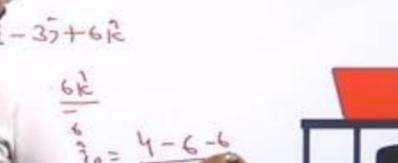
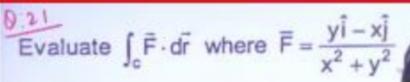
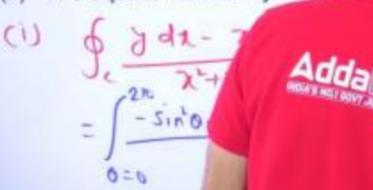


Vector Differentials

Question Practice on Electrostatic Field in Free Space


Recap


Dedicated batches available on ADDA247 App, Use offer code Y657 Adda 247


Q:25 The directional derivative of $f(x, y, z) = x(x^2 - y^2) - z$ at A(1, -1, 0) in the direction of $\bar{p} = (2\hat{\imath} - 3\hat{\jmath} + 6\hat{k})$ is:

- 1. -8/49 Vf
- 2. 8/7
- 3. -8/7
- 4. 0

- (i) Circular path x2 + y2 = 1 describ
- The square formed by the line

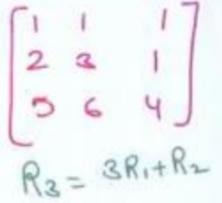
±1, counter clockwise.

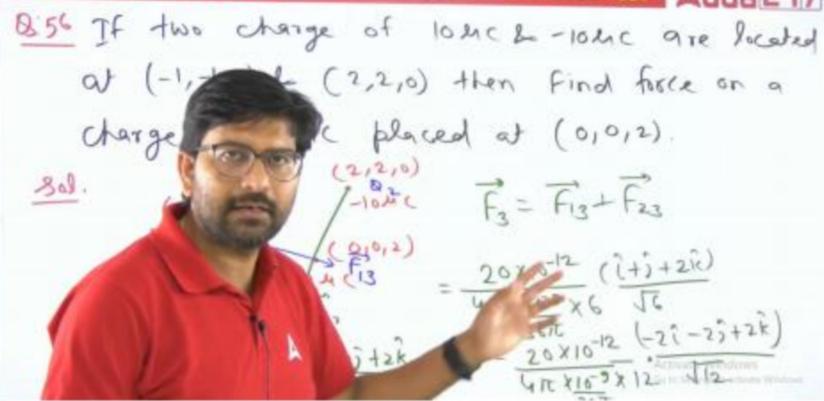
dr =- Sinody = X = CODO

Colodo = g = sino

Number of Questions covered-56

Q:54Which one of the following describes the relationship among the


three vectors, $\vec{i} + \hat{j} + \hat{k}$, $2\hat{i} + 3\hat{j} \pm \hat{k}$ and $5\hat{i} + 6\hat{k}$


The vectors are mutua

(b) The vectors are linearly

(c) The vectors are linearly in

(d) The vectors are unit ve

Divergence and Curl

WELCOME TO Adda 2417

"If You are here, You are one step closer to your GOAL."

GATE 2024

Electromagnetic Field Theory

QUESTION PRACTICE ON ELECTROSTATS IN FREE SPACE

LEC-13

EE & ECE

- **Basic introduction of Fields**
- 2. Basics of Vectors
- 3. Coordinate Systems
- 4. Vector Integrals
- 5. Vector differentials
- 6. Coulomb's law and Gauss law
- Field due to line, Surface and Spherical **Volume Charge**
- **Electric Potential**

