Adda 247

WELCOME TO Adda 2417

ALWAYS DO
YOUR BEST,
WHAT YOU
PLANT NOW
YOU WILL
HARVEST LATER

Download Now

Adda 247 APP

APP FEATURES

ISRO | BHEL | DRDO & OTHER PSUS

- Q. If the compression or expansion of a gas takes place in such a way that the gas neither gives heat nor takes heat from its surroundings, the process is said to be
- (a) Isothermal
- (b) Adiabatic
- (c) Isobaric
- (d) None of these

Q. The unit of work is

- (c) $kW/h \times$

- 3Q. Pick the correct statement regarding path function.
 - (a) The differentials of point functions are inexact differentials
 - (b) The differentials of point functions & path functions are exact differentials.
 - (c) The differentials of path function are inexact differentials.
 - (d) The differentials of path functions are exact differentials.

90 A heat engine developes $60 \, \mathrm{kW}$ work having an efficiency of 60%, Amount of heat rejected will be: -

(a) 400 kW

(b) 10 kW

(c)/40 kW

(d) 20 kW

- Q\$In Carnot cycle, addition and rejection of heat takes place at: -
- (a) Constant pressure
- (b) Constant temperature <
- (c) Constant volume
- (d) Constant speed

- Q6The change of entropy, when heat is absorbed by the gas, is
- (a) positive
- (b) negative
- (c) positive or negative
- (d) zero

Q. Which one of the following statements applicable to a perfect gas will also be true for an irreversible process?

- (a) $\delta Q = dU + pdV$
- (b) dQ = TdS
- (c) $T\delta S = dU + pdV$
- (d) None of these

- Q. The change in entropy is zero during
- (a) Hyperbolic process
- (b) Constant pressure process
- (c) Reversible adiabatic process
- (d) Polytropic process

(2). The main cause of the irreversibility is

- (a) Mechanical and Fluid Friction <
- (b) Unrestricted expansion <
- (c) Heat transfer with a finite temperature difference <
- (d) All of the above

For a thermodynamic process to be revers- (10) ible, the temperature difference between hot body and working substance should be (a) zero (b) minimum maximum

(d) infinity

Entropy change depends on

- (a) heat transfer (b) mass transfer
- (c) change of temperature
- (d) thermodynamic state

The value of Joule-Kelvin coefficient for 12 - 15 an ideal gas is

- (a) 1 (b) some ve yalue
- (c) some + ve value
- (dy zero

- A diathermic wall is one which
 - (a) prevents thermal interaction
- (b) permits thermal interaction
- (c) encourages thermal interaction
- (d) discourages thermal interaction

- (a) prevents thermal interaction
- (b) permits thermal interaction
- (c) encourages thermal interaction
- (d) discourages thermal interaction

Q. Two reversible engines are connected in series between a heat source and a sink. The efficiencies of these engines are 60% and 50%, respectively. If these two engines are replaced by a single reversible engine, the efficiency of this

engine will be

(a) 60%

(b) 70%

(c) 80%

(d) 90%

$$(1-\eta_0) = (1-\eta_1)(1-\eta_2)$$

$$= (1-0.6)(1-.6)$$

$$= 0.4\times0.5$$

$$= 0.4\times0.5$$

$$= 0.2$$

Q. A heat engine transfers $15\,kJ$ of heat to a thermal reservoir at $300\,K$. The change of entropy of the reservoir in the process is :

(a)
$$\Delta S_{reservoir} = -50 J K^{-1}$$

$$(b)\Delta S_{reservoir} = +50 JK^{-1}$$

(c)
$$\Delta S_{reservoir} = +200 KJ^{-1}$$

(d)
$$\Delta S_{reservoir} = +4500 \text{ kJ. K}$$

Q. The unit of entropy is

- (a) kg/JK X
- (b) J/kg.m[×] (c) J/kg K [×]
- (d) J/S_{χ}

$$DS = \begin{cases} 00 \\ 00 \end{cases} = \begin{cases} 00 \\ 00 \end{cases} \times 1$$

A heat engine working on Carnot cycle receives heat at the rate of 40 kW from a source at 1200 K and rejects it to a sink at 300 K. The heat rejected is

(a) 30 kW

(b) 20 kW

(c) 10 kW

(d) 5 kW

Which one of the following statements is not correct?

