bottom free end, is having a unit weight of w and its length is L. If σ is the working stress, the safe cross sectional area for the bar when P and self weight are considered is given by

Options:

$$\frac{P}{\sigma + wL}$$

$$\frac{P}{\sigma - wL}$$

$$\sigma + wL$$

$$\frac{\sigma - wL}{P}$$

Question Number: 8 Question Id: 5799651385 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

Correct: 1 Wrong: 0

If temperature changes from t_o to t in a simple bar with both nds constrained and having modulus of elasticity E and thermal coefficient α , the thermal stress due to the temperature rise is

Options:

$$E\frac{(t-t_o)}{\alpha}$$

$$\alpha \frac{(t-t_o)}{E}$$

$$E\alpha(t-t_o)$$

$$\frac{E\alpha}{(t-t_o)}$$

Question Number: 9 Question Id: 5799651386 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

Single Line Question option (1)

A circular solid uniform metal of cross section area A and length L is hanging vertically from its upper end. If the bar is having weight of W and modulus of rigidity E, the total elongation of the bar due to its own weight will be

Options:

Question Number : 10 Question Id : 5799651387 Question Type : MCQ Option Shuffling : Yes Display Question Number : Yes Single Line Question Option : No Option Orientation : Vertical

Correct: 1 Wrong: 0

Volumetric strain of a sphere of diameter increasing from d₁ to d₂ is equal to

Options:

$$\frac{d_2 - d_1}{d_1}$$

$$3\frac{(d_2-d_1)}{d_1}$$

$$3\frac{d_2+d_1}{2d_1}$$

$$\frac{d_2 + d_1}{2d_1}$$

Question Number: 11 Question Id: 5799651388 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

Correct: 1 Wrong: 0

If a circular rod having Poisson's ratio μ is subjected to an axial pull and if the strain is e, then the lateral strain is equal to

Options:

-µe

µe

-e/µ

Question Number: 12 Question Id: 5799651389 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical Correct: 1 Wrong: 0 The maximum tangential stress acting on a plane inclined to the direction of the axial stress (p) in a tensile bar is equal to **Options:** p 2pp/23p/2Question Number: 13 Question Id: 5799651390 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical Correct: 1 Wrong: 0 If an element in a body is in equilibrium under shearing stresses only, such a state of stress is called **Options:** Pure rotation Pure shear Pure bending None of the given answers Question Number: 14 Question Id: 5799651391 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical Correct: 1 Wrong: 0 A steel bar is heated from 20° C to 35° C and it is free to expand. Then bar will have **Options:** No stress Tensile stress Compressive stress Shear stress

Question Number: 15 Question Id: 5799651392 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical https://www.freshersnow.com/previous-year-question-papers/

```
Correct: 1 Wrong: 0
If a solid steel sphere of 10.000 cm<sup>3</sup> subjected to a uniform hydrostatic
pressure of 700x104 kg(f)/sq.m, then decrease in volume of the sphere for
1/K = 6x10^{-11} (kg(f)/sq.m)^{-1}
Options:
2.4 cm3
8.4 cm3
 4.2 cm3
1.2 cm3
Question Number: 16 Question Id: 5799651393 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes
Single Line Question Option: No Option Orientation: Vertical
Correct: 1 Wrong: 0
 Shear force at a section of a horizontal beam is the
Options:
  algebraic sum of the
  vertical forces to any
 one side of the section
algebraic sum of the
vertical forces on both
 sides of the section
  algebraic sum of the
 moments of all forces
 on any one side of the
        section
algebraic sum of the
   moments of all
forces on both sides
    of the section
Question Number: 17 Question Id: 5799651394 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes
Single Line Question Option: No Option Orientation: Vertical
Correct: 1 Wrong: 0
For UDL (uniformly distributed load) on a beam, the bending moment
diagram (BMD) shows
Options:
  Linear variation
 Parabolic (curve)
      variation
```

https://www.freshersnow.com/previous-year-question-papers/

Rectangle or constant value

Trapezoidal variation

Question Number: 18 Question Id: 5799651395 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

Correct: 1 Wrong: 0

Bending moment is maximum at a section of a beam where

Options:

Shear force changes from -ve to +ve

Shear force is zero

Shear force changes from +ve to-ve

All the given answers

Question Number: 19 Question Id: 5799651396 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

Correct: 1 Wrong: 0

Which of the following is giving correct relation between load (w), shear force (F) and bending moment (M)

Options:

$$M = \frac{dF}{dx}$$

$$F = \frac{dM}{dx}$$

$$w = \frac{dM}{dx}$$

$$M = \frac{dw}{dx}$$

Question Number: 20 Question Id: 5799651397 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

A beam with equal overhangs is carrying UDL as shown in the following figure. The bending moment at the centre of the beam will be zero for the condition

Options:

$$a = L/3$$

$$a = L/2$$

$$a = 3L/2$$

$$a = L$$

Question Number: 21 Question Id: 5799651398 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

Correct: 1 Wrong: 0

A simply supported beam is carrying a linearly varying load from zero at either ends to the maximum value at the mid span. Then the shape of shear force diagram (SFD) is

Options:

Rectangle

Triangular

Second Degree

Parabola

cubic

Question Number : 22 Question Id : 5799651399 Question Type : MCQ Option Shuffling : Yes Display Question Number : Yes Single Line Question Option : No Option Orientation : Vertical

Correct: 1 Wrong: 0

A simply supported beam of span L and constant width b carries a point load W at mid span. The depth of the beam required at the mid span for maximum extreme fibre stress p

$$d = \frac{3WL}{2bp}$$

$$d = \sqrt{\frac{3WL}{2bp}}$$

$$d^3 = \frac{3WL}{2bp}$$

$$d = \frac{3WL}{2bp^2}$$

Question Number : 23 Question Id : 5799651400 Question Type : MCQ Option Shuffling : Yes Display Question Number : Yes Single Line Question Option : No Option Orientation : Vertical