Vector Differentials

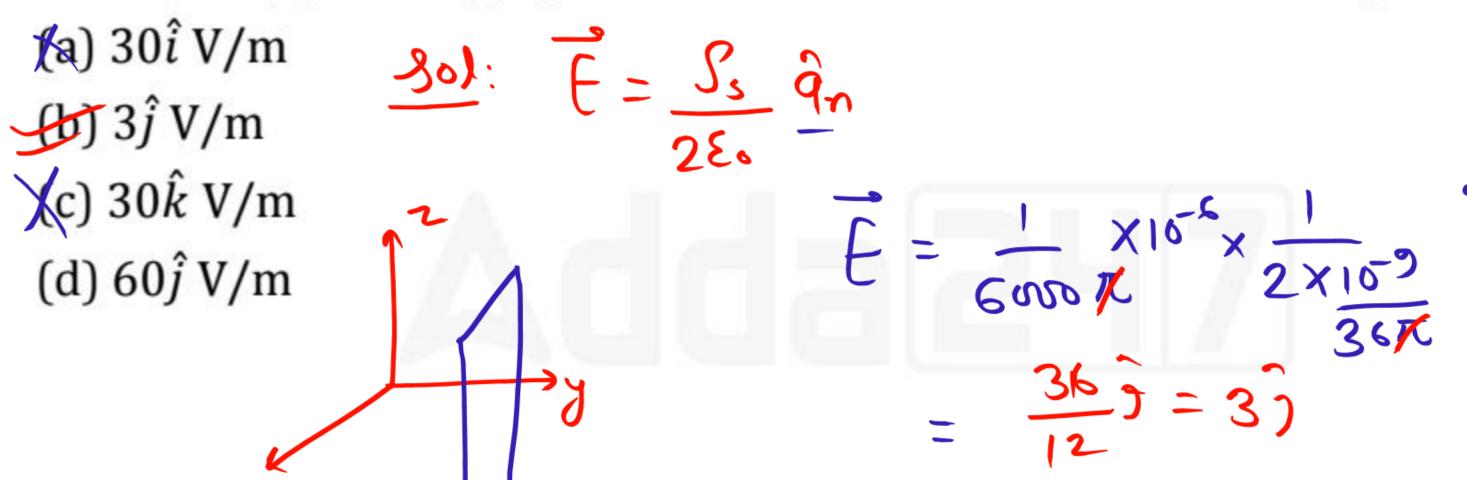
Question Practice on Electrostatic Field in Free Space

Q:57 An electrostatic field is said to be conservative when:

- (a) The divergence of the field is equal to zero
- (b) The curl of the field is equal to zero
- (c) The curl of the field is equal to $-\frac{\partial E}{\partial t^2}$
- (d) The Laplacian of the field is equal to $\mu \varepsilon \frac{\partial^2 E}{\partial t^2}$

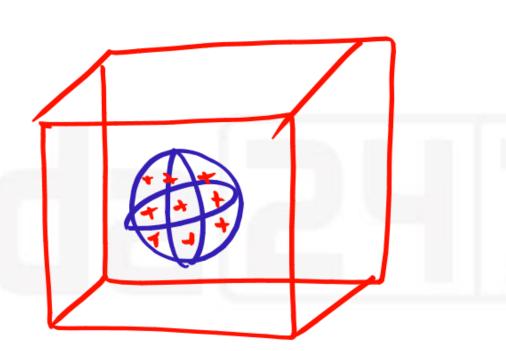
Q:58 For a uniformly charged sphere of radius R and charge density ρ , the ratio of magnitude of electric fields at distances R/2 and 2R from the center, i.e., $\frac{E(r=R/2)}{E(r=2R)}$ is $\frac{2}{R}$.

$$E = \begin{cases} \frac{Sv}{3\varepsilon} & r < R \\ \frac{Sv}{3\varepsilon} & r > R \\ \frac{Sv}{3\varepsilon} & \frac{R}{3\varepsilon} & r > R \end{cases}$$


$$E(r=\frac{R}{2}) = \frac{\int v R}{3E\sqrt{2}}$$

$$E(r=2R) = \frac{\int v R^{3} - \int v R}{3E\sqrt{4R^{2} - 3U/4}}$$

$$\frac{E(r=\frac{R}{2})}{E(r=2R)} = \frac{1}{2} = 2i1$$


Q:59 In the infinite plane, y = 6 m, there exists a uniform surface charge density of $(1/6000\pi)\mu C/m^2$. The associated electric field strength is

