Vector Differentials

Del Operator

Gradient and its Applications

Fig. 1

Recap

Recap

A scalar quantity has only magnitude. A vector quantity has both magnitude and direction.

Cylindrical Coordinate System

Point P $p(p, \phi, z)$

Spherical Coordinates P(r, Θ, φ)

Recap

Dedicated batches available on ADDA247 App, Use offer code Y657

lockwise.

 \vec{b} and \vec{b} are two arbitrary vectors with magnitudes \vec{a} and \vec{b} , respectively, $|\vec{a} \times \vec{b}|^2$ will be equal to axb = absino an (a) $a^2b^2 - (\vec{a} \cdot \vec{b})^2$

$$(\vec{a}) ab - \vec{a} \cdot \vec{b}$$
 $(\vec{a} \times \vec{b}) - ab \sin \theta$

(c)
$$a^2b^2 + (\vec{a} \cdot \vec{b})^2$$

(d) $ab + \vec{a} \cdot \vec{b} = |\vec{q} \times \vec{b}|^2 = |\vec{b} \times \vec{$

$$|\vec{q} \cdot \vec{\lambda}| = |\vec{q} \cdot \vec{\lambda}$$

Number of Questions covered-22

For the parallelogram OPQR shown in the sketch, $\overline{OP} = a\hat{i} + b\hat{j}$ and $\overline{OR} = c\hat{t} + d\hat{j}$. The area of the parallelogram is.

9 R-P, Q and R are three points having coordinates (3, -2, -1), (1, 3, 4), (2, 1, -2) in XYZ space, then the distance from point P to plane OQR (O being the origin coordinate system) is given by

Spherical Coordinate systems

WELCOME TO Adda 2417

"If You are here, You are one step closer to your GOAL."

GATE 2024

Electromagnetic Field Theory

DEL OPERATOR, GRADIENT AND ITS APPLICATIONS

LEC-07

EE & ECE

Download Now

Adda 247 APP

APP FEATURES

- **Basic introduction of Fields**
- 2. Vectors, Scalars and Tensors
- Position vector and vector between points
- Magnitude and direction of vector
- Dot and cross products and its applications
- **Cartesian and Cylindrical and Spherical** Coordinate systems
- 7. Vector integrals(Line and closed line)

Vector Differentials

Del Operator

Gradient and its Applications

Fig. 1

Del Operator:- It is differential operator in Vector calculus.

- Del operator is first order differential operator.
- Line integral is first order integral.
- Del Operator is a vector.
- Del operator symbol is named as Nebla.

Del Operator is Cartesian Coordinate Systems

$$\nabla = \frac{\partial}{\partial x} \hat{q}_x + \frac{\partial}{\partial y} \hat{q}_y + \frac{\partial}{\partial z} \hat{q}_z$$

Del Operator is Cylindrical Coordinate Systems

Del Operator is Spherical Coordinate Systems

$$\nabla = \frac{\partial}{\partial x} \hat{q}_x + \frac{1}{\sqrt{20}} \frac{\partial}{\partial \theta} \hat{q}_{\theta} + \frac{1}{\sqrt{8in\theta}} \frac{\partial}{\partial \phi} \hat{q}_{\theta}$$

First Order Differential Operations using Del operator

- (1) Zv -> Gradient
- 2) V. A -> Divergence
- 3 DXA -> (4TL
- * Gradient operation is performed on Scalars.
- * Gradient results a vector.

Gradient: - Gradient of a non uniform scalar field at a point is a vector, of which magnitude is maximum space rate of change at the point and its direction is in the direction in which maximum space rate of change occurs.

Q:23 Temperature in an auditorium is given by T=15x^2yz^3. A mosquito located At point (-1,2,4) feels cold, in which direction it must fly to get relax?

Sol:-> direction of gradient

= 4nit Vector of gradient

=
$$\nabla T$$
 $T = 15x^2yz^3$
 $\nabla T = 30xyz^3i + 15x^2z^3j + 45x^2yz^2k$
 $\nabla T = -60x64i + 15x64j + 90x16k$
 $\nabla T = -60x64i + 15x64j + 90x16k$

direction = $-60x64i + 15x64j + 90x16k$

Calculation of Gradient in Cartesian Coordinate systems

$$\nabla = \frac{\partial}{\partial x} \hat{q}_1 + \frac{\partial}{\partial y} \hat{q}_2 + \frac{\partial}{\partial z} \hat{q}_2$$

$$V(x,y,z)$$

$$\nabla V = \frac{\partial V}{\partial x} \hat{q}_x + \frac{\partial V}{\partial y} \hat{q}_y + \frac{\partial V}{\partial z} \hat{q}_z$$

$$|\nabla V| \longrightarrow gradient at the point p'.$$

Calculation of Gradient in Cylindrical Coordinate systems $V(S, \phi, z)$

Calculation of Gradient in Spherical Coordinate systems $V(\tau, \theta, \phi)$

- To find maximum rate of change and its direction at any point
- 2. To find Directional Derivative ??
- 3. To find vector normal to a curve or surface at any point ??

