

WELCOME TO Adda 247

Math is a journey, not a destination.

SUBSCRIBE NOW

Gate Adda247

YouTube Channel

GATE 2023 RESULT

-- Congratulations FROM ADDA 247 FAMILY

OU TUDE Classes Schedule (2)

EXAM TARGET	SUBJECT	TIME	FACULTY
ALL PSUs	ENGINEERING MATHS	10:00 AM	ANANT SIR
GATE 2024-25	NETWORK THEORY	6:00 PM	RAVI SIR
GATE 2024-25	ELECTRICAL MACHINE	7:30 PM	SANTAN SIR
GATE 2024-25	COMMUNICATION	9:00 PM	RENU SIR

OU TUDE Classes Schedule (2)

EXAM TARGET	SUBJECT	TIME	FACULTY
ALL PSUs	ENGINEERING MATHS	10:00 AM	ANANT SIR
ALL PSUs	GEOTECHNICAL	1:00 PM	RUDRA SIR
GATE 2024-25	STEEL STRUCTURE	6.00 PM	REHAN SIR
GATE 2024-25	ENVIRONMENT	8:00 PM	PRATIK SIR
GATE 2024-25	SOM	9:00 PM	MUKESH SIR

OU TUDE Classes Schedule (2)

EXAM TARGET	SUBJECT	TIME	FACULTY
ALL PSUs	ENGINEERING MATHS	10:00 AM	ANANT SIR
ALL PSUs	PRODUCTION	11:30 PM	GAURAV SIR
ALL PSUs	THERMODYNAMICS	3:00 PM	KANISTH SIR
GATE 2024-25	HMT	4:30 PM	YOGESH SIR
GATE 2024-25	SOM	9:00 PM	MUKESH SIR

SUBSCRIBE NOW

Gate Adda247

YouTube Channel

GATE 2023 RESULT

-- Congratulations FROM ADDA 247 FAMILY

FREE APP CLASS SCHEDULE

MECHANICAL ENGINEERING

Prachand

НМТ	MONDAY Live @11AM	YOGESH SIR
PRODUCTION	TUESDAY Live @11AM	GAURAV SIR
SOM	WEDNESDAY Live @8PM	MUKESH SIR
THERMODYNAMICS	THURSDAY Live @11AM	KANISTH SIR
ENGINEERING MATHEMATICS	FRIDAY Live @11AM	ANANT SIR

FREE APP CLASS SCHEDULE

EE & ECEENGINEERING

NETWORK THEORY	SATURDAY Live @11AM	RAVI SIR
COMMUNICATION	WEDNESDAY Live @8PM	RENU SIR
ANALOG ELECTRONICS	THURSDAY Live @8PM	LAWRENCE SIR
ENGINEERING MATHEMATICS	FRIDAY Live @11AM	ANANT SIR
ELECTRICAL MACHINE	MONDAY Live @8PM	SANTAN SIR

FREE APP CLASS SCHEDULE

SOM	WEDNESDAY Live @8PM	MUKESH SIR
ENVIRONMENT	THURSDAY Live @8PM	PRATIK SIR
STEEL STRUCTURE	FRIDAY Live @8PM	REHAN SIR
GEOTECHNICAL	SATURDAY Live @11AM	RUDRA SIR
ENGINEERING MATHEMATICS	FRIDAY Live @11AM	ANANT SIR

APP FEATURES

Download Now

Adda 247 APP

Dedicated batches available on ADDA247 App, Use offer code Y657

Let f be a real-valued function of a real variable defined as $f(x) = x^2$ for $x \ge 0$, and $f(x) = -x^2$ for x < 0. Which one of the following statements is true?

- (a) f(x) is discontinuous at x = 0
- (b) f(x) is continuous but not differentiable at x = 0
- (c) f(x) is differentiable but its first derivative is not

(b)
$$f(x)$$
 is differentiable but its first derivative is not continuous at $x = 0$

(d) $f(x)$ is differentiable but its first derivative is not differentiable at $x = 0$.

