

WELCOME TO Adda 247

"There is nothing impossible to they who will try."

GATE 2024

PRODUCTION

METAL CUTTING

LEC-2

<u>Mechanical Engineering</u>

GATE 2024

MECHANICAL ENGINEERING

METAL CUTTING

1.Itroduction to Metal cutting

2. Machining operation

3. Turning operation And analysis

- 1.Orthogonal Machining And Analysis
 - 2. Machine Tool And Cutting Tool
 - 3.SPCT AND MPCT

Machining

1.Ortogonal Machining

2. Oblique Machining

Orthogonal Machining

X Cutting Edge of the Tool is lar to the Velocity Vector.

Adda 247 USE CODE Y662 to Join ADDA247 Paid Classes and GET Max Discount A. Explicit Dynamics. Type: Economic New Willest Ones: Celt (00%) Ber et 5.2-300 Lyds Blanow: 21 (92 25-32-1011 C1:56FM 1225.7 Max. QII. 825.8 6063 3491 GII G 274.6 137.3 0 Min

Orthogonal Machining

* tc -> chip Thickness

X + → uncut chip thickness
or
undeformed chip Thickness

* X > Rake Angle

X Y -> Clearance Angle

Relief Angle

unfinish Surface unmachined surface Shear * & -> Shear Angle

ChiP Thickness Ratio(Y)

$$Y = \frac{t}{t_c}$$

chip Reduction factor(h)

* h= = *

* h>1

Refrence Plane

Plane Which is Normal to finish Surface.

Rake Surface

The surface Along which chip moves upward called as Rake Surface.

Flank or Relief Surface

The orther Surface which is relief to avoid rubbing with the machined surface called as Relief or Flank Surface.

$$* \alpha = + ve$$

+ve Rake Angle

- * Machining of Low Strength Material.
- * Low Power machine
- * Low cutting Speed
- * Do not Required Rigid Setup
- * Low cutting Force
- * Cutting Tool Material, HSS

High Speed Steel

Steel+W-> Mot Mardness Temp * Steel + Cr -> Corrosive Resistance 1 * Steel + V -> Wear Resistance 1

-ve Rake Angle

- * Required More Force/Power consumption
- * Required High cutting Speed
- * Increase Tool Life
- * for Machining of High Strength material/Alloys.
- X Required Rigid Setup.
- * Cutting Tool Material : Carbide, Ceramic

(S) * carbide Two => 150m/min * Ceramico > 600 m/min (Brittle Tro) Manufactured by Youder Metallungy Technique

Machine Tool And Cutting Tool

1. Machine Tool

A machine tool is an assembly of several different elements, mechanisms, prime mover as well as CPU/microprocessor.

Which holds both workpiece and cutting tool in an appropriate position and brings the required relative moments between the workpiece and cutting tool.

Cutting Tool

Cutting tool is the one which comes in direct contact of workpiece to deform it plastically .

MACHINE TOOL	CUTTING TOOL
It is an assembly of mechanisms that are clustered to perform certain operations by utilizing electrical, mechanical, etc energy.	It is service having one or more wedge shape and sharp cutting edges to facilitate shearing during metal cutting.
It provides necessary motions to accomplish <u>cutting action</u> .	It does not provide any motion.
It supports and hold the work-piece and other necessary elements.	It generally hold the <u>Inserts</u> by clamping screw.
It transmits the vibrations to ground, hence foundation is necessary.	As it does not transmit any vibration to ground no foundation is needed.
Machines are difficult to move as they are large in size and heavier.	Cutting tools are easier to move from one place to another.
Cost is higher then cutting tool.	Cheaper than machine tool.
Example:- Lathe machine, Milling machine, etc.	Example:-Single point cutting tool, etc.

Single point cutting Tool

Multipoint cutting Tool

Download Now

Adda 247 APP

APP FEATURES

