

WELCOME TO Adda 2417

"If you can think, you can
Achieve"
So start thinking..

Renu Raj Garg
M.Tech (VLSI Design)
13 Year of Teaching
Experience
Worked 10 Year in NTRO

GATE 2024

COMMUNICATION

TIME- 9:00PM

RENU SIR

Chapter-2 Digital Communications

In today's lecture we will cover the following Topis:

1. QUANTIZER in PCM (Part-2)

SUBSCRIBE NOW

Gate Adda247

YouTube Channel

Congratulations FROM ADDA 247 FAMILY

Know How You Can Ask Your Doubts 24x7.

Direct interaction with Adda247 Faculty team

AND THE RESIDENCE OF THE PARTY OF THE PARTY

No Subscription Required

Start Apr 11, 2023

7:30 AM to 11:30 PM

OU TUDE Classes Schedule (2)

EXAM TARGET	SUBJECT	TIME	FACULTY
ALL PSUs	ENGINEERING MATHS	11:00 AM	ANANT SIR
GATE 2024-25	NETWORK THEORY	6:00 PM	RAVISIR
GATE 2024-25	ELECTRICAL MACHINE	7:30 PM	SANTAN SIR
GATE 2024-25	COMMUNICATION	9:00 PM	RENU SIR

FREE APP CLASS SCHEDULE

EE & ECEENGINEERING

NETWORK THEORY	SATURDAY Live @11AM	RAVISIR
COMMUNICATION	WEDNESDAY Live @8PM	RENU SIR
ANALOG ELECTRONICS	THURSDAY Live @8PM	LAWRENCE SIR
ENGINEERING MATHEMATICS	FRIDAY Live @11AM	ANANT SIR
ELECTRICAL MACHINE	MONDAY Live @8PM	SANTAN SIR

Adda[24]7

$$\Rightarrow$$
 $mV[ac] = 0$

$$\int \frac{\partial u}{\partial c} \frac{1}{\partial c} d\alpha_c = \frac{1}{\Delta} \frac{2|\Delta|^2}{2|\Delta|^2}$$

$$-\Delta/2$$

$$=\frac{1}{20}\left[\frac{3}{4}-\frac{3}{4}\right]=0$$

$$(NP)_{Q} = \frac{1}{5} \frac{Q_{C}^{3}}{3} \frac{N2}{3} = \frac{1}{50} \left[\frac{0^{3}}{8} + \frac{0^{3}}{8} \right] = \frac{5^{2}}{12}$$

$$\frac{||f(x)||}{||f(x)||} = \frac{||f(x)||}{||x-q||} = \frac{||f(x)||}{||x-q||} = \frac{||f(x)||}{||x-q||} = \frac{||f(x)||}{||x-q||} = \frac{||f(x)||}{||f(x)||} = \frac{||f(x$$

$$\frac{|x^{2}|^{-1}}{|z|^{-1}} = \frac{|q| |x|^{-1}}{|x|^{-1}}$$

$$\frac{|x^{2}|^{-1}}{|x|^{-1}} = \frac{1}{|z|^{-1}} = \frac{1}{$$

Adda 247

$$= \int_{0}^{2} (x-9)^{2} f(x) dx$$

$$= \int_{0}^{2} (x^{2}-2x)^{2} f(x) dx$$

$$= \int_{0}^{2} (x^{2}-2x)^{2} f(x) dx$$

$$-\int_{0}^{2} f(x) \int_{0}^{2} (x^{2}-2x)^{2} f(x) dx$$

$$-\int_{0}^{2} f(x) \int_{0}^{2} (x^{2}-2x)^{2} f(x) dx$$

$$= f(x) \left[\frac{0^{3}}{3} - 9, 0^{2} + 9^{2}.0 \right]$$

$$= f(x) \left[\frac{0^{3}}{3} - \frac{0^{3}}{2} + \frac{0^{3}}{4} \right]$$

$$= f(x) \left[\frac{40^{3}}{12} - \frac{60^{3}}{12} + \frac{30^{3}}{12} \right]$$

$$= f(x) \frac{5^{3}}{12} - \frac{5^{2}}{12} \times f(x) D$$

$$= \frac{5^{2}}{12} \times Are_{10} f f h d | evel$$

Adda[247

Moint Power =
$$\int_{-2}^{-1} (x+1.5)^{2} \frac{1}{2} dt + \int_{-1}^{1} (x+0.5)^{2} \frac{1}{3} dt = \int_{-1}^{1} (x-0.5)^{2} \frac{1}{3} dx + \int_{-1}^{2} (x-1.5)^{2} dt$$

$$= \frac{D_{1}^{2} \times AveqL + \frac{D_{2}^{2} \times AveqL + \frac{D_{3}^{2} \times AveqL}{12}}{12} + \frac{D_{5}^{2} \times AveqL}{12} + \frac{D_{5}^{2} \times AveqL}{12} + \frac{D_{5}^{2} \times AveqL}{12}$$

$$\frac{1}{12} \left[\frac{1}{A \cdot L + A \cdot Z + A \cdot 3 + A \cdot 1} - \frac{1}{12} \right]$$

Adda 247

Noik Power =
$$\int \frac{1}{(2+2)^{2}} \frac{1}{8} dx + \int (2+0.5)^{2} \frac{1}{4} dx + \int (x-0.5)^{2} \frac{1}{4} dx$$

$$= \frac{2}{12} A xeal + \frac{32}{12} A xeal + \frac{33}{12} x A xeal + \frac{13}{12} x A xea$$

APP FEATURES

Download Now

Adda 247 APP

THANKS FOR

Matching Adda 247