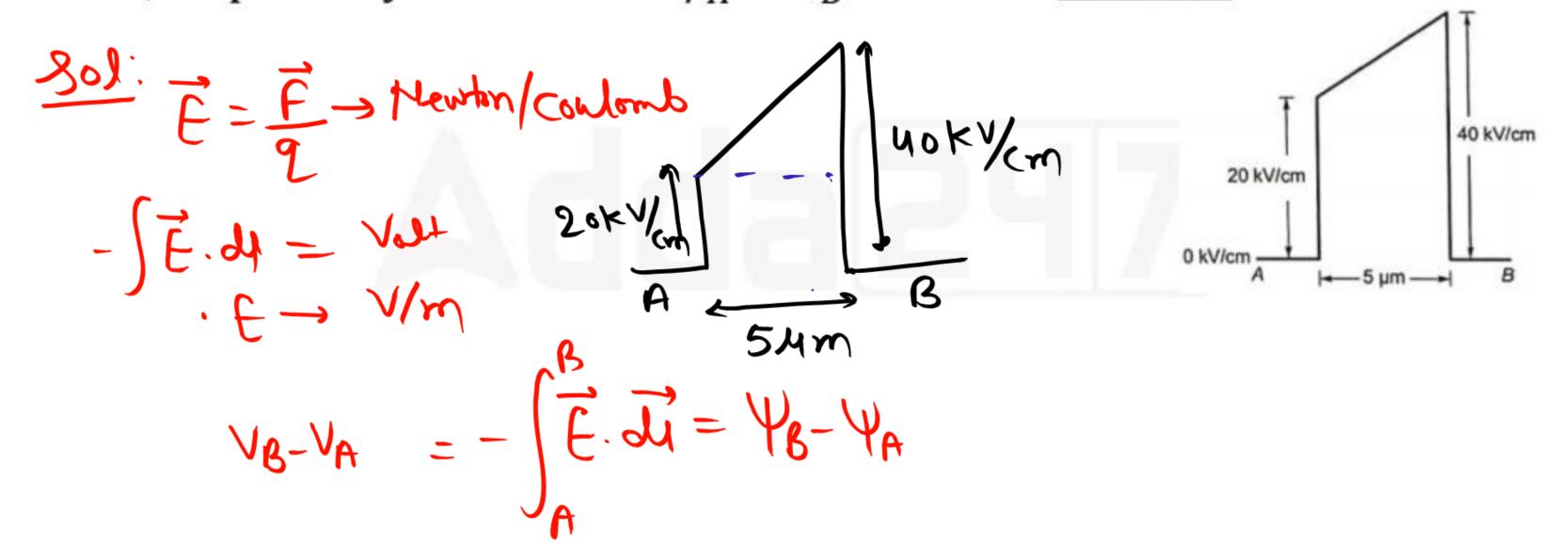
Q:60 A metal sphere with 1 m radius and a surface charge density of 10 Coulombs/ m^2 is enclosed in a cube of 10 m side. The total outward electric displacement flux normal to the surface of the cube is

- (a) 40π Coulombs
- (b) 10π Coulombs
- (c) 5π Coulombs
- (d) None of the above

Q: 61. If the electric field intensity is given by

 $\vec{E} = (x\hat{u}_x + y\hat{u}_y + z\hat{u}_z)$ Volt /m the potential difference between X(2, 0,

- 0) and Y(1, 2, 3) is
- (a) + 1 volt
- (b) 1 volt
- (c) + 5 volt
- (d) + 6 volt
- (E)-5 VOL+


$$-\left[\frac{\chi^{2}}{2}\right]_{1}^{2} + \left(\frac{\chi^{2}}{2}\right)_{2}^{0} + \left(\frac{\chi^{2}}{2}\right)_{3}^{0}$$

$$-\left(\frac{3}{2}\right)_{2}^{2} - \frac{9}{2}$$

$$- +5 \text{ Volt}$$

Q:62 The electric field (assumed to be one - dimensional) between two points A and B is shown. Let ψ_A and ψ_B be the electrostatic potentials at A and B, respectively. The value of $\psi_A - \Psi_B$ in Volts is

$$\frac{1}{4} - \frac{1}{4} = \int_{AB}^{B} \frac{1}{E} dx$$
= $\int_{A}^{B} \frac{1}{E} dx$

