DO NOT OPEN THIS BOOKLET UNTIL YOU ARE ASKED TO DO SO

2008 TEST BOOKLET MECHANICAL ENGINEERING

Time allowed: 2 hours Full marks: 200 Questions are of equal Mark

Cantal Ma

6.

7.

8.

Dall No

1/2		Fu	ıll Signature	of the Cand	lidate :						
			0 0	INSTRU	JCTIONS	s	IVOF III				
	Candidat	es should re	ad the follow	wing instruc	tions carefu	lly before answering	the questions:				
1.	This booklet consists of 16 pages including this front page. Verify the page Nos. and Group on each page and bring at once to the Invigilator's notice, discrepancy, if any.										
2.	Answer will have to be given in the Answer-Sheet supplied for the purpose.										
3.	You should write your Roll No. & Full Signature on this page (where indicated), Full name (in BLOCK Letter), Roll No., Subject, Group & Full Signature on the front page of the Answer-Sheet and Group No. on the top of the Answer-Sheet in ink.										
4.	question. F	ind out which o	f the four answ	ers appears to	you to be corre	probable answers (A), (E ect. NOW PUT A CROSS- DANSWER IN THE ANSW	MARK WITH DOT PEN				
	Example—	Question:	The Univers	al Law of Grav	itation was Pro	opounded by-					
			(A) Keplar	(B) Galileo	(C) Newton	(D) Copernicus					
		Answer:	(A)	(B)	(C)	(D)					
			0	0	\otimes	0					
5.		ou have already rect circle.	marked a wro	ong answer, bla	cken the circl	e completely and put cros	s-mark afresh within the				
	ii) If m	ore than one c	ircle is cross-m	arked for a pa	rticular answ	er it will be treated as a w	rong answer.				

9. Candidates are not allowed to use Calculator, Pager and Mobile Phone in the Examination Hall.

ATTEMPT THE QUESTION WHERE YOU ARE SURE OF THE CORRECT ANSWER.

for rough work. The sheet should not be torn out from the Test Booklet.

Any sign other than a cross-mark inside the circle will be treated as no answer.

There are 100 questions carrying 2 marks each.

 The Entire Set (Answer-Sheet & Test Booklet including used/unused extra pages) should be handed over to the Invigilator before leaving the Examination Hall.

HALF (1/2) MARK WILL BE DEDUCTED FOR EACH INCORRECT/WRONGANSWER. THERFORE, PLEASE TRY TO

There are extra blank pages at the end of this booklet for rough work. Roll No. & Group should be given on the sheet used

1.	The centre of gravity of a semi-circle lies at a distance of from its base measured along the			6.	The product of Young's Modulus (E) and moment of Inertia (I) is known as			
	vertic	cal radius.		Į.	(a)	modulus of rigidity		
	(a)	3 r / 8			(b)	bulk modulus	\Box	
	(b)	4 r / 3 π		Ĭ.	200	flextural rigidity		
	(c)	8 r / 3			(c)		브	
	(d)	3 r / 4 π		b	(d)	torsional rigidity	Ц	
	when	r = radius of the semi-circle		7.	A sh	aft revolving at N rpm, transmits t	torque (T)	
2.	Mom	ent of inertia of a triangular section	of base	.0072		gm. The power developed, is		
2.		nd height 'h' about an axis passing t	200	()	100	πNT		
		C.G. and parallel to the base, is	mougn		(a)	$\frac{\pi NT}{750}hp$		
	(a)	bh ³ /4		,	(b)	2 π NT/750 hp		
	(b)	bh ³ /8		R	(c)	π NT/4500 hp	H	
	(c)	bh³/12	H		(d)	π NT/2250 hp	H	
	(d)	bh³/36	H		100			
	(() 5 (7(5))	NECC11040	_	8.	The	strain energy stored in a solid circ	ular shaft	
3.	In a screw jack the effort required to lift the load					ected to a shear stress (fs), is		
		en by			(a)	fs / 2C × Volume of shaft		
	(a)	$P = W \tan (\alpha - \emptyset)$			(b)	fs ² / 2C × Volume of shaft	금	
	(b)	$P = W \tan (\alpha + \emptyset)$		200				
	(c)	$P = W \tan (\varnothing - \alpha)$		(c)	fs / 4C × Volume of shaft	⊔		
	(d)	$P = W \cos(\alpha + \emptyset)$		(d)				
	With a screen was a second sec				where C = Modulus of rigidity for the shaft			
	wher	n, W = Load lifted			mate	rial		
		α = Helix angle					and the second second	
		∅ = Angle of friction		9.	The	springs in brakes and clutches are	used to	
			Marketon Paristers		(a)	apply forces		
4.		angular velocity (in Rad / sec) of	a body	0	(b)	store strain energy		
		ing at N rpm, is			(c)	absorb shocks		
	(a)	π N/20			(d)	all of the above	$\overline{\Box}$	
	(b)	π N/30	\Box					
	(c)	π N/60		10.	A th	in cylindrical shell is subjected to a	an internal	
	(d)	π N/90				sure. The ratio of longitudinal stre		
		# 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		l	570.7/00	ss developed in the shell is	A.S	
5.		horsepower is equal to		l .	(a)	1.5		
	(a)	450 kgm / min				1.0][
	(b)	550 kgm / min 4500 kgm / min	님		(b)			
	(c)	5550 kgm / min	님		(c)	0.75	Ц	
	(d)	JJJO Kgitt / Illili			(d)	0.50		