(e) $f(x)$ is differentiable but its first derivative is not differentiable at $f(x)$ is differentiable at $f(x)$ in $f(x)$

$$f'(\alpha) = \begin{cases} 2\alpha; & \chi = 0 \\ -2\chi & \chi = 0 \end{cases}$$

$$(x) = \begin{cases} -2\chi & \chi = 0 \end{cases}$$

$$(x) = \begin{cases} -2\chi & \chi = 0 \end{cases}$$

$$(x) = \begin{cases} -2\chi & \chi = 0 \end{cases}$$

$$(x) = \begin{cases} -2\chi & \chi = 0 \end{cases}$$

$$(x) = \begin{cases} -2\chi & \chi = 0 \end{cases}$$

$$(x) = \begin{cases} -2\chi & \chi = 0 \end{cases}$$

$$(x) = \begin{cases} -2\chi & \chi = 0 \end{cases}$$

$$(x) = \begin{cases} -2\chi & \chi = 0 \end{cases}$$

$$(x) = \begin{cases} -2\chi & \chi = 0 \end{cases}$$

$$(x) = \begin{cases} -2\chi & \chi = 0 \end{cases}$$

$$(x) = \begin{cases} -2\chi & \chi = 0 \end{cases}$$

$$(x) = \begin{cases} -2\chi & \chi = 0 \end{cases}$$

$$(x) = \begin{cases} -2\chi & \chi = 0 \end{cases}$$

$$(x) = \begin{cases} -2\chi & \chi = 0 \end{cases}$$

$$(x) = \begin{cases} -2\chi & \chi = 0 \end{cases}$$

$$(x) = \begin{cases} -2\chi & \chi = 0 \end{cases}$$

$$(x) = \begin{cases} -2\chi & \chi = 0 \end{cases}$$

$$(x) = \begin{cases} -2\chi & \chi = 0 \end{cases}$$

$$(x) = \begin{cases} -2\chi & \chi = 0 \end{cases}$$

$$(x) = \begin{cases} -2\chi & \chi = 0 \end{cases}$$

$$(x) = \begin{cases} -2\chi & \chi = 0 \end{cases}$$

$$(x) = \begin{cases} -2\chi & \chi = 0 \end{cases}$$

$$(x) = \begin{cases} -2\chi & \chi = 0 \end{cases}$$

$$(x) = \begin{cases} -2\chi & \chi = 0 \end{cases}$$

$$(x) = \begin{cases} -2\chi & \chi = 0 \end{cases}$$

$$(x) = \begin{cases} -2\chi & \chi = 0 \end{cases}$$

$$(x) = \begin{cases} -2\chi & \chi = 0 \end{cases}$$

$$(x) = \begin{cases} -2\chi & \chi = 0 \end{cases}$$

$$(x) = \begin{cases} -2\chi & \chi = 0 \end{cases}$$

$$(x) = \begin{cases} -2\chi & \chi = 0 \end{cases}$$

$$(x) = \begin{cases} -2\chi & \chi = 0 \end{cases}$$

$$(x) = \begin{cases} -2\chi & \chi = 0 \end{cases}$$

$$(x) = \begin{cases} -2\chi & \chi = 0 \end{cases}$$

$$(x) = \begin{cases} -2\chi & \chi = 0 \end{cases}$$

$$(x) = \begin{cases} -2\chi & \chi = 0 \end{cases}$$

$$(x) = \begin{cases} -2\chi & \chi = 0 \end{cases}$$

$$(x) = \begin{cases} -2\chi & \chi = 0 \end{cases}$$

$$(x) = \begin{cases} -2\chi & \chi = 0 \end{cases}$$

$$(x) = \begin{cases} -2\chi & \chi = 0 \end{cases}$$

$$(x) = \begin{cases} -2\chi & \chi = 0 \end{cases}$$

$$(x) = \begin{cases} -2\chi & \chi = 0 \end{cases}$$

$$(x) = \begin{cases} -2\chi & \chi = 0 \end{cases}$$