Application of gradient

|∇v| cosθ

Application of gradient

 $|\nabla v| \cos \theta$

$$\vec{A} \cdot \vec{B} = AB \cos\theta$$

Application of gradient

 $|\nabla v| \cos \theta$

$$\vec{A} \cdot \vec{B} = AB \cos\theta$$

$$\vec{A} \cdot \hat{a}_B = A \cos \theta$$

Application of gradient

 $|\nabla v|\cos\theta$

$$\overrightarrow{\nabla \mathbf{v}}$$
. \widehat{a}_A

$$\vec{A} \cdot \vec{B} = AB \cos\theta$$

$$\vec{A} \cdot \hat{a}_B = A \cos \theta$$

DIRECTIONAL DERIVATIVE

Application of gradient

$$|\nabla v|\cos\theta$$

$$\overrightarrow{\nabla v}$$
. \widehat{a}_A

$$\vec{A} \cdot \vec{B} = AB \cos\theta$$

$$\vec{A} \cdot \hat{a}_B = A \cos \theta$$

Directional derivative of scalar v at a point in the direction of A

DIRECTIONAL DERIVATIVE

Application of gradient

 $|\nabla v|\cos\theta$

$$\overrightarrow{\nabla v}$$
. \widehat{a}_A

$$\vec{A} \cdot \vec{B} = AB \cos\theta$$

$$\vec{A} \cdot \hat{a}_B = A \cos \theta$$

Directional derivative of scalar v at a point in the direction of $\vec{A} = \vec{\nabla v}$. \hat{a}_A

Find directional derivative of $2x^2 + 3y - z$ in the direction of $\vec{A} = 0.24$

 $5x\hat{l} - 2xz\hat{i} + 4\hat{k}$ at point (3, 1, -1)

Sol:

Find directional derivative of $2x^2 + 3y - z$ in the direction of $\vec{A} =$

$$5x\hat{l} - 2xz\hat{i} + 4\hat{k}$$
 at point (3, 1, -1)

$$let V = 2x^2 + 3y - z$$

Find directional derivative of $2x^2 + 3y - z$ in the direction of $\vec{A} =$

$$5x\hat{l} - 2xz\hat{i} + 4\hat{k}$$
 at point (3, 1, -1)

$$let V = 2x^2 + 3y - z$$

$$\nabla V = 4xi + 3\hat{\imath} - \hat{k}$$

Find directional derivative of $2x^2 + 3y - z$ in the direction of $\vec{A} =$

$$5x\hat{l} - 2xz\hat{i} + 4\hat{k}$$
 at point (3, 1, -1)

$$let V = 2x^2 + 3y - z$$

$$\nabla V = 4xi + 3\hat{\imath} - \hat{k}$$

$$\nabla_{V}|_{(3,1,-1)} = 12\hat{I} + 3\hat{i} - \hat{k}$$

Find directional derivative of $2x^2 + 3y - z$ in the direction of $\vec{A} =$

$$5x\hat{l} - 2xz\hat{i} + 4\hat{k}$$
 at point (3, 1, -1)

$$let V = 2x^2 + 3y - z$$

$$\nabla V = 4xi + 3\hat{\imath} - \hat{k}$$

$$\nabla_{V}|_{(3,1,-1)} = 12\hat{I} + 3\hat{i} - \hat{k}$$

$$|\vec{A}|_{(3,1,-1)} = 15\hat{l} + 6\hat{i} + 4\hat{k}$$

Find directional derivative of $2x^2 + 3y - z$ in the direction of $\vec{A} =$

$$5x\hat{l} - 2xz\hat{i} + 4\hat{k}$$
 at point (3, 1, -1)

$$let V = 2x^2 + 3y - z$$

$$\nabla V = 4xi + 3\hat{\imath} - \hat{k}$$

$$\nabla_{V}|_{(3,1,-1)} = 12\hat{l} + 3\hat{i} - \hat{k}$$

$$\vec{A}|_{(3,1,-1)} = 15\hat{I} + 6\hat{i} + 4\hat{k}$$

$$\widehat{a}_A = \frac{15\hat{1} + 6\hat{1} + 4\hat{k}}{\sqrt{225 + 36 + 16}}$$

Find directional derivative of $2x^2 + 3y - z$ in the direction of $\vec{A} =$

$$5x\hat{l} - 2xz\hat{i} + 4\hat{k}$$
 at point (3, 1, -1)