11.	The pull required to shear off a rivet, in double			Which of the following is an intensive property of			
	shear, per pitch length is				ermodynamic system?	128020	
	π			(a)	Volume		
	(a) $\frac{\pi}{4} \times d^2 \times f_t$			(b)	Temperature		
	#			(c)	Mass		
	(b) $\frac{\pi}{4} \times d^2 \times f_s$			(d)	Energy		
	(c) $\frac{\pi}{2} \times d^2 \times f_1$		16.	First	law of thermodynamics deals with		
	1000 NE DE	A 3		(a)	conservation of heat		
	(d) $\frac{\pi}{2} \times d^2 \times f_s$			(b)	conservation of momentum		
	2 ~ 4 ~ 1,			(c)	conservation of mass		
	where, d = diameter of rivet hole			(d)	conservation of energy		
	t = thickness of plates						
	f_i , f_s = Permissible tensile and shear			The	entropy may be expressed as a functi	ion of	
	stresses respectively of			(a)	pressure and temperature		
	material			(b)	temperature and volume		
	macria			(c)	heat and work		
12.	A glass tube of small diameter (d) is	dipped in		(d)	all of the above		
	fluid. The height of rise or fall in the tub	200					
	by		18.	Carr	not cycle consists of		
	(a) 4 wd / σ cos Ø			(a)	two constant volume and two		
	(b) $\sigma \cos \varnothing / 4 \text{ wd}$	片			adiabatic processes		
	경에 교통을 가게 되었다면 살고에 있는 그렇게 되었다.			(b)	two isothermal and two adiabatic	550000	
	(c) 4 σ cos Ø / wd	닏ㅣ		1000	processes		
	(d) wd / 4 σ cos Ø			(c)	two constant pressure and two		
	where, w = Sp. weight of fluid			2004000	adiabatic processes		
	σ = Surface tension	2000 - 2000		(d)	One constant volume, one		
	ø = angle of contact of flu	id surface			constant pressure and two	10000	
13.	A fluid having no viscosity is known as	a			adiabatic processes	П	
13.	3177 35 1732,777		10	The	officional of a Discal scale in second		
	(a) Real fluid		19.		efficiency of a Diesel cycle increases	with	
	(b) Ideal fluid	\sqcup			decrease in cut-off increase in cut-off	님	
	(c) Newtonian fluid			(b)	constant cut-off	님	
	(d) Non-newtonian fluid			(c)	none of the above	H	
14.	A definite area or a space whe	re some		(d)	none of the above	ш	
:#W#51	thermodynamic process takes place, is		20.	The	oretically, a four stroke cycle engine	chould	
	(a) thermodynamic system	CIOWII as	20.		eloppower as that of a two-stroke		
	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	ㅂㅣ		engi	지어 계급 그리고 가는 가고 있는 그 사람들은 사람들은 사람들은 사람들이 되었다.	c cycle	
	(b) thermodynamic cycle	ㅂㅣ		(a)	half		
	(c) thermodynamic process	□		(b)	same	H	
	(d) thermodynamic law			(c)	double	H	
				(d)	four times	H	
				(-)			

