

WELCOME TO Adda 2417

"If you can think, you can Achieve"
So start thinking..

Renu Raj Garg
M.Tech (VLSI Design)
13 Year of Teaching
Experience
Worked 10 Year in NTRO

GATE 2024

COMMUNICATION

QUANTIZER IN PCM PART-3

TIME- 9:00PM

RENU SIR

Chapter-2 Digital Communications

In today's lecture we will cover the following Topis:

1. QUANTIZER in PCM (Part-3)

SUBSCRIBE NOW

Gate Adda247

YouTube Channel

Congratulations FROM ADDA 247 FAMILY

Know How You Can Ask Your Doubts 24x7.

Direct interaction with Adda247 Faculty team

No Subscription Required

Frec

Start Apr 11, 2023

7:30 AM to 11:30 PM

You Tube Classes Schedule (2)

EXAM TARGET	SUBJECT	TIME	FACULTY
ALL PSUs GATE 2024-25 GATE 2024-25 GATE 2024-25	ENGINEERING MATHS NETWORK THEORY ELECTRICAL MACHINE COMMUNICATION	6:00 PM 7:30 PM	ANANT SIR RAVI SIR SANTAN SIR RENU SIR

FREE APP CLASS SCHEDULE

EE & ECEENGINEERING

NETWORK THEORY	SATURDAY Live @11AM	RAVISIR
COMMUNICATION	WEDNESDAY Live @8PM	RENU SIR
ANALOG ELECTRONICS	THURSDAY Live @8PM	LAWRENCE SIR
ENGINEERING MATHEMATICS	FRIDAY Live @11AM	ANANT SIR
ELECTRICAL MACHINE	MONDAY Live @8PM	SANTAN SIR

Adda 247

(and then for best Quantition:

(i) Mean (avg.) value of quantition Error = 0

$$E[Q_c] = 0, E[x-q] = 0$$

$$|| in one level || x_2||$$

$$E[X] = || xf(x) dx|| E[Q_c] = mv[Q_c] = E[x-q] = || (x-q_1)f(x) dy = 0$$

Adda 247

for level-
$$I$$
:
$$\int_{X_{L}}^{X_{L}} (x-q_{L}) f(x) dx = 0$$

$$\int_{X_{L}}^{X_{L}} (x) dx = q_{L} \int_{X_{L}}^{X_{L}} f(x) dx$$

$$\int_{X_{L}}^{X_{L}} (x) dx = q_{L} \int_{X_{L}}^{X_{L}} f(x) dx$$

$$\int_{X_{L}}^{X_{L}} f(x) dx$$

Adda[247

$$\frac{q_{z}}{\int_{x_{z}}^{x_{z}} dx} = \frac{\frac{\pi^{2} |_{x_{z}}^{x_{z}}}{2 |_{x_{z}}^{x_{z}}} = \frac{1}{2} (x_{3}^{2} - x_{2}^{2}) = \frac{(x_{3}^{2} - x_{2}^{2})}{2 (x_{3}^{2} - x_{2})} = \frac{(x_{3}^{2} - x_{2}^{2})}{2 (x_{3}^{2} - x_{2})}$$

$$\frac{q_{z}}{\int_{x_{z}}^{x_{3}} dx} = \frac{1}{2} (x_{3}^{2} - x_{2}^{2}) = \frac{(x_{3}^{2} - x_{2}^{2})}{2 (x_{3}^{2} - x_{2}^{2})} = \frac{(x_{3}^{2} - x_{2}^{2})}{2 (x_{3}^{2} - x_{2}^{2})}$$

$$\frac{q_{z}}{\int_{x_{z}}^{x_{3}} dx} = \frac{1}{2} (x_{3}^{2} - x_{2}^{2}) = \frac{(x_{3}^{2} - x_{2}^{2})}{2 (x_{3}^{2} - x_{2}^{2})} = \frac{1}{2} (x_{3}^{2} - x_{2}^{2})$$

Condition (I)
$$m \text{ sv } [a_c] = min$$

$$E[a_c] = min$$

$$E[(x-q)^2] = \int_{x_L}^{x_L} (x-q_L)^2 f(x) dx$$

$$q = x_L \int_{x_L}^{x_L} f(x) dx$$

$$q = x_L \int_{x_L}^{x_L} f(x) dx$$

11 and Max (riteria:

$$q_{1} = \int_{x_{1}}^{x_{2}} x f(x) dx$$

$$\int_{x_{1}}^{x_{2}} f(x) dx$$

$$\int_{x_{3}}^{x_{4}} f(x) dx$$

$$q_{1} = \frac{\chi_{1} + \chi_{2}}{2}$$

Adda 247

$$\beta = \frac{0+1}{2} = \frac{1}{2}$$

$$0$$

$$-2$$

$$-2$$

$$0$$

$$0 = \frac{-2}{3} = \frac{-2}{3}$$

$$0$$

$$0 = \frac{-2}{3} = \frac{-2}{3}$$

$$0$$

$$0 = \frac{-2}{3} = \frac{-2}{3}$$

$$0 = \frac{-2}{3} = \frac{-2}{3}$$

$$0 = \frac{-2}{3} = \frac{-2}{3}$$

$$1/2$$

$$1/2$$

$$d = 2 \left[\frac{1}{4} \frac{\chi^{3}}{3} \right]^{0} + \frac{1}{2} \frac{\chi^{2}}{2} \right]^{0}$$

$$d = 2 \left[\frac{1}{12} \left[0 + 8 \right] + \frac{1}{4} \left[0 - 4 \right] \right]$$

$$d = 2 \left[\frac{8}{12} - 1 \right] = 2 \left[\frac{-4}{12} \right] = 2 \left[\frac{-1}{3} \right] = \frac{-2}{3}$$

Download Now

Premium Study Material

THANKS FOR

Watching Adda 247

