

# WELCOME TO Adda 2417

"If you can think, you can Achieve"
So start thinking..

Renu Raj Garg
M.Tech (VLSI Design)
13 Year of Teaching
Experience
Worked 10 Year in NTRO

# GATE 2024







# Communication System

PROBLEM DISCUSSION FROM ALL AMPLITUDE MODULATION



Chapter-1

### **Analog Communications**

In today's lecture we will cover the following Topis:

1. Problems Discussion from Amplitude Modulation

# Adda 247

#### **Problems Discussion:**

$$[GATE-EC-2014]$$

1. Consider sinusoidal modulation in an AM system. Assuming no over modulation, the modulation index (μ) when the maximum and minimum values of the envelope, respectively, are 3 V and 1 V is ------

$$\begin{cases} V_{min} = +Ve \rightarrow M < L \\ V_{min} = O \rightarrow M = L \\ V_{min} = -Ve \rightarrow M > L \end{cases}$$

$$M = \frac{V_{\text{mux}} - V_{\text{min}}}{V_{\text{mux}} + V_{\text{min}}} = \frac{3 - L}{3 + L} = \frac{2}{4} = 0.5$$

# Adda 247

#### **Problems Discussion:**

[GATE-EC1-2015]

8. In the system shown in Figure (A), m(t) is a low-pass signal with bandwidth W Hz. The frequency response of the band-pass filter H(f) is shown in Figure (B). If it is desired that the output signal z(t) = 10x(t), the maximum value of W (in Hz) should be strictly less than 350







#### **Problems Discussion:**

#### [GATE - IN - 2004]

Due to an amplitude modulation by a sine wave, if the total current in the antenna increase from 4A to 4.8 A the depth of modulation in percentage is

**(B)** 80.1



# Adda[247]

#### **Problems Discussion:**

14. Consider the amplitude modulated (AM) signal  $A_c \cos \omega_c t + 2 \cos \omega_m t \cos \omega_c t$ . For demodulating the signal using envelope detector, he minimum value of  $A_c$  should be

$$S(t) = A_{c} \left[ 1 + \frac{2}{2} \cos \omega_{m} t \right] \cos \omega_{c} t$$

$$H = M_{q} = M = M_{q} = \frac{2}{A_{c}}$$

$$M \le 1$$

$$\frac{2}{A_{c}} \le 1 \Rightarrow A_{c} \ge 2$$

# Adda[247

#### **Problems Discussion:**

#### [GATE - EC - 2010]

16. Suppose that the modulating signal is  $m(t) = 2\cos(2\pi f_m t)$  and the carrier signal is  $x_c(t) = A_c \cos(2\pi f_c t)$ . Which one of the following is a conventional AM signal without over – modulation?

$$\chi(\mathbf{A}) \ x(t) = A_c m(t) \cos(2\pi f_c t) \rightarrow \mathbf{D} \mathbf{5B} - \mathbf{5C}$$

$$X(B) x(t) = A_c[1 + m(t)]\cos(2\pi f_c t) - K_4 = L$$

$$(x(t) = A_c \cos(2\pi f_c t) + \frac{A_c}{4} m(t) \cos(2\pi f_c t) \longrightarrow K_4 = \frac{1}{4}$$

(D) 
$$x(t) = A_c \cos(2\pi f_m t) \cos(2\pi f_c t)$$
  
  $+A_c \sin(2\pi f_m t) \cos(2\pi f_c t)$ 

$$S(t) = A_{c}[1 + K_{a}m(t)] con 2\pi f_{c}t$$

$$S(t) = A_{c}[1 + EK] con 2\pi f_{c}t$$

$$M = 2K_{a}$$

$$M \leq L$$

$$M \leq L$$

$$M \leq L$$

# Adda 247

#### **Problems Discussion:**

[GATE - EC - 2004]

33. Consider a system shown in fig. Let X(f) and Y(f) denote the Fourier transforms of x(t) and y(t) respectively. The ideal HPF has the cut-off frequency 10 KHZ.



The positive frequencies where Y(f) has spectral peaks are

- (A) 1 KHZ and 24 KHZ
- (B) 2KHZ and 24KHZ
  - (C) 1 KHZ and 14 KHZ
- (D) 2 KHZ and 14 KHZ



# Adda 247

#### **Problems Discussion:**

#### [GATE - EC - 2000]

56. The amplitude modulated wave form  $s(t) = A_c[1+K_am(t)]\cos\omega_c t$  is fed to an ideal envelope detector. The maximum magnitude of  $K_am(t)$  is greater than 1. Which of the following could be the detector output?

$$\begin{array}{c} \mathbf{X}(\mathbf{A}) \ A_c m(t) \\ \mathbf{Y}(\mathbf{B}) \ A_c^2 [1 + K_a m(t)]^2 \\ \mathbf{X}(\mathbf{D}) \ \left[ A_c \left| 1 + k_a m(t) \right| \right] \\ \mathbf{X}(\mathbf{D}) \ A_c \left| 1 + K_a m(t) \right|^2 \end{array}$$

$$S(t) \rightarrow A_{c}[1 + |k_{a}m(t)] CDZZIt$$

$$\int ED$$

$$A_{c}[1 + |k_{a}m(t)] = A_{c}[1 + |k_{a}m(t)]$$



#### **Problems Discussion:**

63. An AM signal is detected using an envelope detector. The carrier frequency and modulating signal frequency are 1 MHz and 2 KHz respectively. An appropriate value for the time constant of the envelope detector is

$$\chi(A)$$
 500  $\mu$  sec

$$\chi(C)$$
 0.2  $\mu$  sec

$$(B)$$
  $20\mu sec$ 

$$\chi(\mathbf{D}) 1 \mu \text{sec}$$

# Adda 247

#### **Problems Discussion:**

#### [GATE - EC - 2014]

80. In the figure, M (f) is the Fourier transform of the message signal m (t) where A = 100 Hz and B = 40 Hz. Given  $v(t) = \cos(2\pi f_c t)$  and  $w(t) = \cos(2\pi (f_c + A)t)$ , where  $f_c > A$ . The cutoff frequencies of both the filters are  $f_c$ .





# Adda[24]7

#### **Problems Discussion:**

111. For a message signal  $m(t) = \cos(2\pi f_m t)$  and carrier of frequency  $f_c$ , which of the following represents a single side-band (SSB) signal?

$$X(\mathbf{A}) \cos(2\pi f_m t) \cos(2\pi f_c t) \longrightarrow DSB-SC$$

$$X(\mathbf{A}) \cos(2\pi f_c t) \longrightarrow only \quad Cumical$$

$$X(\mathbf{C}) \cos[2\pi (f_c + f_m)t] \longrightarrow SSB-SC$$

$$X(\mathbf{D}) [1 + \cos(2\pi f_m t)] \cos(2\pi f_c t) \longrightarrow Am$$

$$m(t) - on 2x f_m t$$
  
 $c(t) = A con 2x f_{ct}$ 

$$S(t) \Big|_{SSB} = \frac{A_{c} m(t)}{2} conzx f(t) + \frac{A_{c} n(t)}{2} sinzx f(t)$$

## APP FEATURES





Download Now

Adda 247 APP



















THANKS FOR

# Watching Adda 247