21.		four stroke cycle petrol engine, the inlet	valve	27.	The power transmitted by a belt is maximum				
	(a)	opens at top dead centre and closes at bottom dead centre			the maximum tension in the belt isof centri tension.	tugal			
	(b)	opens at 20° before top dead			(a) one-half				
		centre and closes at 40° after	TOTAL STATE OF THE		(b) two-third	Η			
		bottom dead centre			(c) double	H			
	(c)	opens at 20° after top dead			N. (1797-1793)	\exists			
		centre and closes at 20° before			(d) three times	П			
		bottom dead centre		28.	The included angle for the V-belt is usually				
	(d)	may open or close anywhere			(a) 10° to 20°				
22.	Ifne	If petrol is used in a diesel engine by mistake, then			(b) 20° to 25°				
44.					(c) 30° to 40°				
	(a)	low power will be produced	ㅂㅣ		(d) 60° to 80°				
	(b)	efficiency will be low		29.	The arrangement is called bevel gearing,	when			
	(c)	higher knocking will occur		-	twoare connected by gears.				
	(d)	black smoke will be produced			(a) intersecting and coplaner shafts				
		W KW KW W			(b) non-intersecting and non-coplaner	ч			
23.	A ca	rburettor is used to supply			shafts				
	(a)	petrol, air and lubricating oil			(c) parallel and coplaner shafts	H			
	(b)	air and diesel			(d) parallel and intersecting shafts	Η			
	(c)	petrol and lubricating oil			(-,	ш			
	(d)	petrol and air		30.	The working depth of a gear is the radial dist from the	tance			
24.	A hi	A higher compression ratio causes			(a) pitch circle to the bottom of a tooth				
	(a)	pre-ignition	\neg \Box		(b) pitch circle to the top of a tooth	H			
	(b)	increase in detonation	НI		(c) top of a tooth to the bottom of	_			
	(c)	an acceleration in the rate of	_		a tooth	П			
	(0)	combustion			(d) addendum circle to the clearance	_			
	(d)	any one of the above	H		circle	П			
	(0)	any one of the above	۱ ت			_			
25.	The	operation of forcing additional air u	ınder	31.	The engine of an aeroplane rotates clock direction when seen from the tail end. I				
	pres	sure into the engine cylinder, is known	as		aeroplanes takes a turn to the left. The effe				
	(a)	supercharging			gyroscopic couple on the aeroplane will be	ct or			
	(b)	carburation	ΠI		(a) to dip the nose and tail				
	(c)	turbulence	ΠI		(b) to raise the nose and tail	\forall			
	(d)	delay period			(c) to raise the nose and dip the tail	\forall			
	10000	AND THE STREET	_		(d) to dip the nose and raise the tail	\forall			
26.	The	ratio of the indicated thermal efficien	cv to		(u) to dip the nose and raise the tail	П			
		air standard efficiency, is known as	380.00	32.	Balancing of rotating and reciprocating par	rts of			
	(a)	mechanical efficiency			an engine is necessary when it runs at	100000000000000000000000000000000000000			
	(b)	overall efficiency	H I		(a) slow speed				
	2000000	volumetric efficiency	님		(b) moderate speed	H			
	(c)				(c) high speed	H			
	(d)	relative efficiency			(d) any one of the above	Η			
			100		MAY: 15	Ч			