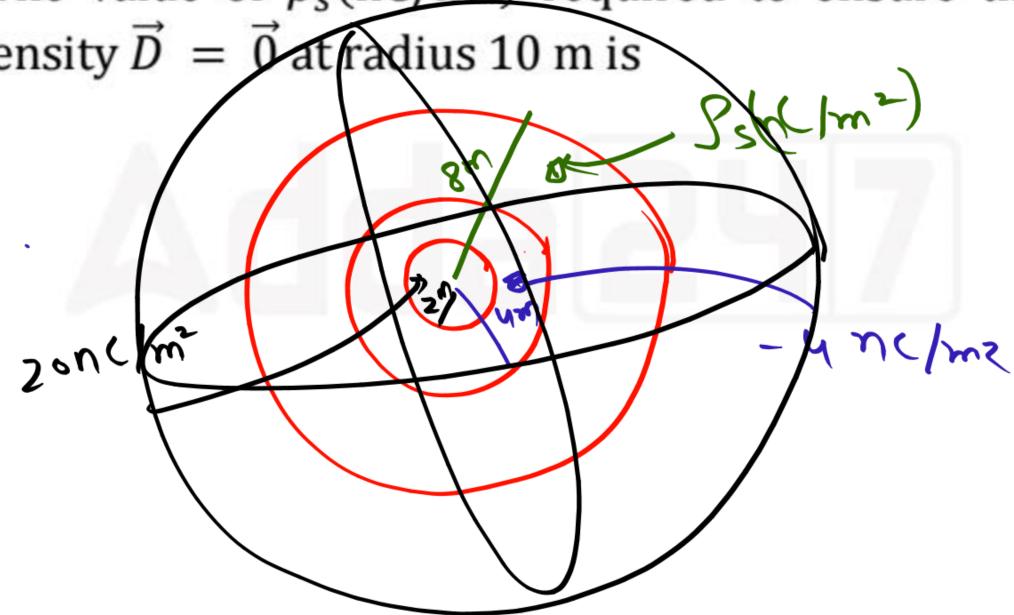
0.63 If $\vec{E} = -(2y^3 - 3yz^2)\hat{x} - (6xy^2 - 3xz^2)\hat{y} + (6xyz)z$ is the electric field in a source free region, a valid expression for the electrostatic potential

(a)
$$xy^3 - yz^2$$

(b)
$$2xy^3 - xyz^2$$

(c)
$$y^3 + xyz^2$$

(d)
$$2xy^3 - 3xyz^2$$


(c)
$$y^3 + xyz^2$$

(d) $2xy^3 - 3xyz^2$ Sobtion: A 3 q_x

option: c

$$yz^2$$
 yz^2
 z^2
 z^2

Q:64 Concentric spherical shells of radii 2 m, 4 m, and 8 m carry uniform surface charge densities of $20nC/m^2$, $-4nC/m^2$ and $\rho_{s'}$ respectively. The value of $\rho_s(nC/m^2)$ required to ensure that the electric flux density $\vec{D} = \vec{0}$ at radius 10 m is

$$\oint \vec{D} \cdot \vec{d\vec{s}} = 0$$

$$Q_{enc} = 0, +0.2 + 0.3 = 0$$

$$20 \times 4\pi(2)^{3} - 4 \times 4\pi(4)^{2} + J_{5} \times 4\pi(8)^{3} = 0$$

Q:65 Consider the vector field $\vec{F} = \hat{a}_x(4y - c_1z) + \hat{a}_v(4x +$ 2z) + $\hat{a}_z(2y + z)$ in a rectangular coordinate system (x, y, z) with unit vectors \hat{a}_x, \hat{a}_y , and \hat{a}_z . If the field \vec{F} is irrotational (conservative), then the constant c_1 (in integer) is _____

Sol:
$$\nabla x \vec{F} = 0$$

$$\begin{array}{c|c}
\hline
2 & 3 \\
\hline
2 & 3 \\
\hline
3 & 3 \\
\hline
4 & 3 \\
\hline
6 & 3 \\
\hline
7 & 3 \\
7 & 3 \\
\hline
7 & 3$$