Correct: 1 Wrong: 0

If a timber beam 8 cm wide and 16 cm deep is to be converted into an equivalent steel section of the same depth for analysis purpose, then the width of the equivalent section for a modular ratio of 20 will be

Options:

160 cm

2.5 cm

0.4 cm

12 cm

Question Number : 24 Question Id : 5799651401 Question Type : MCQ Option Shuffling : Yes Display Question Number : Yes Single Line Question Option : No Option Orientation : Vertical

Correct: 1 Wrong: 0

If the average shear stress in a rectangular section beam is 5 N/sq.mm, then maximum shear stress for the circular section of the equal area is

Options:

7.50 N/sq.mm

6.65 N/sq.mm

10 N/sq.mm

2.50 N/sq.mm

Question Number : 25 Question Id : 5799651402 Question Type : MCQ Option Shuffling : Yes Display Question Number : Yes Single Line Question Option : No Option Orientation : Vertical

Single Line Question Option: No Option Orientation: Vertical

Correct: 1 Wrong: 0 https://www.freshersnow.com/previous-year-question-papers/

https://www.freshersnow.com/previous-year-question-papers/

0.33

0.15

0.45

0.25

Question Number : 32 Question Id : 5799651409 Question Type : MCQ Option Shuffling : Yes Display Question Number : Yes Single Line Question Option : No Option Orientation : Vertical

Correct: 1 Wrong: 0

For Euler formula to be valid for mild steel struts which has yield stress of 3200 kg(f)/ sq.cm, the slenderness ratio should not be less than

Options:

80.48

40.28

160.96

53.65

Question Number : 33 Question Id : 5799651410 Question Type : MCQ Option Shuffling : Yes Display Question Number : Yes Single Line Question Option : No Option Orientation : Vertical

Correct: 1 Wrong: 0

Rankin's formula proposed for crippling load (P_r) to cover all cases from short to very long column in terms of ultimate load for short column (P_s) and Euler's crippling load for long column (P_c) is

Options:

$$P_r = P_s + P_c$$

$$P_r = \frac{P_s + P_c}{2}$$

$$\frac{1}{P_r} = \frac{1}{P_s} + \frac{1}{P_c}$$

$$P_r = \frac{P_s - P_c}{P_s P_c}$$

Question Number: 34 Question Id: 5799651411 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

Correct: 1 Wrong: 0

The torque that produces a twist of one radian in a shaft per unit length is called

Modulus of elasticity
Bulk modulus
Torsion
Torsional rigidity
Question Number: 35 Question Id: 5799651412 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical Correct: 1 Wrong: 0
Power transmitted by a shaft(kW) subjected to an average torque T (kNm), rotating at N rpm is equal to
Options:
$\frac{2 \pi NT}{3600}$
$\frac{2\pi NT}{4500}$
$\frac{2 \pi NT}{60}$
<u>πNT</u> 3060
Question Number: 36 Question Id: 5799651413 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical Correct: 1 Wrong: 0
A brass tube has enclosed a steel bar and they have equal cross-sectional area. The Young's modulus of elasticity is 200 GPa and 100 GPa for steel and brass respectively. Then the ratio of stress developed in the steel bar to that in the brass tube under compression is
Options:
0.5
I
1.5
2
Question Number: 37 Question Id: 5799651414 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical
Correct: 1 Wrong: 0
Condition for no tension in a solid column of dia D the eccentricity e must be less than or equal to
reso man or equal to

https://www.freshersnow.com/previous-year-question-papers/

Options : *D*/8 *D*/6 *D*/4

D/2

Question Number : 38 Question Id : 5799651415 Question Type : MCQ Option Shuffling : Yes Display Question Number : Yes Single Line Question Option : No Option Orientation : Vertical

Correct: 1 Wrong: 0

A horizontal beam of square section is placed with one diagonal (d) placed horizontally. The average shear stress occurs at

Options:

d/8 from neutral axis

d/4 from neutral axis

neutral axis

3d/8 from neutral axis

Question Number : 39 Question Id : 5799651416 Question Type : MCQ Option Shuffling : Yes Display Question Number : Yes Single Line Question Option : No Option Orientation : Vertical

Correct: 1 Wrong: 0

The mathematical expression for moment area theorem I for angle θ_{KL} between tangents drawn at K and L to elastic curve is

Options:

$$\theta_{KL} = \int_{K}^{L} \frac{MI}{E} dx$$

$$\theta_{KL} = \int_{K}^{L} \frac{M}{EI} dx$$

$$\theta_{KL} = \frac{M}{EI}$$

$$\theta_{KL} = \frac{E}{MI}$$

Question Number: 40 Question Id: 5799651417 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

Shearing stresses on principal planes will be

Options:
Equal to normal stresses
Half the normal
stresses
Greater than normal
stresses
zero
Question Number : 44 Question Id : 5799651421 Question Type : MCQ Option Shuffling : Yes Display Question Number : Yes Single Line Question Option : No Option Orientation : Vertical Correct : 1 Wrong : 0
If normal stresses of same nature p_x and p_y and shear stress q are acting on
two perpendicular planes and $q = (p_x p_y)^{1/2}$, then the major and minor
principal stresses respectively are
Options:
$p_x + p_y$ and $p_x - p_y$
p_x and $p_{x-}p_y$
$0.5(p_x+p_y)$ and
$0.5(p_x - p_y)$
$p_x + p_y$ and zero
Question Number: 45 Question Id: 5799651422 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yeingle Line Question Option: No Option Orientation: Vertical Correct: 1 Wrong: 0
The maximum shearing stress produced by shrinkfit between two cylinders
(mounted one inside the other) of $E=2x10^6 \text{ kg(f)/m}^2$ and shrinkage factor = 0.002, is equal to
Options :
$2000 \ kg(f)/m^2$
2500 kg(f)/m^2
$4000 \ kg(f)/m^2$

Question Number : 46 Question Id : 5799651423 Question Type : MCQ Option Shuffling : Yes Display Question Number : Yes Single Line Question Option : No Option Orientation : Vertical Correct : 1 Wrong : 0