33.		ional vibrations are said to occur who	en the	38.		der to avoid tearing of the plate at ar		
	1000000	cles of a body move			the distance from the centre line of the rivet hole			
	(a)	perpendicular to its axis	\vdash			e nearest edge of the plate should not	be less	
	(b)	parallel to its axis	\vdash		than		540.0	
	(c)	in a circle about its axis	\sqcup		(a)	d		
	(d)	none of the above			(b)	1.5 d		
34.	Whe	n a body is subjected to transverse vibra	itions,		(c)	2.0 d		
		tress induced in the body will be			(d)	2.5 d		
	(a)	shear stress			when	re d = diameter of rivet hole		
	(b)	bending stress						
	(c)	tensile stress		39.	For I	ongitudinal joint in boilers, the type of	of join	
	(d)	compressive stress		107100.5	used			
			8X=331		(a)	lap joint with one ring overlapping		
35.	The	critical speed of a shaft depends upon	its		100000	the other		
	(a)	mass			(b)	butt joint with single cover plate		
	(b)	stiffness			(c)	butt joint with double cover plate	\Box	
	(c)	mass and stiffness			(d)	none of the above	П	
	(d)	stiffness and eccentricity			3.5			
				40.	Whe	n screw threads are to be used in a si	tuation	
36.	Stres	Stress concentration is caused due to			when	re power is being transmitted in one di	rection	
	(a)	variations in load acting on a member	r 🗆		only	, then the screw threads suitable for th	is, will	
	(b)	variations in properties of materials			be			
		in a member			(a)	square threads	П	
	(c)	abrupt change in cross-section			(b)	acme threads	Ħ	
	(d)	all of the above			(c)	knuckle threads	Ħ	
			100,000		(d)	buttress threads	Ħ	
37.		ss concentration factor is defined as the	e ratio					
	of		- 1	41.	Whe	n a nut is tightened by placing a washer	below	
	(a)	maximum stress to the endurance				e bolt will be subjected to		
		limit			(a)	tensile stress		
	(b)	nominal stress to the endurance	(C-16)		(b)	compressive stress	Ħ	
		limit			(c)	shear stress	Ħ	
	(c)	maximum stress to the nominal			(d)	none of the above	П	
		stress			::::::::::::::::::::::::::::::::::::::			
	(d)	nominal stress to the maximum		42.	A co	tter joint is used to connect tworod	s.	
		stress			(a)	co-axial		
					(b)	perpendicular		
					(c)	parallel	Ш	
					(d)	intersecting		

43.	Two shafts A and B are made of the same material. The diameter of shaft A is twice as that			48.	In helical gears, the distance parallel to the axis between similar faces of adjacent teeth, is called				
		naft B. The power transmitted by sh	aft A will		(a)	normal pitch			
	be	. that transmitted by shaft B.			(b)	axial pitch			
	(a)	twice			(c)	diametral pitch			
	(b)	four times			(d)	module			
	(c)	eight times		49.	Cton	Laantaining 0 8 to 1 50/ conham	!» !»» .»» .»		
	(d)	sixteen times		49.		l containing 0.8 to 1.5% carbon,	is known as		
	3000000				(a)	mild steel	\vdash		
44.	The	usual proportion for the width cf a	key is		(b)	dead mild steel			
	(a)	d/8			(c)	medium carbon steel			
	(b)	d/6			(d)	high carbon steel			
	(c)	d/4			2000		o com especial		
	(d)	d/2	$\overline{\Box}$	50.	A steel alloy containing 36% nickel, is called				
	where d = Diameter of shaft or diameter of hole				(a)	stainless steel			
	in th	in the hub			(b)	high speed steel			
					(c)	Invar			
45.	Idler	pulley is used for			(d)	heat resisting steel			
	(a)	increasing velocity ratio	П	11227	120220000				
	(b)	applying tension		51.		alloying element which can repla	ice tungsten		
	(c)	changing the direction of motion				gh speed steels, is			
	1-1	of the belt			(a)	nickel			
	(d)	5 "MATTER TOTAL	H		(b)	vandium			
	(4)	an of the above			(c)	cobalt			
46.	The type of 'Brake' commonly used in motor cars,				(d)	molybdenum			
	is a			52.	The	hardness of steel increases if it of	ontains		
	(a)	shoe brake		45000	(a)	pearlite			
	(b)	band and block brake			12000	ferrite	H		
	(c)	hand brake		l)	(c)	cementite	H		
	(d)	internal expanding brake			(d)	martensite	H		
47.	Ther	minimum number of teeth on the pini	on which	53.	The	heat treatment process used for			
		mesh with any gear without interfe		33.		carburising	castings, is		
		ull depth involute teeth, will be	refice for		(a) (b)	6000			
		12				normalising	닏		
	(a)		닏ㅣ		(c)	annealing			
	(b)	14	□		(d)	tempering			
	(c)	18							
	(d)	24		54.		lloy of copper, tin and zine is kno	own as		
					(a)	brass			
					(b)	bronze			
					(c)	gunmetal			
					(d)	muntzmetal			