Q:66 For a vector field $\vec{D} = \rho \cos^2 \varphi \hat{a}_p + z^2 \sin^2 \varphi \hat{a}_{\varphi}$ cylindrical coordinate system (ρ , ϕ , z) with unit vectors \hat{a}_{ρ} , \hat{a}_{ϕ} and \hat{a}_{z} , the net flux of \vec{D} leaving the closed surface of the cylinder ($\rho = 3$, $0 \le z \le 2$) (rounded off to two decimal places) is

$$\overrightarrow{D} = \int \cos^2 \phi \, \widehat{q}_p + Z^2 A \sin^2 \phi \, \widehat{q}_q$$

$$\int \overrightarrow{D} \cdot \overrightarrow{AJ} = \int \overrightarrow{D} \cdot \overrightarrow{AJ} + \overrightarrow{D} \cdot \overrightarrow{AJ} + \overrightarrow{D} \cdot \overrightarrow{AJ} + \overrightarrow{D} \cdot \overrightarrow{AJ} + \overrightarrow{D} \cdot \overrightarrow{AJ}$$

$$\nabla. \vec{D} = \frac{3}{5} (S. S \cos^2 \phi) + \frac{1}{9} \frac{3}{30} (Z^2 \sin^2 \phi) + \frac{3}{52} (0)$$

$$= 2 \cos^2 \phi + \frac{2}{5} 2 \sin \phi \cos \phi$$

$$\int_{0}^{2\pi} \frac{(18 \cos^{2} \phi + 8 \sin^{2} \phi)}{(18 \cos^{2} \phi + 8 \sin^{2} \phi)} d\phi + \frac{8 \sin^{2} \phi}{8 \sin^{2} \phi} d\phi$$

$$= 18\pi$$

Q:67An electrostatic potential is given by $\phi = 2x\sqrt{y}$ volts in the rectangular co - ordinate system. The magnitude of the electric field at x = 1 m, y = 1 m is V/m.

801:
$$\vec{E} = -\nabla V$$
 $V = \Phi = 2\pi Ig$

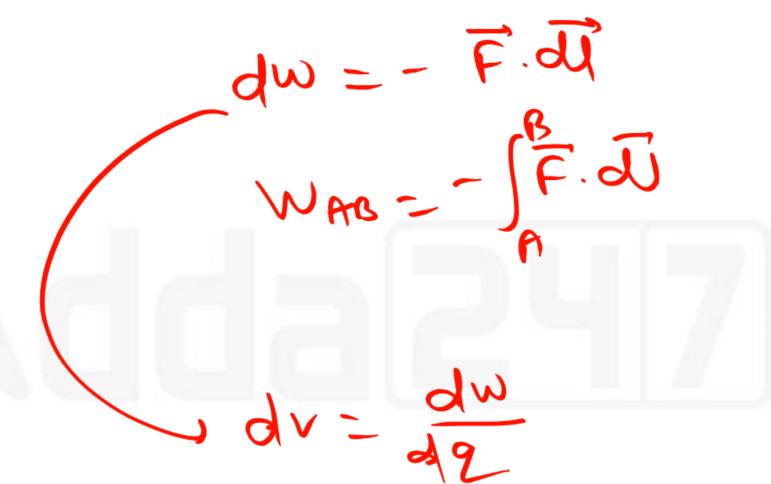
$$\vec{E} = -\left(2Ig^{2} + 2\pi Ig^{2}\right)$$

$$\vec{E} = -\left(2Ig^{2} + 2\pi Ig^{2}\right)$$

$$= -\left(2Ig^{2}\right)$$

$$= -$$

Q: 68 In electrostatic field, $\nabla \times \vec{E} = 0$ (True/False).