9

1000 kg(f)/m²

same tensile force. If the bars have their axial elongation in the ratio of 4:6, then the ratio of modulus of elasticity of the two materials would be **Options:** 4:6 6:4 2: 16 V6:2 Question Number: 47 Question Id: 5799651424 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical Correct: 1 Wrong: 0 The bulk modulus of elasticity of a materials is twice its modulus of rigidity. The poisson's ratio of the material is **Options:** 1/7 2/7 3/7 4/7 Question Number: 48 Question Id: 5799651425 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical Correct: 1 Wrong: 0 The diameter of a tapering rod varies from 'D' to 'D/2' in length of 'L' m. If it is subjected to an axial tension of 'P' the change in length is **Options:** $4PL/(\pi ED^2)$ $8PL/(\pi ED^2)$ $2PL/(\pi ED^2)$ None of the given answers

Two bars of same area and length but of different materials are subjected to

https://www.freshersnow.com/previous-year-question-papers/

Question Number: 49 Question Id: 5799651426 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes

Single Line Question Option: No Option Orientation: Vertical

The ratio of loads shared by parts 'AB' and 'BC' of the bar shown below is

Options:

1:1

2:1

3:1

1:2

Question Number: 50 Question Id: 5799651427 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

Correct: 1 Wrong: 0

If a steel tyre is heated and struck on a rigid wheel, after cooling the tyre will be subjected to

Options:

Bending

Torsion

Hoop stress

Compression

Question Number: 51 Question Id: 5799651428 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

Correct: 1 Wrong: 0

Let the strain produced in length and diameter of cylindrical rod be 0.02 and - .005 respectively. Then the volumetric strain is given by

Options:

0.03

0.025

0.015

0.01

Question Number: 52 Question Id: 5799651429 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

A material with large deformation at failure is termed

A	
Options	•
Obudio	•

Brittle

Elastic

Ductile

Elasto-plastic

Question Number: 53 Question Id: 5799651430 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

Correct: 1 Wrong: 0

Creep of a material is

Options:

Continued deformation with time under sustained loading

Disappearance of deformation on removal of load

Not being ductile

To become brittle

 $Question\ Number: 54\ Question\ Id: 5799651431\ Question\ Type: MCQ\ Option\ Shuffling: Yes\ Display\ Question\ Number: Yes\ Single\ Line\ Question\ Option: No\ Option\ Orientation: Vertical$

Correct: 1 Wrong: 0

A system of two prismatic bars of equal length (L) and equal cross-section (A) carries a vertical load P as shown in the figure given below. If their modulus of elasticity is E, the vertical displacement of the hinge 1 is

$$\frac{2 PL}{AE}$$

Question Number: 55 Question Id: 5799651432 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

Correct: 1 Wrong: 0

A shaft of J polar moment of Inertia and C modulus of rigidity is fixed at one end and subjected to torque T at the free end and the same torque at mid length in opposite direction as shown in figure, then the difference in the twist between the free end and the midpoint is equal to

Options:

$$\frac{T}{2CI}$$

$$\frac{3T}{2CI}$$

$$\frac{T}{CI}$$

Question Number: 56 Question Id: 5799651433 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

Correct: 1 Wrong: 0

If a shaft is simultaneously subjected to a torque T and bending moment M, the maximum shear stress is

$$\frac{16}{\pi D^3}(M+T)$$

$$\frac{16}{\pi D^3}(M + \sqrt{M^2 + T^2})$$

$$\frac{16}{\pi D^3}(M - \sqrt{M^2 + T^2})$$

$$\frac{16}{\pi D^3} \sqrt{M^2 + T^2}$$

Question Number: 57 Question Id: 5799651434 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

Correct: 1 Wrong: 0

The ratio of energy stored in a rectangular cantilever beam loaded at the free end without producing permanent set to the energy stored in the same bar in simple tension is

Options:

1/2

1/3

1/6

1/9

Question Number : 58 Question Id : 5799651435 Question Type : MCQ Option Shuffling : Yes Display Question Number : Yes Single Line Question Option : No Option Orientation : Vertical

Correct: 1 Wrong: 0

The theory which is in good agreement with experiments for ductile materials is

Options:

Maximum stress theory

Maximum strain theory

Maximum shear theory

All the given answers

Question Number: 59 Question Id: 5799651436 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

Correct: 1 Wrong: 0

The factor of safety in bending for rectangular beams in terms of yield point stress (σ_{vp}) and working stress (σ_w) is

1.5
$$\frac{\sigma_{YP}}{\sigma_w}$$

short column None of the given answers Question Number: 63 Question Id: 5799651440 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical Correct: 1 Wrong: 0 If the hoop stress in a thin cylinder is 24 N/sq.mm, then its longitudinal stress is equal to **Options:** 36 N/sq.mm 24 N/sq.mm 12 N/sg.mm 6 N/sq.mm Question Number: 64 Question Id: 5799651441 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical Correct: 1 Wrong: 0 The Rankine's constant for a cast iron column with both ends hinged **Options:** 1/7500 1/1600 1/9000 0.00016 Question Number: 65 Question Id: 5799651442 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical Correct: 1 Wrong: 0 A compression member effectively held in position and restrained in direction at one end but not held in posion or restrained in direction at the other end. If it's actual length is L, then its effective length is equal to **Options:** 0.67LL 1.5L

Question Number : 66 Question Id : 5799651443 Question Type : MCQ Option Shuffling : Yes Display Question Number : Yes Single Line Question Option : No Option Orientation : Vertical

Correct: 1 Wrong: 0 https://www.freshersnow.com/previous-year-question-papers/

2L

The width b and depth d of a cantilever beam carrying a point load at its free end are changed into 0.5b and 2d respectively. Then its maximum deflection for the same load condition reduces by

Options:

one-fourth

half

three-fourth

zero

Question Number : 67 Question Id : 5799651444 Question Type : MCQ Option Shuffling : Yes Display Question Number : Yes Single Line Question Option : No Option Orientation : Vertical

