
Adda 247

WELCOME TO Adda 2417

ALWAYS DO
YOUR BEST,
WHAT YOU
PLANT NOW
YOU WILL
HARVEST LATER

Download Now

Adda 247 APP

APP FEATURES

SUBSCRIBE NOW

Gate Adda247

YouTube Channel

GATE 2023 RESULT

Congratulations FROM ADDA 247 FAMILY

258

FREE APP CLASS SCHEDULE

MECHANICAL ENGINEERING

НМТ	MONDAY Live @11AM	YOGESH SIR
PRODUCTION	TUESDAY Live @11AM	GAURAV SIR
SOM	WEDNESDAY Live @8PM	MUKESH SIR
THERMODYNAMICS	THURSDAY Live @11AM	KANISTH SIR
ENGINEERING MATHEMATICS	FRIDAY Live @11AM	ANANT SIR

ISRO | BHEL | DRDO & OTHER PSUs

Thermodynamics

Closed system Analysis

MOST EXPECTED QUESTIONS

PART-2

Adda 247

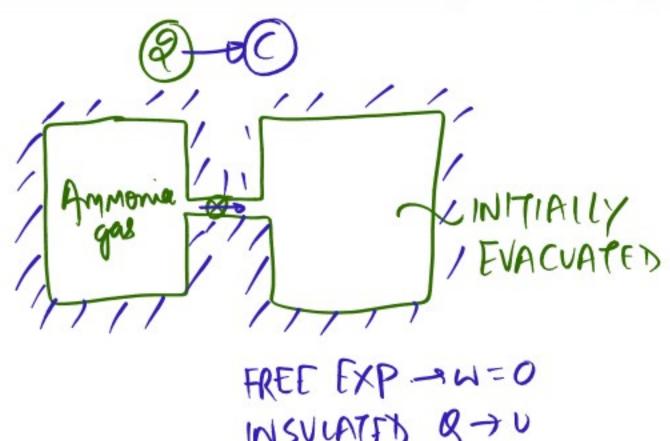
The internal energy of certain system is a function of temperature alone and is given by the formula E = 25 + 0.25t kJ. If this system executes a process for which the work done by it per degree temperature increase is 0.75 kNm, the heat interaction per degree temperature increase, in kJ, is

(a)
$$-1.00$$

(b)
$$-0.50$$

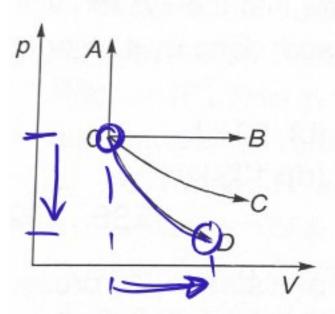
$$(d)$$
 1.00

[ESE: 1995]

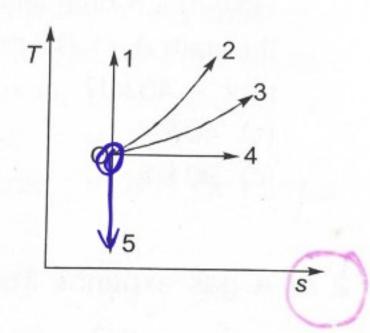

(1)
$$\rightarrow$$
 (1) \rightarrow (2) $E = 25 + 0.25 +$

The heat transfer Q, the work done W and the change in internal energy U are all zero in the case of

- (a) a rigid vessel containing steam at 150°C left X in the atmosphere which is at 25°C
- 1 kg of gas contained in an insulated cylinder expanding as the piston moves slowly outwards
- (c) a rigid vessel containing ammonia gas connected through a valve to an evacuated rigid vessel, the vessel, the valve and the connecting pipes being well insulated and the valve being opened and after a time, condition through the two vessel becoming uniform
- (d) 1 kg of air flowing adiabatically from the atmosphere into a previously evacuated bottle [ESE: 1996]



1-10



!.4 Match the curves in Diagram-I (process on-p-V plane) with the curves in Diagram-II (Process on T-s plane) and select the correct answer:

Diagram-I

Diagram-II

[ESE: 1996]

Codes:

	Α	В	C	D	
(a)	3	2	4	5	
(by	2	3	4	5	
(c)	2	3	4	1	
(d)	1	4	2	3	

Match List-I with List-II and select the correct answer using the codes given below the lists:

List-I

- A. Work done in a polytropic process
- B. Work done in steady flow process
- C. Heat transfer in a reversible adiabatic process

[ESE: 1996]

- D. Work done in an isentropic process
 List-II
- 1. $-\int Vdp$
- 2. Zero
- 3. $\frac{p_1V_1 p_2V_2}{\gamma 1}$
- 4. $\frac{p_1V_1 p_2V_2}{n-1}$

Codes:

- A B C C (a) 4 1 3 2 (b) 1 4 2 3
- (c) 4 1 2 3
- (d) 1 2 3 4

P1 V1-P3 V2

A-04 B-01 C-12 D-12 (y)-90

Assertion (A): If the enthalpy of a closed system decreased by 25 kJ while the system receives 30 kJ of energy by heat transfer, the work done by the system is 55 kJ.

Reason (R): The first law energy balance for a closed system is (notations have their usual meaning) $\Delta E = Q - W$. [ESE : 2001]

$$\Delta h = -25kJ$$

 $Q = +30kJ$
 $W = +55$

$$SQ = dE + SW$$

$$SQ = dV + dKE + dPE + SW$$

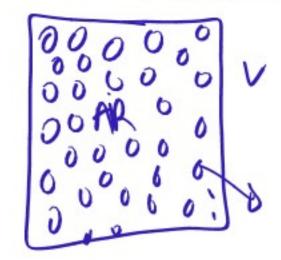
$$SQ = dV + SW$$

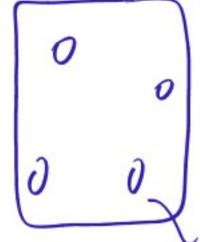
$$SQ = dV + SW$$

Assertion (A): Specific heat at constant pressure for an ideal gas is always greater than the specific heat at constant volume.

Reason (R): Heat added at constant volume is not utilized for doing any external work.

[ESE: 2002]


In highly rarefied gases, the concept of this loses validity


- (a) Thermodynamic equilibrium
- (b) Continuum
- (c) Stability
- (d) Macroscopic viewpoint

[ESE: 2012]

concept of Continuum

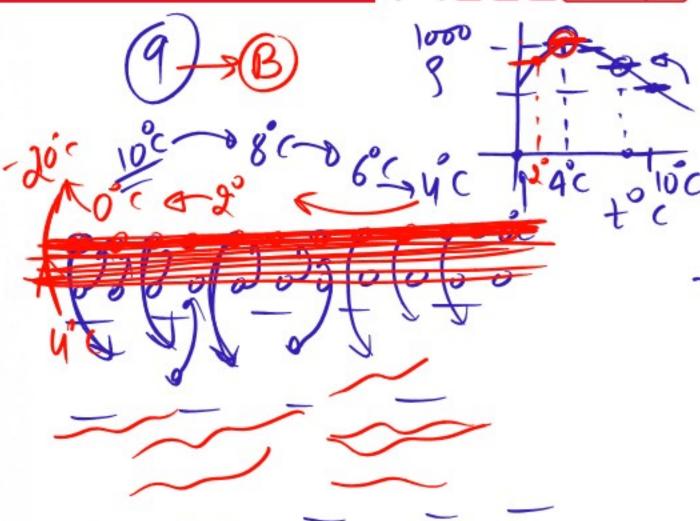
MATTER CONTINUOUS

full

Assertion (A): An air filled balloon released from the ground goes up and up till it reaches a certain elevation and floats in the air.

Reason (R): With increase in elevation the temperature of the atmospheric air increases and so the density decreases. X

[ESE: 2010]



Adda 247

Assertion (A): When the surface of a lake is cooled during winter, the cooled surface water descends to the bottom as long as its temperature exceeds 4°C, but when cooled below 4°C it floats at the top.

Reason (R): Ice forms at the top of a pond in winter while bottom fluid stays warmer at more than 4°C.