55.	Gerr	man silver contains	1	61.	Hov	many poles will be require	ed if an alternato
	(a)	Copper and Zinc			runs at 1500 rpm and gives frequency of 50 Hz		
	(b)	Copper, Zinc & lead			a)	8 poles	
	(c)	Copper, Zinc & nickel			b)	6 poles	ī
	(d)	Copper, Zinc & tin	$\overline{\Box}$		c)	4 poles	Ħ
					d)	2 poles	H
56.	With	the same tool life, the maximum qu	antity of		35		
	mate	erial per minute is removed by	860	62.	The	capacity of a cell is measu	red in
	(a)	increasing the cutting speed		**	a)	amperes	_
	(b)	decreasing the cutting speed			b)	volts	H
	(c)	increasing the depth of cut			c)	ampere-hours	H
	(d)	increasing the feed rate			d)	Watts	
57.	The lathe centres are provided with standard taper,			63.	Creeping is a phenomenon which occurs in		
	knov	wn as		2500150	a)	Voltameter	П
	(a)	Morse taper			b)	Wattmeter	H
	(b)	Seller's taper			c)	Energymeter	H
	(c)	Chapman taper			d)	Ammeter	H
	(d)	Brown and Sharpe taper		l Seek till	277		
58.	The	left hand rule is applicable to		64.		centre of gravity of an equila	
50.	(a)	generator			each	side 'a', is from any	of the three sides
	(b)	motor			a)	√ 3	
	(c)	transformer			a)	${2} \times a$	ш
	(d)	(a) & (b) both	- 1		b)	2√3. <i>a</i>	
50		l cal curi			c)	$\frac{1}{a \cdot b} \times a$	
59.		ch of the following rules states				2√3	=
		ction of an induced current is always	9.0		d)	$3\sqrt{2} \times a$	
		magnetic field which it produces	reacts in				
	55	osition to the change of flux.	_	65.	TC C	$(x) = \frac{x-1}{x}$ for all real num	
	a)	Thumb rule		05.	111	$(x) - \frac{1}{x}$ for all real num	bers except x =
	b)	Lenz's law			and	$g(u) = u^2 + 1$ for all real nu	imbers of u, the
	c)	Kirchhoff's law			f [g(-1)] is	
	d)	Faraday's law			a)	2	
. 0	11/1:	1 64 6 11			b)	1	ō
60.		ch of the following machines will be	preferred		c)	1	
		narge the batteries?	_			$\frac{1}{2}$	
	a)	Series generator			d)	-1	
	b)	Series motor				3%	
	c)	Shunt generator					
	d)	Compound generator					

66.	As per the standard prefixes of S.I. unit, 10 called	¹² is 70.	0.0	article is kept at rest at a ius) above the earth surfa		
	a) peta	пΙ		ed with which it should be		
		HI		s not return, is	5 3	
	c) tera	H I	2025	[GM		
	d) giga		a)	$\sqrt{\frac{GM}{4R}}$		
67.	The dimensional formula of the capacitance,	Cis	b)	$\sqrt{\frac{GM}{2R}}$		
	a) M ⁻² L ⁻² IT ³			GM.		
	b) M ⁻¹ L ⁻² I ² T ⁴	Ħ l	c)	$\sqrt{\frac{GM}{R}}$		
	c) ML ² IT ⁴	H I	10	2GM		
	d) ML ² I ² T ³	n I	d)	$\sqrt{\frac{2SN}{R}}$		
	where M, L, T and I represent mass, length, t	time	whe	ereG = universal gravit	ational constant	
	and electric current respectively.			M = mass of the ear		
68.	The dimensional formula ML ⁻¹ T ⁻² may corresp	ond 71.	The	pressure measured w	ith the help of a	
	to		piez	cometer tube is in		
	a) work done by a force		a)	N / mm ²		
	b) linear momentum		b)	N/m^2		
	c) pressure	□	c)	head of liquid	ō	
	d) centripetal force	-	d)	all of these	□	
69.	An elevator is descending with unifo			ne atmospheric pressure o		
	acceleration. To measure the acceleration person in the elevator drops a coin at the mon		oil tank (sp. gr 0.8) is 0.1 kg/cm ² , the pressure at a depth 2.5 metres below the oil surface will be			
	the elevator starts. The coin is 2 metres ab		a)	2.1 metres of water	e on surface will be	
	the floor of the elevator at the time it is drop		b)	2.6 metres of water	님	
	and takes I second to strike the floor.	23	335	3.0 metres of water	님	
	acceleration of the elevator is (taking g=10 m/s	N4772.0	c) d)	3.5 metres of water	님	
	a) 8 m/sec ³		u)	5.5 metres of water	Ц	
	b) 7 m/sec ²	73.	A fl	low through an expanding	tube at a constant	
	c) 6 m/sec ²	님 /*		is called	tube at a constant	
	d) 5 m/sec ²	片ㅣ	a)	steady uniform flow		
	of 5 moce	ㅁ	b)	steady uniform flow		
			33737	unsteady uniform flow	" H	
			c)	unsteady uniform flow unsteady non-uniform f	. H	
			d)	unsteady non-uniform i	iow [