Correct: 1 Wrong: 0

A prismatic bar 1 m long and 4 sq.cm in cross sectional area is compressed by a force of 80 kN. If E = 200 kN/sq.mm, the total strain energy stored in the bar is equal to

Options:

40 kN-mm

0.05 kN-mm

400 kN-mm

80 kN-mm

Question Number : 68 Question Id : 5799651445 Question Type : MCQ Option Shuffling : Yes Display Question Number : Yes Single Line Question Option : No Option Orientation : Vertical

Correct: 1 Wrong: 0

A cantilever beam of length L is subjected to a point load P at free end. Then strain enrgy in usual notations is expressed as

Options:

PL 3 /(3EI)

PL/(6EI)

PL2/(36EI)

 $P^2L^3/(6EI)$

Question Number: 69 Question Id: 5799651446 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

Correct: 1 Wrong: 0

The number of contra flexure points that occur in a cantilever beam subjected uniformly distributed load is

0 Question Number: 70 Question Id: 5799651447 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical Correct: 1 Wrong: 0 Maximum value of shear stress in thin cylinders is equal to hoop stress 2(hoop stress) 0.5(hoop stress) 0.25(hoop stress) Question Number: 71 Question Id: 5799651448 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option : No Option Orientation : Vertical Correct: 1 Wrong: 0 Euler's buckling load for both ends fixed condition is equal to (in usual notations) **Options:** $\pi^2 EI/l^2$ $4\pi^{2} EI/l^{2}$ $2\pi^2 EI/l^4$ $0.25\pi^2 EI/l^5$ Question Number: 72 Question Id: 5799651449 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical Correct: 1 Wrong: 0 A simply supported beam of span L carries a point load P at center, the slope at left end is **Options:** PL3/(16EI) PL2/(48EI) PL2/(16EI) PL 3 /(48EI)

2

Question Number: 73 Question Id: 5799651450 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical Correct: 1 Wrong: 0
The elastic curve of a beam means
Options :
BMD
SFD
Deflection curve
Stress-strain curve
Question Number: 74 Question Id: 5799651451 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical Correct: 1 Wrong: 0
Plastic response of a material to compressive force is known as
Options:
Elasticity
Ductility
Plasticity
Malleability
Question Number: 75 Question Id: 5799651452 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical Correct: 1 Wrong: 0
When equations of statics are not sufficient to determine all the reactive
forces at the supports, such beams are called
Options :
statically indeterminate
statically determinate
Imperfect
Defective
Question Number: 76 Question Id: 5799651453 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical Correct: 1 Wrong: 0
In Newtonian fluids, for a given shear stress, the rate at which the fluid deforms is
Options :

https://www.freshersnow.com/previous-year-question-papers/

Inversely proportional to the dynamic viscosity Directly proportional to the dynamic viscosity Independent of kinematic viscosity None of the given answers Question Number: 77 Question Id: 5799651454 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical Correct: 1 Wrong: 0 The pressure difference between inside and outside of a soap bubble of diameter d in terms of surface tension σ is **Options:** $2\sigma/d$ $8 \sigma/d$ $4 \sigma/d$ σ/d Question Number: 78 Question Id: 5799651455 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical Correct: 1 Wrong: 0 Two horizontal plates are placed 14 mm apart and the space between them is filled with an oil of viscosity of 14 poise. If the upper plate moves with 2.5 m/s velocity, the shear stress in the oil is **Options:** 2500 N/sq.m 250 N/sq.m 25 N/sq.m

https://www.freshersnow.com/previous-year-question-papers/

Question Number: 79 Question Id: 5799651456 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes

2.5 N/sq.m

Correct: 1 Wrong: 0

Single Line Question Option: No Option Orientation: Vertical

With reference to the containers of different shapes having the same base area and filled with the same liquid for equal depths, the apparent contradiction in the hydrostatic force on the base of a liquid container and the weight of liquid in the container is known as

Options:

D' Alembert's paradox

Hydrodynamic paradox

Elevator Paradox

Hydrostatic paradox

Question Number: 80 Question Id: 5799651457 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes

Single Line Question Option : No Option Orientation : Vertical

Correct: 1 Wrong: 0

The existence of velocity potential in fluid-flow indicates that

Options:

The flow must be irrotational

The flow is rotational and satisfies the continuity equation

The vorticity must not be zero

The circulation around any closed curve must have a finite value

 $Question\ Number: 81\ Question\ Id: 5799651458\ Question\ Type: MCQ\ Option\ Shuffling: Yes\ Display\ Question\ Number: Yes\ Single\ Line\ Question\ Option: No\ Option\ Orientation: Vertical$

Correct: 1 Wrong: 0

The scale ratio in model of spillway is 1:9. If the discharge in the prototype is 2430 cumecs, the discharge in the model is (in cumecs)

Options:

270

90

10

```
Question Number: 82 Question Id: 5799651459 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes
Single Line Question Option: No Option Orientation: Vertical
Correct: 1 Wrong: 0
 Hydraulic jump is expected when slope of a channel changes from
Options:
steep to steeper
steep to mild
 mild to critical
mild to steep
Question Number: 83 Question Id: 5799651460 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes
Single Line Question Option: No Option Orientation: Vertical
Correct: 1 Wrong: 0
If Thoma's cavitation factor is less than the critical cavitation factor,
then the overall efficiency of a reaction turbine will have
Options:
abnormal increase
 no change
 sharp fall
gradual increase
Question Number: 84 Question Id: 5799651461 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes
Single Line Question Option: No Option Orientation: Vertical
Correct: 1 Wrong: 0
The angle of contact between pure water and clean glass is
Options:
  00
450
 900
 1300
Question Number: 85 Question Id: 5799651462 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes
Single Line Question Option: No Option Orientation: Vertical
Correct: 1 Wrong: 0
Parshall flume is used to measure discharge in
Options:
 pipes
wells
```

https://www.freshersnow.com/previous-year-question-papers/

canals spillways Question Number: 86 Question Id: 5799651463 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical Correct: 1 Wrong: 0 Fluid flow analysis is valid as long as the smallest length dimension of the problem is much larger than the distance between molecules. This concept is known as **Options:** Control volume Ideal fluid Fluid continuum Homogeneous fluid Question Number: 87 Question Id: 5799651464 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical Correct: 1 Wrong: 0 A body weighing 40 N is losing 5 N weight when submerged in water. Then its specific gravity of the body is equal to For a closed single pair of lock gates having 1200 between them **Options:** 8 2 Question Number: 88 Question Id: 5799651465 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical Correct: 1 Wrong: 0 For a closed single pair of lock gates having 1200 between them when symmetrically placed, the resultant pressure force (P) acting on a gate and the reaction force (F) between the butting edges of the two gates are related as **Options:** F=P/2