- (a) Change in entropy during a reversible adiabatic process is zero
- (b) Entropy increases with the addition of heat
- (c) Throttling is a constant entropy expansion process X
- (d) Change in entropy when a gas is heated under constant pressure is given by s₂ - s₁ = mCp loge T₂/T₁

- (a) Total work done during the process
- (b) Total heat absorbed during the process
- (c) Total heat rejected during the process
- (d) Degree of irreversibility

Which one of the following is the correct statement? Two adiabatics will

- (a) intersect at absolute zero temperature
- (b) never intersect
- (c) become orthogonal at absolute zero temperature
- (d) become parallel at absolute zero temperature

The statement that the entropy of a pure substance in complete thermodynamic equilibrium becomes zero at the absolute zero of temperature is known as

- (a) law of entropy.
- (b) first law of thermodynamics.
- (c) second law of thermodynamics.
- (d) third law of thermodynamics.

Which one of the following expressions for Tds is true for a simple compressible substance?

If a pure substance contained in a rigid vessel passed through the critical state on heating, its initial state should be

- (a) subcooled water (b) saturated water
- (c) wet steam (d) saturated steam

Two-phase regions in the given pressure-volume diagram of a pure substance are represented by

(a) A, E and F (c) B, D and F (b) B, C and D

\$1500-10 1800 BUESTION

Triple point temperature of water is

(a) 273 K

(b) 273.14 K

(c) 273.15 K

(d) 273.16 K

Dryness fraction of steam means the mass ratio of

- (a) wet steam to dry steam
- (b) dry steam to water particles in steam
- (c) water particles to total steam
- (d) dry steam to total steam

Which one of the following is the correct statement? Steam is said to be superheated when the

- (a) actual volume is greater than volume of saturated steam
- (b) actual volume is less than volume of saturated steam
- (c) actual volume is equal to volume of saturated steam
- (d) None of the above

Which one of the following properties remains unchanged for a real gas during Joule—Thomson process?

- (a) Temperature
- (b) Enthalpy

(c) Entropy

(d) Pressure

If h, p, T and v refer to enthalpy, pressure, temperature and specific volume respectively; and subscripts g and f refer to saturation conditions of vapour and liquid respectively, then Clausius-Clapeyron equation applied to change of phase from liquid to vapour states is

(a)
$$\frac{dp}{dt} = \frac{(h_g - h_f)}{(v_g - v_f)}$$
 (b) $\frac{dp}{dt} = \frac{(h_g - h_f)}{T(v_g - v_f)}$

(c)
$$\frac{dp}{dt} = \frac{(h_g - h_f)}{T}$$
 (d) $\frac{dp}{dt} = \frac{(h_g - h_f)T}{(h_q - h_f)}$

For an ideal gas, the expression

$$\left[T\left(\frac{\partial s}{\partial T}\right)_p - T\left(\frac{\partial s}{\partial T}\right)_v\right] \text{ is equal to}$$

(a) zero

(b) C_p/C_v

(c) R

d) RT

For a gas, pressure p, volume v and temperature T are dependent on each other. Then which one of the following p - v - T relationship will be obeyed?

(a)
$$\left(\frac{\partial p}{\partial T}\right)_{V} \left(\frac{\partial V}{\partial T}\right)_{p} \left(\frac{\partial V}{\partial p}\right)_{T} = -1$$

(b)
$$\left(\frac{\partial p}{\partial T}\right)_{V} \left(\frac{\partial T}{\partial V}\right)_{D} \left(\frac{\partial V}{\partial P}\right)_{T} = -1$$

(c)
$$\left(\frac{\partial p}{\partial T}\right)_{V} \left(\frac{\partial V}{\partial T}\right)_{p} \left(\frac{\partial p}{\partial V}\right)_{T} = -1$$

(d)
$$\left(\frac{\partial p}{\partial T}\right)_{V} = \left(\frac{\partial T}{\partial V}\right)_{D} \left(\frac{\partial p}{\partial V}\right)_{T}$$

Which one of the following is the correct statement? Clapeyron equation is used for

- (a) finding specific volume of vapour
- (b) finding specific volume of liquid
- (c) finding latent heat of vaporization
- (d) finding sensible heat

Constant pressure lines in the super-heated region of the Mollier diagram have what type of slope?

- (a) A positive slope
- (b) A negative slope
- (c) Zero slope
- (d) May have either positive or negative slopes

According to the Maxwell relation, which of the following is/are correct?