74.		ency of separation at throat ratio of the diameter at throat e should be	77.	A heat engine operates between a color at a temperature $T_2 = 300$ K and a ho at a temperature T_1 . It takes 200J of	t reservoir heat from
	a) $\frac{1}{16}$ to $\frac{1}{8}$			the hot reservoir and delivers 120 J of cold reservoir in a cycle. Considering	
	b) $\frac{1}{8}$ to $\frac{1}{4}$			theorem, the minimum temperature reservoir is	
	c) $\frac{1}{4}$ to $\frac{1}{3}$		ļ	a) 450 K	
	d) $\frac{1}{3}$ to $\frac{1}{2}$			b) 500 K c) 550 K d) 600 K	
75.	The loss of head at th	e exit of a pipe is		12X (222-15	
	a) $\frac{v^2}{2g}$		78.	Keeping the number of moles, vo	
	$b) \qquad \frac{0.5v^2}{2g}$			the same for all ideal gases? a) root mean square speed of a	_
	$c) \qquad \frac{0.375v^2}{2g}$			b) density	님
	$d) \qquad \frac{0.75v^2}{2g}$			pressure average magnitude of momentu	m
76.	where v = velocity of During flow of a liqui watts) through a pipe a) W × Q × H b) W × Q × h _f c) W × Q × (H-h d) W × Q × (H+h	d, the power transmitted (in is	79.	A system can be taken from the initial (pressure), V_1 (volume) to the final s by two different methods. Let ΔQ represent the heat given to the system work done by the system. Which of the must be the same in both the methods a) ΔQ	tate p_2 , V_2 and Δ W m and the following
	where W = Specific in N/m ³ Q = Dischar	weight of the liquid		 b) Δ W c) Δ Q + Δ W d) Δ Q - Δ W 	
	h _r = Head lo in metro	st due to friction in the pipe	80.	A thin metallic spherical shell contain Q on top of its outer surface. A point of placed at the centre of the shell and anot of the shell and anot of the shell and anot of the centre of the centre of the centre of the shell and anot of the centre of the c	charge q is ther charge o it. All the