Sol.

$$let V = 2x^2 + 3y - z$$

$$\nabla V = 4xi + 3\hat{\imath} - \hat{k}$$

$$\nabla_{V}|_{(3,1,-1)} = 12\hat{I} + 3\hat{i} - \hat{k}$$

$$\vec{A}|_{(3,1,-1)} = 15\hat{I} + 6\hat{i} + 4\hat{k}$$

$$\widehat{a}_A = \frac{15\widehat{1} + 6\widehat{1} + 4\widehat{k}}{\sqrt{225 + 36 + 16}}$$

Directional derivative = $\nabla \vec{v} \cdot \hat{a}_A$

Find directional derivative of $2x^2 + 3y - z$ in the direction of $\vec{A} =$

$$5x\hat{l} - 2xz\hat{i} + 4\hat{k}$$
 at point (3, 1, -1)

Sol.

$$let V = 2x^2 + 3y - z$$

$$\nabla V = 4xi + 3\hat{\imath} - \hat{k}$$

$$\nabla_{V}|_{(3,1,-1)} = 12\hat{I} + 3\hat{i} - \hat{k}$$

$$\vec{A}|_{(3,1,-1)} = 15\hat{I} + 6\hat{I} + 4\hat{I}$$

$$\widehat{a}_A = \frac{15\widehat{1}+6\widehat{1}+4\widehat{k}}{\sqrt{225+36+16}}$$

Directional derivative = $\nabla \vec{v} \cdot \hat{a}_A$

$$\overrightarrow{\nabla v}.\widehat{a}_A = \frac{15 \times 12 + 6 \times 3 - 4}{\sqrt{277}}$$

 $\frac{Q:24}{Find}$ directional derivative of $2x^2 + 3y - z$ in the direction of $\vec{A} =$

$$5x\hat{l} - 2xz\hat{i} + 4\hat{k}$$
 at point (3, 1, -1)

Sol.

$$let V = 2x^2 + 3y - z$$

$$\nabla V = 4xi + 3\hat{\jmath} - \hat{k}$$

$$\nabla_{V}|_{(3,1,-1)} = 12\hat{l} + 3\hat{j} - \hat{k}$$

$$\vec{A}|_{(3,1,-1)} = 15\hat{I} + 6\hat{I} + 4\hat{K}$$

$$\widehat{a}_A = \frac{15\widehat{1}+6\widehat{1}+4\widehat{k}}{\sqrt{225+36+16}}$$

Directional derivative = $\nabla \vec{v} \cdot \hat{a}_A$

$$\overrightarrow{\nabla v} \cdot \widehat{a}_A = \frac{15 \times 12 + 6 \times 3 - 4}{\sqrt{277}}$$

= 11.656

Home Work

Adda 247

Q:25

The directional derivative of $f(x, y, z) = x(x^2 - y^2) - z$ at A(1, -1, 0) in the direction of $\bar{p} = (2\hat{\imath} - 3\hat{\jmath} + 6\hat{k})$ is:

$$\nabla f = (20 - 0)$$

$$P|_{(1,-1,0)}$$
 $P|_{(1,-1,0)}$
 $2i-3j+6k$
 $Qp = 2i-3j+6k$
 $\sqrt{4+9+36}$

directional der. = $\nabla f \cdot Qp = \sqrt{-6-6} = \frac{p}{7}$

Dedicated batches available on ADDA247 App, Use offer code Y657 Acc

Vector Normal to a Surface/Curve

y=matc -> Cyrve which straight line

Dedicated batches available on ADDA247 App, Use offer code Y657 Adda247

Dedicated batches available on ADDA247 App, Use offer code Y657 Adda 247

In general a (48Ve or syrface given by
$$f(\pi,y,z)=0$$

$$f(\beta,\phi,z)=0$$

$$f(\tau,\phi,\phi)=0$$
 then ∇f at a point gives normal vector to that curve/syrface at that point.

GATE 2024

Sqt & Synday
3 P.M.

6PM - PSA > EE th, foir, S & EMFT 9 P.M. EMFT

Engineering Mathematics

- LINEAR ALGEBRA

26P.M W1W

9 Pm

Question practice on basics of matrices

SUBSCRIBE NOW

Gate Adda247

YouTube Channel

THANKS FOR

Watching Adda 247

