Adda[24]7

WELCO ME TO Adda 2477

"STEADY STATE
IS JUST AN
ILLUSION."

Chapter – 2

DC Transient and Steady State analysis

Passive Elements.

- 1.Inductor
- 2.Capacitor
- 3.Resistor

Adda-2MJ-) ARP

Passive Elements.

1.Inductor

100 = W.D. 221732433 2112121212 Inductor energized by D-C. Supply N25 JA21 * mag. dipoles Alignment, is the train reyon to opposer the sendden druge of crent. Tugatore 1/ verx cased thinky Ø ⇒ Costant - Indud EMF+Dy =) vonable to F. L. of Induction. induced Emf 18, 17 the \$9 * if we will operat indutor beyond saturation Ment, one judgeper mill eget danged.

Why indutor's will be S/C in D.C. ckt :>

SUBSCRIBE NOW

Gate Adda247

YouTube Channel

GATE 2023 RESULT

Congratulations FROM ADDA 247 FAMILY

ME VUENDER MEENA

WELCOME TO GATE ADDA 247

TODAY TOPIC IS

INDUCTOR

INDUCTOR IS PASSIVE & ENERGY STORING ELEMENT

2 IT IS BILATERAL ELEMENT 50 25ec

INDUCTOR DOES NOT ALLOW SUDDEN CHANGE OF MAGNITUDE OF CURRENT

2++-2++

INDUCTOR DOES NOT ALLOW SUDDEN CHANGE OF DIRECTION OF CURRENT

INDUCTOR'S VOLTAGE MAGNITUDE CAN
CHANGE SUDDENLY

INDUCTOR'S VOLTAGE POLARITY CAN

AN INDUCTOR CAN STORE ENERGY AND IT CAN DELIVER ACCORDING TO CIRCUIT NEED. SO INDUCTOR CAN BEHAVES AS A SOURCE OR LOAD DEPENDING UPON CIRCUIT CONDITION.

8

INDUCTOR'S POWER

9

WHEN CHARGED INDUCTOR BEHAVES AS A SOURCE, GURANTEED IT WILL CHANGE ITS OWN VOLTAGE POLARITY

AN UNCHARGED INDUCTOR BEHAVES AS AN OPEN CIRCUIT in Dicackt.
IN DC CIRCUIT INDUCTORS ARE NOT

RESPONSIBLE FOR REACTIVE POWER, THEY ARE

RESPOSIBLE FOR REAL POWER

- 14
- INDUCTOR CAN ALSO MAINTAIN ALMOST CONSTANT CURRENT FOR VARIABLE VOLTAGE.
- INDUCTOR'S VOLTAGE MAY/MAYNOT BE ZERO FOR CONSTANT CURRENT.
- 16

IT IS GURANTEED THAT NDUCTOR WILL BEHAVE AS AN OPEN CIRCUIT AT

- **17**
- AN INDUCTOR MAY BE SHORT CIRCUIT OR OPEN CIRCUIT IN STEADY STATE IN DC CICUIT.
- IN AC CIRCUIT INDUCTOR'S WILL NOT BE SHORT OR OPEN CIRCUIT.
- 19 TIM IMP

TIME CONSTANT \mathcal{T} PALYS VERY IMPORTANT ROLE TO DEFINE TRANSIENT TIME

A FULLY CHARGED INDUCTOR IN DC CIRCUIT, CAN BEHAVE AS A CONSTANT DC CURRENT SOURCE.

ENERGY STORED BY INDUCTOR

Energy stored =
$$\int_0^t Pdt = \int_0^t Li'di' = \frac{1}{2}LI^2$$

(21)

AN INDUCTOR CAN WORK AS SOURCE, BUT FOR A VERY VERY SAMLL TIME INTERVAL.

- AN INDUCTOR CAN DEVELOP A VERY HIGH VOLTAGE (IN TERMS OF KV/MV) BUT FOR VERY SHORT TIME DURATION
- 23) if inpulse vol. applied cours inductor, than inductor's