81.	A beam consisting of electrons and protons moving at the same speed goes through a thin region in			86.	Which of the following pumps is suitable for smal discharge and high heads?				
					a)	Centrifugal pump			
		ch there is a magnetic field perpendicu	liar to		736				
		beam. The protons and electrons	_		b)	Axial pump			
	a)	will go undeviated			c)	Mixed flow pump			
	b)	will be deviated by the same angle			d)	Reciprocating pump			
	100	and will not separate			egeq	6 1 1 1 1	6		
	c)	will be deviated by different angles	_	87.	The efficiency of a hydraulic press is given b				
	1000000	and hence separate			a)	$\frac{W}{P} \times \frac{A}{a}$			
	d)	will be deviated by the same angle			1200	(176) 3450	A000		
		and will separate			b)	$\frac{P}{W} \times \frac{a}{A}$			
82.	The	unit of dynamic viscosity in S.I. units is	s		c)	$\frac{W}{P} \times \frac{a}{A}$			
	a)	N - m / sec ²	П				-		
	b)	N - sec / m ²	$\overline{\Box}$			$\frac{P}{W} \times \frac{A}{a}$			
	c)	poise			whe	re W = weight lifted by ram			
	d)	stoke				P = force applied on plunger			
02	PN SSS	Reynold's number is the ratio of the inertia force				A = area of ram			
83.		to the				a = area of plunger			
			_	88.	The	principle of working of which of the	following		
	a)	surface tension force				raulic units is based on Pascal's lav			
	b)	elastic force			a)	Air lift pump			
	c)	gravity force					Н		
	d)	viscous force			b)	Jet pump			
-010.1	0.000-0				c)	Hydraulic coupling			
84.		mpulse turbine is used for			d)	Hydraulic press			
	a)	low head of water		00	V 4 0 TeV	1. 1 1 10 000000 1			
	b)	high head of water		89.		rbine develops 10,000KW under a l			
	c)	medium head of water				res at 128 r.p.m. Its specific speed	is		
	d)	high discharge			a)	250 r.p.m.			
					b)	300 r.p.m.			
85.	Whi	ch of the following turbine is preferred	for 0		c)	350 r.p.m.			
	to 2	5 metres head of water?			d)	400 r.p.m.			
	a)	Pelton wheel							
	b)	Kaplan turbine							
	c)								
	di	None of these							

90.	If th	e resultant of two equal forces has t	he same	95.	A cl	osed cycle gas turbine works on		
	mag	nitude as either of the forces, then the	ne angle		a)	Carnot cycle		
	betv	veen the two forces is			b)	Rankine cycle		
	a)	30°			c)	Ericsson cycle		
	b)	60°			d)	Joule cycle		
	c)	90°		0.0				
	d)	120°		96.	-	air-fuel ratio in gas turbines		
	205 1110		GSS .		a)	increases power output	\vdash	
91.		mply supported beam 'A' of length I			b)	improves thermal efficiency	님	
		ral point load W. Another similar bea			c)	reduces exhaust temperature		
		ed with a uniformly distributed load s			d)	none of the above		
	2000	total load on the beam is W. The	경우지 않는 성격을	0.7	*****	1 64 611 1 1		
	max 'B'	imum deflections between the beams	s 'A' and	97.		ch of the following does not rel pression ignition engine?	ate to a	
	a)	5/8			a)	Fuel pump		
	b)	8/5	H I		b)	Fuel injector	$\overline{\Box}$	
	c)	5/4	H I		c)	Governor	$\overline{\Box}$	
	d)	4/5			d)	Carburettor		
92.	Whe	en a bar is subjected to a change of tem	perature	98.	The	ratio of the number of teeth to the pit	ch circle	
		its deformation is prevented, the stress			dian	neter in millimetres, is called		
		ne bar is			a)	circular pitch		
	a)	tensile stress			b)	diametral pitch		
	b)	compressive stress	$\overline{\Box}$		c)	module		
	c)	shear stress			d)	none of the above		
	d)	thermal stress		99.	How	many atoms are there in a unit cell of	of a body	
02	A	ection of beam is said to be in pure be	ading if		cent	red cubic space lattice?		
93.		subjected to	nding, ii		a)	6		
		A41 19 - 1 (1986) 4 (1994) 1	stant		b) .	9	$\overline{\Box}$	
	a)	constant bending moment and con shear Force	Statit		c)	14	\Box	
	b)	constant S.F. and zero B.M.	님ㅣ		d)	17	\Box	
		constant B.M. and zero S.F.	片ㅣ		56	. The same of the		
	c)			100.	A w	heel rotates with a constant acceler	ration of	
	d) none of the above				4.4 rad / sec2. If the wheel starts from rest, how			
94.	In a	thick cylindrical shell subjected to an	internal			y revolutions will it make in the	first 10	
	pres	sure (p), the maximum radial stres	s at the			nds?		
	inne	r surface of the shell is	±))		a)	25 revolutions		
	a)	zero			b)	30 revolutions		
	b)	p (tensile)			c)	35 revolutions		
	c)	- p (compressive)			d)	40 revolutions		
	41	2n (tancila)						