Q:69 If V, W, q stands for voltage, energy and charge, then V can be expressed as

(a)
$$V = \frac{dq}{dW}$$

(b)
$$V = \frac{dW}{dq}$$

(c)
$$OV = \frac{dW}{dq}$$

(d)
$$dV = \frac{dq}{dW}$$

Q:70Given the potential function in free space to be $V(x) = (50x^2 +$ $50y^2 + 50z^2$) volts, the magnitude (in volts/metre) and the direction of the electric field at a point (1, - 1, 1), where the dimensions are in metres, are

(a) 100;
$$(\hat{i} + \hat{j} + \hat{k})$$

(b)
$$\frac{100}{\sqrt{3}}$$
; $(\hat{i} - \hat{j} + \hat{k})$

(c)
$$100\sqrt{3}$$
; $[(\hat{i} + \hat{j} - \hat{k})/\sqrt{3}]$

(d)
$$100\sqrt{3}$$
; $[(-\hat{i} + \hat{j} - \hat{k})/\sqrt{3}]$

$$\hat{E} = -\nabla V$$

$$\hat{k})/\sqrt{3}$$

$$\hat{E} = -\left[(\cos z \hat{i} + (\cos z \hat{k}) + (\cos z$$

Q:71 The electric field \vec{E} (in volts/meter) at the point (1, 1, 0) due to a point charge of + 1μ C located at (- 1, 1, 1) (co - ordinates in meters) is

(a)
$$\frac{10^{-6}}{20\sqrt{5}\pi\varepsilon_0}(2i-k)$$

(b)
$$\frac{10^{-6}}{20\pi\varepsilon_0}(2i-k)$$

(c)
$$\frac{-10^{-6}}{20\sqrt{5}\pi\varepsilon_0}(2i-k)$$

(d)
$$\frac{-10^{-6}}{20\pi\varepsilon_0}(2i-k)$$

$$E = \frac{10^{-6}}{4\pi \times 10^{3}} \times 5$$
 15

$$\vec{R} = 2t - \vec{k}$$
 $\vec{R} = \sqrt{5}$, $\hat{\vec{q}}_1 = \frac{2i - \vec{k}}{\sqrt{5}}$

Q:72 A point charge of + 1nC is placed in a space with permittivity of $8.85 \times 10^{-12} \, \text{F/m}$ as shown in figure. The potential difference V_{PQ} between two points P and Q at distances of 40 mm and 20 mm respectively from the point charge is

- (a) 0.22kV
- (b) 225 V
- (c) 2.24kV
- (d) 15 V

$$V_{BA} = \frac{\partial}{\partial u_{LK}} \left(\frac{1}{\lambda^{B}} - \frac{1}{\lambda^{A}} \right) = \frac{10^{-2}}{10^{-2}} \left(\frac{1}{\Lambda^{O} \lambda^{O_{-3}}} - \frac{50\lambda^{O_{-3}}}{10^{-3}} \right)$$

$$9 \times \frac{-1}{40000}$$

Q:73A solid sphere made of insulating material has a radius R and has a total charge Q distributed uniformly in its volume. What is the magnitude of the electric field intensity, E, at a distance r(0 < r < R) inside the sphere?

(a)
$$\frac{1}{4\pi\varepsilon_0} \frac{Qr}{R^3}$$

(b)
$$\frac{3}{4\pi\varepsilon_0} \frac{Qr}{R^3}$$

(c)
$$\frac{1}{4\pi\varepsilon_0} \frac{Q}{r^2}$$

(d)
$$\frac{1}{4\pi\varepsilon_0} \frac{QR}{r^3}$$

Q:74 Two electric charges Q and - 2Q are placed at (0, 0) and (6, 0) on the x y plane. The equation of the zero equipotential curve in the x - y plane is

(a)
$$x = -2$$

(b)
$$y = 2$$

(c)
$$x^2 + y^2 = 2$$

(d)
$$(x + 2)^2 + y^2 = 16$$

Q:75A positive charge of 1nC is placed at (0, 0, 0.2) where all dimensions are in meters. Consider the x - y plane to be a conducting ground plane. Take $\epsilon_0 = 8.85 \times 10^{-12} \,\mathrm{F/m}$. The Z component of the E field at (0, 0, 0.1) is closed to

- (a) 899.18 V/m
- (b) 899.18 V/m
- (c) 999.09 V/m
- (d) 999.09 V/m

Download Now

Adda 247 APP

APP FEATURES

Th, fr, 2 & at 9 p.m. ECRRE



2000

36.W.

Eng.

ECEREF

SHARE

THANKS FOR

Watching Adda 247