[ESE: 2010]

Adda 247

Molar specific heats of an ideal gas depend on

- (a) its pressure
- (b) its temperature
- (c) both its pressure and temperature
- (d) the number of atoms in a molecule,

[ESE: 2010]

$$0, F=3$$

$$+0, F=5$$

Pressure reaches a value of absolute zero

- (a) at a temperature of -273 K X
- (b) under vacuum condition x
- (c) at the earth's centre X
- (d) when molecular momentum of system becomes zero [ESE: 2002]

Number of components (C), phases (P) and degrees of freedom (F) are related by Gibbs phase rule as

(a)
$$C-P-F=2$$
 (b) $F-C-P=2$

(b)
$$F - C - P = 2$$

(c)
$$C + F - P = 2$$
 (d) $P + F - C = 2$

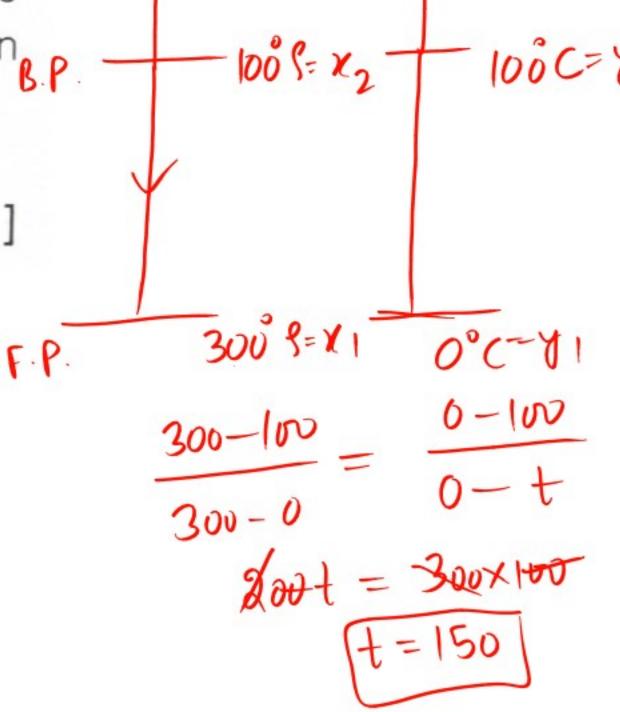
(d)
$$P + F - C = 2$$

[ESE: 2001]

The correct sequence of the decreasing order of the value of characteristic gas constants of the given gases is

- (a) hydrogen, nitrogen, air, carbon dioxide
- (b) carbon dioxide, hydrogen, nitrogen, air
- (c) air, nitrogen, carbon dioxide, hydrogen
- (d) nitrogen, air, hydrogen, carbon dioxide

[ESE: 1995]

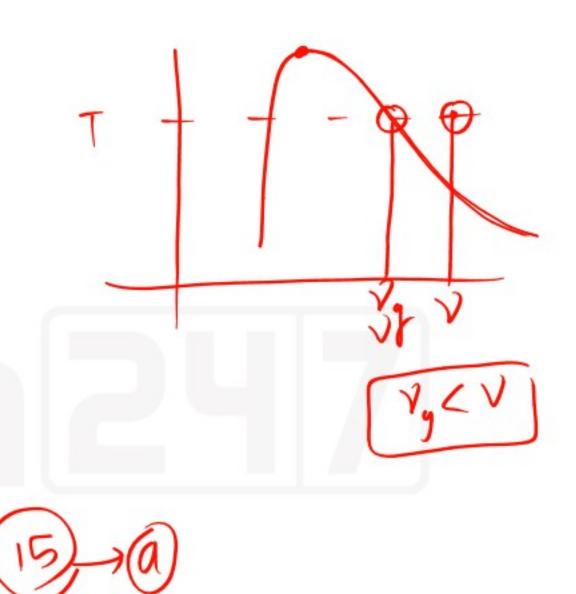


Adda 247

In new temperature scale say °p, the boiling and freezing points of water at one atmosphere are 100°p and 300°p respectively. Correlate this scale with the Centigrade scale. The reading of 0°p on the Centigrade scale is

- (a) 0°C
- (c) 100°C

- (b) 50°C
- (d) 150°C [ESE: 2001]
- D 175°C



Which one of the following is the correct statement? Steam is said to be superheated when the

- (a) actual volume is greater than volume of saturated steam
- (b) actual volume is less than volume of saturated steam
- (c) actual volume is equal to volume of saturated steam
- (d) None of the above

Which one of the following properties remains unchanged for a real gas during Joule—Thomson process?