F=2P

 $F = \sqrt{3P/2}$

F=P

$Question\ Number: 89\ Question\ Id: 5799651466\ Question\ Type: MCQ\ Option\ Shuffling: Yes\ Display\ Question\ Number: Yes\ Single\ Line\ Question\ Option: No\ Option\ Orientation: Vertical$
Correct: 1 Wrong: 0
A liquid jet of 30 m/s velocity is striking a single symmetrical moving curved vane at the centre. For maximum efficiency, the
velocity of the vane should be
STANDER CONTROL AND A STANDARD S
Options:
30 m/s
20 m/s
15m/s
10 m/s
Question Number: 90 Question Id: 5799651467 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical Correct: 1 Wrong: 0
If the velocity distribution over parallel planes is identical in a flow
region, then the flow is treated as
Options:
one dimensional
two dimensional
three dimensional
Axi-Symmetric
Question Number: 91 Question Id: 5799651468 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical Correct: 1 Wrong: 0 A merchant ship has metacentric height of 2.7m. After unloading it increased to 3.6 m. The ratio of periodic times before and after
unloading the cargo ship if radious of gyration is not altered is
Options:
I
0.75
$\sqrt{(3/4)}$ $\sqrt{(4/3)}$
$\sqrt{(4/3)}$
Question Number : 92 Question Id : 5799651469 Question Type : MCQ Option Shuffling : Yes Display Question Number : Yes Single Line Question Option : No Option Orientation : Vertical Correct : 1 Wrong : 0

The velocity of head of water flowing through the pipe of 0.3 m dia for the conditions shown in the figure below is

Options:

0.25 m

0.15 m

0.44 m

0.1 m

Question Number : 93 Question Id : 5799651470 Question Type : MCQ Option Shuffling : Yes Display Question Number : Yes Single Line Question Option : No Option Orientation : Vertical

Correct: 1 Wrong: 0

Performance characterstic curves indicate that unit discharge is independent of unit speed for

Options:

Pelton wheel

Low specific speed Francis turbine

High specific speed Francis turbine

Kaplan turbine

Question Number : 94 Question Id : 5799651471 Question Type : MCQ Option Shuffling : Yes Display Question Number : Yes Single Line Question Option : No Option Orientation : Vertical

Correct: 1 Wrong: 0

Hot wire anemometer is used for measuring

Options:

velocity of gases

velocity of liquids

pressure of gases

velocity increases

```
Question Number: 95 Question Id: 5799651472 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes
Single Line Question Option: No Option Orientation: Vertical
Correct: 1 Wrong: 0
 A pipe boundary will behave as hydrodynamically smooth if the
 relative magnitude of average height of the surface protrusions and
 the thickness of the laminar sublayer is
Options:
< 0.25
  <6
 26
 >11.6
Question Number: 96 Question Id: 5799651473 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes
Single Line Question Option: No Option Orientation: Vertical
Correct: 1 Wrong: 0
 If a sphere of 10 mm dia is falling in a fluid medium of kinematic
 viscosity of 10 stokes with terminal vlocity of 12 mm/s, then
 coefficient of drag on the sphere will be
Options:
 12
 24
100
200
Question Number: 97 Question Id: 5799651474 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes
Single Line Question Option: No Option Orientation: Vertical
Correct: 1 Wrong: 0
The boundary-layer separation occurs when
Options:
 the pressure gradient
         is zero
the pressure gradient
      is negative
 the pressure
  gradient is
    adverse
```

```
Question Number: 98 Question Id: 5799651475 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes
Single Line Question Option: No Option Orientation: Vertical
Correct: 1 Wrong: 0
Compressibility of fluid is insignificant if Mach number is
Options:
greater than 1
equal to 1
between 0.4-1
less than 0.4
Question Number: 99 Question Id: 5799651476 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes
Single Line Question Option: No Option Orientation: Vertical
Correct: 1 Wrong: 0
 The pressure drop in a laminar flow through circular pipe is
 dependent on
Options:
velocity of flow
viscosity of the fluid
diameter of the
     pipe
 All the given
   answers
Question Number: 100 Question Id: 5799651477 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes
Single Line Question Option: No Option Orientation: Vertical
Correct: 1 Wrong: 0
 The deformation drag experienced by a sphere of d dia, moving at
 V velocity through a fluid of \mu dynamic viscosity is given by
Options:
 3\pi Vd/\mu
 3\pi \mu Vd
3\pi \mu Vd^2
3\pi\mu V^2 d
Question Number: 101 Question Id: 5799651478 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes
Single Line Question Option: No Option Orientation: Vertical
Correct: 1 Wrong: 0
 Intensity of turbulence is
Options:
     the root mean
    square value of
 velocity fluctuations
                              https://www.freshersnow.com/previous-year-question-papers/
```

```
The average kinetic
energy of turbulence
  The mean time
 interval between
  the reversals in
the sign of velocity
    fluctuation
the square root of
Reynolds number
Question Number: 102 Question Id: 5799651479 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes
Single Line Question Option: No Option Orientation: Vertical
Correct: 1 Wrong: 0
The average coefficient of friction drag for turbulent boundary layer
is expressed by
Options:
 0.664/\sqrt{(Re)}
 0.664/(Re) 1/5
 0.074/(Re) 1/4
0.074/\sqrt{(Re)}
Question Number: 103 Question Id: 5799651480 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes
Single Line Question Option: No Option Orientation: Vertical
Correct: 1 Wrong: 0
The drag coefficient at supersonic velocities depends on
Options:
Reynolds number
       only
Mach number only
Weber number
     only
Euler number only
Question Number: 104 Question Id: 5799651481 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes
Single Line Question Option: No Option Orientation: Vertical
Correct: 1 Wrong: 0
The entrance length or length of establishment of turbulent flow in
pipes is
Options:
```

```
Inversly proportional
       to pipe dia
    proportional to
Reynolds number (Re)
 proportional to
proportional to Re 0.6
Question Number: 105 Question Id: 5799651482 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes
Single Line Question Option: No Option Orientation: Vertical
Correct: 1 Wrong: 0
In a rectangular channel of 1 m width the critical depth for a flow of
3.132 cumees is approximately equal to
Options:
2 m
 1 m
0.1 m
3.14 m
Question Number: 106 Question Id: 5799651483 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes
Single Line Question Option: No Option Orientation: Vertical
Correct: 1 Wrong: 0
The control which will limit pump outlet pressure to a
predetermined level and adjust pump outlet flow to the level needed
to maintain the set pressure, is
Options:
      pressure
compensator control
 Load sense control
 Meter-In circuit
Meter-Out circuit
Question Number: 107 Question Id: 5799651484 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes
Single Line Question Option: No Option Orientation: Vertical
Correct: 1 Wrong: 0
An unsymmetrical sprinkler has frictionless and equal flow through
each of the two nozzles. If the absolute velocities are 6.0 and 9.0
m/s, the ratio of the distances of the nozzles from the rotating shaft
```