(a)
$$\left(\frac{\partial v}{\partial T}\right)_P = -\left(\frac{\partial s}{\partial P}\right)_T$$

(b)
$$\left(\frac{\partial s}{\partial v}\right)_T = -\left(\frac{\partial P}{\partial T}\right)_v$$

(c)
$$\left(\frac{\partial P}{\partial T}\right)_{V} = \left(\frac{\partial s}{\partial V}\right)_{T}$$

(d) All of the above

If u, T, v, s, h and p refer to internal energy temperature, volume, entropy, enthalpy and pressure respectively; and subscript 0 refers to environmental conditions, availability function for a closed system is given by

(a)
$$u + p_0 v - T_0 s$$
 (b) $u - p_0 v + T_0 s$

(c)
$$h + p_0 v - T_0 s$$
 (d) $h - p_0 v + T_0 s$

- In free expansion of a gas between two equilibrium states, the work transfer involved
- (a) can be calculated by joining the two states on p-v coordinates by any path and estimating the area below
- (b) can be calculated by joining the two states by a quasistatic path and then finding the area below
- (c) is zero
- is equal to heat generated by friction during expansion

Variation of pressure and volume at constant temperature are correlated through

- (a) Charle'slaw (b) Boyle's law
- (c) Joule's law (d) Gay Lussac's law

For a non-flow constant pressure process the heat exchange is equal to

- (a) zero
- (b) the work done
- (c) the change in internal energy
- (d) the change in enthalpy

The equation of state:

$$pv = RT\left(1 + \frac{B}{v} + \frac{C}{v^2} + \frac{D}{v^3} + ...\right),$$

is known as

- (a) Van der Waals equation
- (b) Benedict-Webb-Rubin equation
- (c) Gibbs equation
- (d) Virial equation

Which one of the following is the correct expression for change in the internal energy for a small temperature change ΔT for an ideal gas?

(a)
$$\Delta U = C_v \times \Delta T$$
 (b) $\Delta U = C_p \times \Delta T$

(c)
$$\Delta U = \frac{C_p}{C_v} \times \Delta T$$
 (d) $\Delta U = (C_p - C_v)\Delta T$

What is the ratio of the slopes of p-v curves for an adiabatic process and an isothermal process?

(a) $\frac{1}{\gamma}$

(b) $\gamma + 1$

(c) Y

(d) $\frac{1}{y} + 1$

For a gas that is allowed to expand reversibly and adiabatically, there is no change in

- (a) internal energy (b) temperature
- (c) entropy (d) enthalpy

- Q. A series of operations, which takes place in a certain order and restore the initial conditions at the end, is known as
- (a) Reversible cycle
- (b) Irreversible cycle
- (c) Thermodynamic cycle
- (d) None of these

Q. A 120 - V electric resistance heater draws 10 A. It operates for 10 min in a rigid volume. Calculate the work done on the air in the volume.

- (a) 720000 kJ
- (b) 720 kJ
- (c) 12000 J
- (d) 12 kJ

- Q. Which of the following processes is irreversible process
- (a) Isothermal
- (b) Adiabatic
- (c) Throttling
- (d) All of the above

Q. In a reversible adiabatic process the ratio (T_1/T_2) is equal to -

(a)
$$\left(\frac{p_1}{p_2}\right)^{\frac{\gamma-1}{\gamma}}$$

(b)
$$\left(\frac{v_1}{v_2}\right)^{\frac{\gamma-1}{\gamma}}$$

(c) $(v_1v_2)^{\frac{\gamma-1}{2\gamma}}$

(c)
$$(v_1v_2)^{\frac{\gamma-1}{2\gamma}}$$

(d)
$$\left(\frac{v_2}{v_1}\right)^{\gamma}$$

- Q. In the polytropic process equation $PV^n = constant$ if n is infinitely large, the process is termed as -
- (a) Constant volume
- (b) Constant pressure
- (c) Constant temperature
- (d) Adiabatic

- Q. Internal energy of system containing perfect gas depends on
- (a) Pressure only
- (b) Temperature only
- (c) Pressure and temperature
- (d) Pressure temperature and specific heat

Q. Which of the following equations is incorrect? (where V,P,T and Q are volume, pressure, temperature and heat transfer respectively)

(a)
$$\oint dV = 0$$

(b)
$$\oint dP = 0$$

(c)
$$\oint dT = 0$$

(d)
$$\oint dQ = 0$$

- Q. A polytropic process with n = -1, initiates with P = V = 0 and ends with P = 600 kPa and V = 0.01 m3. The work done is
- (a) 2 kJ
- (b) 3 kJ
- (c) 4 kJ
- (d) 6 kJ

Q. For an ideal gas, enthalpy is represented by

(a)
$$H = U - RT$$

(b)
$$H = U + RT$$

(c)
$$H = RT - U$$

(d)
$$H = -(U + RT)$$

- Q. Certain quantities cannot be located on the graph by a point but are given by the area under the curve corresponding to the process. These quantities in concepts of thermodynamics are called as
- (a) cyclic functions
- (b) point functions
- (c) path functions
- (d) real functions