- (a) Temperature
- (b) Enthalpy

(c) Entropy

(d) Pressure

If h, p, T and v refer to enthalpy, pressure, temperature and specific volume respectively; and subscripts g and f refer to saturation conditions of vapour and liquid respectively, then Clausius-Clapeyron equation applied to change of phase from liquid to vapour states is

(a)
$$\frac{dp}{dt} = \frac{(h_g - h_f)}{(v_g - v_f)}$$
 (b) $\frac{dp}{dt} = \frac{(h_g - h_f)}{T(v_g - v_f)}$

(c)
$$\frac{dp}{dt} = \frac{(h_g - h_f)}{T}$$
 (d) $\frac{dp}{dt} = \frac{(h_g - h_f)T}{(h_g - h_f)}$

$$\frac{dP}{dt} = \frac{h_g - h_f}{T(v_g - v_f)}$$

For an ideal gas, the expression

$$\begin{bmatrix} T\left(\frac{\partial s}{\partial T}\right)_p - T\left(\frac{\partial s}{\partial T}\right)_v \end{bmatrix} \text{ is equal to}$$
(a) zero
(b) C_p/C_v
(c) R
(d) RT

Tas=
$$du + pav$$
, $Tas= dh-yap$
 $v=c$
 $dv=0$
 $Tas= cvat$
 $v=c$
 $Tas= cvat$
 $Tas=$

For a gas, pressure p, volume v and temperature T are dependent on each other. Then which one of the following p - v - T relationship will be obeyed?

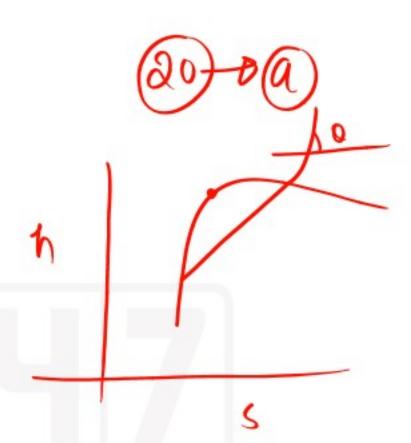
(a)
$$\left(\frac{\partial p}{\partial T}\right)_{V} \left(\frac{\partial V}{\partial T}\right)_{p} \left(\frac{\partial V}{\partial p}\right)_{T} = -1$$

(b)
$$\left(\frac{\partial p}{\partial T}\right)_{V} \left(\frac{\partial T}{\partial V}\right)_{D} \left(\frac{\partial V}{\partial P}\right)_{T} = -1$$

(c)
$$\left(\frac{\partial p}{\partial T}\right)_{V} \left(\frac{\partial V}{\partial T}\right)_{p} \left(\frac{\partial p}{\partial V}\right)_{T} = -1$$

(d)
$$\left(\frac{\partial p}{\partial T}\right)_{V} = \left(\frac{\partial T}{\partial V}\right)_{D} \left(\frac{\partial p}{\partial V}\right)_{T}$$

Which one of the following is the correct statement? Clapeyron equation is used for



- (a) finding specific volume of vapour
- (b) finding specific volume of liquid
- (c) finding latent heat of vaporization <
- (d) finding sensible heat

Constant pressure lines in the super-heated region of the Mollier diagram have what type of slope?

- (a) A positive slope
- (b) A negative slope
- (c) Zero slope
- (d) May have either positive or negative slopes

- In free expansion of a gas between two equilibrium states, the work transfer involved
- (a) can be calculated by joining the two states on p-v coordinates by any path and estimating the area below
- (b) can be calculated by joining the two states by a quasistatic path and then finding the area below
- (c) is zero
- is equal to heat generated by friction during expansion

Variation of pressure and volume at constant temperature are correlated through

- (a) Charle'slaw (b) Boyle's law
- (c) Joule's law (d) Gay Lussac's law

For a non-flow constant pressure process the heat exchange is equal to

- (a) zero
- (b) the work done
- (c) the change in internal energy
- (d) the change in enthalpy

The equation of state:

$$pv = RT\left(1 + \frac{B}{v} + \frac{C}{v^2} + \frac{D}{v^3} + ...\right),$$

is known as

- (a) Van der Waals equation
- (b) Benedict-Webb-Rubin equation
- (c) Gibbs equation
- (d) Virial equation

Which one of the following is the correct expression for change in the internal energy for a small temperature change ΔT for an ideal gas?