9:6

Options:

 $\partial \tau / \partial y = \partial p / \partial x$

```
\partial^2 \tau / \partial x^2 =
  \partial^2 p/\partial x^2
\partial^2 \tau / \partial x^2 = \partial^2 p / \partial v^2
Question Number: 111 Question Id: 5799651488 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes
Single Line Question Option: No Option Orientation: Vertical
Correct: 1 Wrong: 0
 A fluid jet of cross sectional area of a and velocity of V strikes
 (normal to) moving plate arranged in series with velocity u and
 u < V, the actual fluid mass striking is equal to
Options:
 ρα(V-u)
  pau
 paV
 \rho a(V+u)
Question Number: 112 Question Id: 5799651489 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes
Single Line Question Option: No Option Orientation: Vertical
Correct: 1 Wrong: 0
 In order to have a continuous flow through a siphon, no portion of
 the pipe should be higher than ____ above HGL.
Options:
2.55 m
 0.775 m
 7.75 m
 25.5 m
Question\ Number: 113\ Question\ Id: 5799651490\ Question\ Type: MCQ\ Option\ Shuffling: Yes\ Display\ Question\ Number: Yes\ Single\ Line\ Question\ Option: No\ Option\ Orientation: Vertical
Correct: 1 Wrong: 0
 The loss of energy in Orifice meter is more than in the case of
 Venturimeter because
Options:
Sudden obstruction
 Turbulence
 More friction
pressure varation
```

Question Number: 114 Question Id: 5799651491 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

Correct: 1 Wrong: 0

For a body completely submerged in a fluid, the centre of gravity (G) and centre of buoyancy (O) are known. The body is said to be in stable equilibrium, if

Options:

O does not coincides with centre of mass of the displaced fluid

G coincides with centre of mass of the displaced fluid

O lies above G

O lies below G

Question Number: 115 Question Id: 5799651492 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

Correct: 1 Wrong: 0

At two points 1 and 2 in a pipeline, the velocities are V and 2V respectively. Both the points are at the same elevation. The fluid density as ρ . The difference between pressure at 1 and 2 is

Options:

 $\frac{1}{2} \rho V^2$

 $\frac{3}{2} \rho V^2$

 $2 \rho V^2$

 $3 \rho V^2$

Question Number: 116 Question Id: 5799651493 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

Correct: 1 Wrong: 0

The velocity field for a flow is given by $v = (5x + 6y + 7z)i + (6x + 5y + 9z)j + (3x + 2y + \lambda z)\dot{k}$ and density varies as $\rho = \rho_o e^{-2t}$. In order that the mass is conserved, the value of λ should be

Options:

-12

-10

-8

10

Question Number: 117 Question Id: 5799651494 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

Correct: 1 Wrong: 0

A 10cm side cube weighing 5N is immersed in a liquid of relative density 0.8 contained in a rectangular tank of cross-sectional area $15cm \times 15cm$. If the tank contained liquid to a height of 8cm before the immersion. The buoyant force on the cube is

Options:

10N

5000N

Question Number: 118 Question Id: 5799651495 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

Correct: 1 Wrong: 0

Match List I and List II and select the correct answer using the codes given below the lists

List I description	List II property of fluid
P. Property which explains the spherical shape of	1. Viscosity
the drop of a liquid	
Q. Property which explains cavitation in fluid flow	2. Surface Tension
R. Property which explains rise of sap in free	3. Compressibility
S. Property which explains flow of oil jet	4. Vapour pressure
	Capillarity

Options:

P Q R S 1 2 4 5

PORS

2 4 5 1

P Q R S

3 4 5 1

PQRS

1 2 3 4

Question Number: 119 Question Id: 5799651496 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

Correct: 1 Wrong: 0

Uniform flow occurs

Options:

when the spatial rate of the change of velocity is zero

when the temporal rate of the change of velocity is zero

when the velocity changes steadily along the direction of the flow

only when velocity vector at any point remains constant.

Question Number: 120 Question Id: 5799651497 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No. Option Option: Vestion Id: 5799651497 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes

Single Line Question Option : No Option Orientation : Vertical

Correct: 1 Wrong: 0

y = -1.5y

y = -1.5x

Question Number: 121 Question Id: 5799651498 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

Correct: 1 Wrong: 0

For a 2D irrotational flow, the velocity potential is defined as $\varphi = log_e(x^2 + y^2)$. Which of the following is possible stream function ψ , for this flow?

Options:

$$\frac{1}{2}$$
tan⁻¹ $(\frac{y}{x})$

$$\tan^{-1}(\frac{y}{x})$$

$$2 \tan^{-1}(\frac{y}{x})$$

$$2 \tan^{-1} \left(\frac{x}{y}\right)$$

Question Number: 122 Question Id: 5799651499 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

Correct: 1 Wrong: 0

A pitot static tube having coefficient of velocity 0.98, measures velocities of water in a pipe. The stagnation pressure recorded is 3m and static pressure 2m. The actual velocity in pipe is

Options:

4.429m/s

 $4.341 \, \text{m/s}$

4.431m/s

zero

Question Number: 123 Question Id: 5799651500 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

Correct: 1 Wrong: 0

The velocity in m/s at a point in a 2D flow is given as v = 2yi + 3xj. The equation of stream line passing through the point is

Options:

$$3dx-2dy=0$$

$$2x + 3y = 0$$

$$3\mathrm{d}x + 2\mathrm{d}y = 0$$

xy = 6

 $Question\ Number: 124\ Question\ Id: 5799651501\ Question\ Type: MCQ\ Option\ Shuffling: Yes\ Display\ Question\ Number: Yes\ Single\ Line\ Question\ Option: No\ Option\ Orientation: Vertical$ Correct: 1 Wrong: 0 Select the correct statement **Options:**

Absolute pressure = Gage pressure - Atmospheric pressure

Gage pressure = Absolute pressure - Atmospheric pressure

Absolute pressure = Atmospheric pressure + vacuum pressure

Gage pressure = Atmospheric pressure + vacuum pressure

 $Question\ Number: 125\ Question\ Id: 5799651502\ Question\ Type: MCQ\ Option\ Shuffling: Yes\ Display\ Question\ Number: Yes\ Single\ Line\ Question\ Option: No\ Option\ Orientation: Vertical$

Correct: 1 Wrong: 0

In laminar flow of a liquid down in an inclined plane, the surface velocity is found to be 30cm/s. The average velocity of the flow, in cm/s is

Options:

20

30

15

10

Question Number: 126 Question Id: 5799651503 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

Correct: 1 Wrong: 0

Match List I and List II and select the correct answer using the codes given below the lists List II

List I

- P. Moment of momentum equation
- 1. Equation to find energy loss in pipeline having laminar flow.

2. Equation of motion for 1-D steady flow

R. Euler's equation

Q. Bernoulli's equation

3. Equation based on momentum

conservation principle.

S. Hagen-poiseulle equation

4. 3-D equation of motion based on

momentum conservation.

Options:

R S 3 4 1 S R 2 1 4

R S

3 1 4

https://www.freshersnow.com/previous-year-question-papers/

P Q R S 3 2 4 1

Question Number: 127 Question Id: 5799651504 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

Correct: 1 Wrong: 0

When a pressure of 2X10⁴ kN/m² is applied to 50litres of a liquid, its volume is decreased by 0.5litre. The bulk modulus of liquid in N/m² is

Options:

20X109

2X109

4X109

40X109

 $Question\ Number: 128\ Question\ Id: 5799651505\ Question\ Type: MCQ\ Option\ Shuffling: Yes\ Display\ Question\ Number: Yes\ Single\ Line\ Question\ Option: No\ Option\ Orientation: Vertical$

Correct: 1 Wrong: 0

A rectangular plate of 2m wide is submerged in water vertically such that its top and bottom surfaces are 2m and 5m respectively below the free surface. The total pressure on plate is

Options:

20601N

20601kN

206.01kN

206.01N

Question Number: 129 Question Id: 5799651506 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

Correct: 1 Wrong: 0

An iceberg floats in sea water. If the specific gravity of iceberg and sea water are 0.9 and 1.03 respectively. The percentage of total volume of the iceberg below the sea water surface is

Options:

87.38%

8.738%

7.38%

78.38%

Question Number: 130 Question Id: 5799651507 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

Correct: 1 Wrong: 0

A control volume implies

Options:

an isolated system

a closed system

a specified mass in fluid flow

a fixed region in space

Single Line Question Option : No	Id: 5799651508 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Option Orientation: Vertical
Correct: 1 Wrong: 0	1
	l manometer of a venturimeter, placed at 45° to the horizontal is
	is turned to horizontal position, the manometer reading will be
Options:	
zero	
$\frac{1}{\sqrt{2}}cm$	
11cm	
$11\sqrt{2}$ cm	
11 v Zem	
Single Line Question Option : No	Id: 5799651509 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Option Orientation: Vertical
Correct: 1 Wrong: 0	
	from an orifice under variable head h, the water will be lowered at a
constant velocity, if the si	urface area of the tank varies as
Options:	
\sqrt{h}	
$\frac{1}{\sqrt{h}}$	
$\frac{1}{h}$	
h	
Single Line Question Option: No Correct: 1 Wrong: 0 An orifice discharges und	Id: 5799651510 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Option Orientation: Vertical er a head of 1.25m of water. A pitot tube kept at its centre line at the head of 1.20m of water. The coefficient of velocity of the orifice is
Options:	
0.990	
0.980	
0.956	
0.965	
Question Number: 134 Question Single Line Question Option: No Correct: 1 Wrong: 0	Id: 5799651511 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Option Orientation: Vertical
A solid is suspended by a thread	d and the body is submerged in a
liquid. If V and γ_{b} all the volume	and specific weight of the body are
1 m ³ and 25 kN and the specific	c weight of the liquid is 10 kN, the
tension in the thread is	
Options:	
15 kN	
10 kN	
5 kN	
25 kN	

https://www.freshersnow.com/previous-year-question-papers/

Question Number: 135 Question Id: 5799651512 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

Correct: 1 Wrong: 0

Which of the following is used for the measurement of rate of flow in open channel such as flow of water in river?