(a)
$$\Delta U = C_v \times \Delta T$$
 (b) $\Delta U = C_p \times \Delta T$

(c)
$$\Delta U = \frac{C_p}{C_v} \times \Delta T$$
 (d) $\Delta U = (C_p - C_v)\Delta T$

What is the ratio of the slopes of p-v curves for an adiabatic process and an isothermal process?

(a) $\frac{1}{\gamma}$

(b) $\gamma + 1$

(c) Y

(d) $\frac{1}{y} + 1$

For a gas that is allowed to expand reversibly and adiabatically, there is no change in

- (a) internal energy (b) temperature
- (c) entropy (d) enthalpy

- Q. A series of operations, which takes place in a certain order and restore the initial conditions at the end, is known as
- (a) Reversible cycle
- (b) Irreversible cycle
- (c) Thermodynamic cycle
- (d) None of these

Q. A 120 - V electric resistance heater draws 10 A. It operates for 10 min in a rigid volume. Calculate the work done on the air in the volume.

- (a) 720000 kJ
- (b) 720 kJ
- (c) 12000 J
- (d) 12 kJ

- Q. Which of the following processes is irreversible process
- (a) Isothermal
- (b) Adiabatic
- (c) Throttling
- (d) All of the above

Q. In a reversible adiabatic process the ratio (T_1/T_2) is equal to -

(a)
$$\left(\frac{p_1}{p_2}\right)^{\frac{\gamma-1}{\gamma}}$$

(b)
$$\left(\frac{v_1}{v_2}\right)^{\frac{\gamma-1}{\gamma}}$$

(c) $(v_1v_2)^{\frac{\gamma-1}{2\gamma}}$

(c)
$$(v_1v_2)^{\frac{\gamma-1}{2\gamma}}$$

(d)
$$\left(\frac{v_2}{v_1}\right)^{\gamma}$$

- Q. In the polytropic process equation $PV^n = constant$ if n is infinitely large, the process is termed as -
- (a) Constant volume
- (b) Constant pressure
- (c) Constant temperature
- (d) Adiabatic

- Q. Internal energy of system containing perfect gas depends on
- (a) Pressure only
- (b) Temperature only
- (c) Pressure and temperature
- (d) Pressure temperature and specific heat

Q. Which of the following equations is incorrect? (where V,P,T and Q are volume, pressure, temperature and heat transfer respectively)

(a)
$$\oint dV = 0$$

(b)
$$\oint dP = 0$$

(c)
$$\oint dT = 0$$

(d)
$$\oint dQ = 0$$

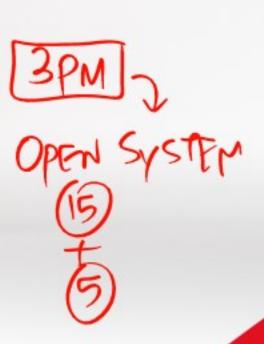
Q. A polytropic process with n = -1, initiates with P = V = 0 and ends with P = 600 kPa and V = 0.01 m3. The work done is

- (a) 2 kJ
- (b) 3 kJ
- (c) 4 kJ
- (d) 6 kJ

Q. For an ideal gas, enthalpy is represented by

(a)
$$H = U - RT$$

(b)
$$H = U + RT$$


(c)
$$H = RT - U$$

(d)
$$H = -(U + RT)$$

- Q. Certain quantities cannot be located on the graph by a point but are given by the area under the curve corresponding to the process. These quantities in concepts of thermodynamics are called as
- (a) cyclic functions
- (b) point functions
- (c) path functions
- (d) real functions

SUBSCRIBE NOW

Gate Adda247

YouTube Channel