Options:

Notches

weir

orifices

Mouthpieces

Question Number: 136 Question Id: 5799651513 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

Correct: 1 Wrong: 0

A stagnation point is a point in the fluid flow where

Options:

total energy is zero

pressure is zero

velocity of flow is zero

total energy is maximum

Question Number: 137 Question Id: 5799651514 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

Correct: 1 Wrong: 0

Each term of Bernoulli's equation stated in the form $\frac{p}{\gamma} + \frac{v^2}{2g} + z = constant$, has units of

Options:

N

Nm/kg

Nm/s

Nm/N

Question Number: 138 Question Id: 5799651515 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

Correct: 1 Wrong: 0

The specific speed(Ns) of pump is given by the expression

Options:

$$N_s = \frac{N\sqrt{Q}}{H_m^{5/4}}$$

$$N_{s} = \frac{N\sqrt{P}}{H_{m}^{3/4}}$$

$$N_{s} = \frac{N\sqrt{Q}}{H_{m}^{3/4}}$$

$$N_{s} = \frac{N\sqrt{P}}{H_{m}^{5/4}}$$

Question Number: 139 Question Id: 5799651516 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

Correct: 1 Wrong: 0

Which of the following statement is correct?

Options:

centrifugal pump convert mechanical energy into hydraulic energy by sucking liquid into chamber reciprocating pumps convert mechanical energy into hydraulic energy by means of centrifugal energy centrifugal pumps convert mechanical energy into hydraulic energy by means of centrifugal force reciprocating pumps convert hydraulic energy into mechanical energy.

 $Question\ Number: 140\ Question\ Id: 5799651517\ Question\ Type: MCQ\ Option\ Shuffling: Yes\ Display\ Question\ Number: Yes\ Single\ Line\ Question\ Option: No\ Option\ Orientation: Vertical$

Correct: 1 Wrong: 0

The internal and external diameter of the impeller of a centrifugal pump are 200mm and 400mm respectively. The pump is running at 1200r.p.m. The vane angles of the impeller at inlet and outlet are 20° and 30° respectively. The water enters the impeller radially and velocity of flow is constant. The tangential velocity at the inlet and outlet in m/s is

Options:

125.6, 25.13

12.56, 25.13

12.56, 2.513

1.256, 25.13

Question Number: 141 Question Id: 5799651518 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

Correct: 1 Wrong: 0

A centrifugal pump having outer diameter equal to two times the inner diameter and running at 1000 rpm. Works against a total head of 40m. The velocity of flow through the impeller is constant and equal to 2.5m/s. The vanes are set back at an angle 40° at outlet. If the outer diameter of the impeller is 500mm and width at outlet is 50mm, the discharge is .

Options:

1.963 m³/sec

0.1963 m3/min

0.1963 m³/sec

0.1963 cm³/sec

Question Number: 142 Question Id: 5799651519 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

Correct: 1 Wrong: 0

If two pumps, identical in all respects and each capable of delivering a discharge Q against a head H are connected in parallel, the resulting discharge is

Options

Q against a head 2H

2Q against a head H

2Q against a head 2H

2Q against a head H1/2

Question Number: 143 Question Id: 5799651520 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

Correct: 1 Wrong: 0

In laminar flow through a pipe discharge varies

Options:

linearly as the viscosity

as the square of radius

inversely as the pressure drop

inversely as the viscosity

Question Number: 144 Question Id: 5799651521 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

Correct: 1 Wrong: 0

A pipeline of diameter 10cm carries a discharge at a velocity of 1m/s. It branches into two pipes each of diameter 5cm. Consider the following statements

- 1. velocity in each branch is 2m/s
- 2. discharges in the two branched pipes are equal
- 3. rate of flow before and after branching is same
- 4. velocity in 5cm pipe is half of that in 10cm pipe

Select the correct answer using codes given below:

Options:

1 and 2

1 and 4

2.3 and 4

1.2 and 3

Question Number: 145 Question Id: 5799651522 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

Correct: 1 Wrong: 0

A penstock is 3000m long. Pressure wave travels in it with a velocity of 1500m/s. If the turbine gates are closed uniformly and completely in a period of 4.5seconds, then it is called

Options:

rapid closure

slow closure

sudden closure

uniform closure

Question Number: 146 Question Id: 5799651523 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

Correct: 1 Wrong: 0

A reaction turbine discharge 35m³/s under a head of 9m and with an overall efficiency of 91%. The power developed in kW is

Options:

286.65

37.49

3.822

28,665

Question Number: 147 Question Id: 5799651524 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

Correct: 1 Wrong: 0

A draft tube is fitted to the exit of a reaction turbine, located at 1.82m above tail race level. The efficiency of draft tube is 75% and velocity of flow at the entry to draft tube is 10m/s. The pressure at the entrance section of draft tube is

Options:

-5 m

-3.82m

10.2m

1.82m

Question Number: 148 Question Id: 5799651525 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

Correct: 1 Wrong: 0

A Pelton wheel has a mean bucket speed of 10m/s with a jet of water flowing at the rate of 700 litre/sec under a head of 30m. The bucket deflects the jet through an angle of 160°. Theoretical velocity of jet is 24.26 m/s. Assuming the coefficient of velocity 0.98, the velocity of whirl at inlet in cm/sec is

Options:

2377

23.77

237.7

23770

Question Number: 149 Question Id: 5799651526 Question Type: MCQ Option Shuffling: Yes Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

Correct: 1 Wrong: 0

Two jets strikes the buckets of a Pelton wheel, which is having shaft power as 15450 kW. The diameter of each jet is given as 200 mm. If the net head on the turbine is 400 m, the power at the inlet of turbine is $(\text{Take C}_v = 1.0)$

Options:

21817.44kW

2181.1744kW

21.81kW

21817.44W

 $Question\ Number: 150\ Question\ Id: 5799651527\ Question\ Type: MCQ\ Option\ Shuffling: Yes\ Display\ Question\ Number: Yes\ Single\ Line\ Question\ Option: No\ Option\ Orientation: Vertical$

Correct: 1 Wrong: 0

The hydraulic grade line is

Options:

always above the energy grade line

the velocity head below the energy grade line

always above the closed conduit

always sloping downward in the direction of flow