$$(x) = \begin{cases} -2\chi & \chi = 0 \end{cases}$$

$$(x) = \begin{cases} -2\chi & \chi = 0 \end{cases}$$

$$(x) = \begin{cases} -2\chi & \chi = 0 \end{cases}$$

$$(x) = \begin{cases} -2\chi & \chi = 0 \end{cases}$$

$$(x) = \begin{cases} -2\chi & \chi = 0 \end{cases}$$

$$(x) = \begin{cases} -2\chi & \chi = 0 \end{cases}$$

$$(x) = \begin{cases} -2\chi & \chi = 0 \end{cases}$$

$$(x) = \begin{cases} -2\chi & \chi = 0 \end{cases}$$

$$(x) = \begin{cases} -2\chi & \chi = 0 \end{cases}$$

$$(x) = \begin{cases} -2\chi & \chi = 0 \end{cases}$$

$$(x) = \begin{cases} -2\chi & \chi = 0 \end{cases}$$

$$(x) = \begin{cases} -2\chi & \chi = 0 \end{cases}$$

$$(x) = \begin{cases} -2\chi & \chi = 0 \end{cases}$$

$$(x) = \begin{cases} -2\chi & \chi = 0 \end{cases}$$

$$(x) = \begin{cases} -2\chi & \chi = 0 \end{cases}$$

$$(x) = \begin{cases} -2\chi & \chi = 0 \end{cases}$$

$$(x) = \begin{cases} -2\chi & \chi = 0 \end{cases}$$

$$(x) = \begin{cases} -2\chi & \chi = 0 \end{cases}$$

$$(x) = \begin{cases} -2\chi & \chi = 0 \end{cases}$$

$$(x) = \begin{cases} -2\chi & \chi = 0 \end{cases}$$

$$(x) = \begin{cases} -2\chi & \chi = 0 \end{cases}$$

$$(x) = \begin{cases} -2\chi & \chi = 0 \end{cases}$$

$$(x) = \begin{cases} -2\chi & \chi = 0 \end{cases}$$

$$(x) = \begin{cases} -2\chi & \chi = 0 \end{cases}$$

$$(x) = \begin{cases} -2\chi & \chi = 0 \end{cases}$$

$$(x) = \begin{cases} -2\chi & \chi = 0 \end{cases}$$

$$(x) = \begin{cases} -2\chi & \chi = 0 \end{cases}$$

$$(x) = \begin{cases} -2\chi & \chi = 0 \end{cases}$$

$$(x) = \begin{cases} -2\chi & \chi = 0 \end{cases}$$

$$(x) = \begin{cases} -2\chi & \chi = 0 \end{cases}$$

$$(x) = \begin{cases} -2\chi & \chi = 0 \end{cases}$$

$$(x) = \begin{cases} -2\chi & \chi = 0 \end{cases}$$

$$(x) = \begin{cases} -2\chi & \chi = 0 \end{cases}$$

$$(x) = \begin{cases} -2\chi & \chi = 0 \end{cases}$$

$$(x) = \begin{cases} -2\chi & \chi = 0 \end{cases}$$

$$(x) = \begin{cases} -2\chi & \chi = 0 \end{cases}$$

$$(x) = \begin{cases} -2\chi & \chi = 0 \end{cases}$$

$$(x) = \begin{cases} -2\chi & \chi = 0 \end{cases}$$

$$(x) = \begin{cases} -2\chi & \chi = 0 \end{cases}$$

$$(x) = \begin{cases} -2\chi & \chi = 0 \end{cases}$$

$$(x) = \begin{cases} -2\chi & \chi = 0 \end{cases}$$

$$(x) = \begin{cases} -2\chi$$

L.H.D \ddagger R.H.D. Lim f'(n) \ddagger Rim f'(n) $\chi \rightarrow \alpha^{-1}$ $\chi \rightarrow \alpha^{-1}$ L.H.L.f'(n) \ddagger R.H.L.f'(n)

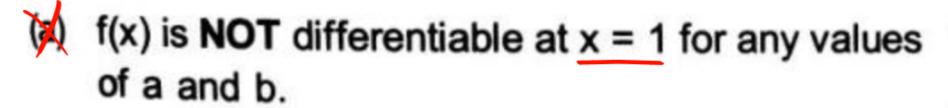
Dedicated batches available on ADDA247 App, Use offer code Y657

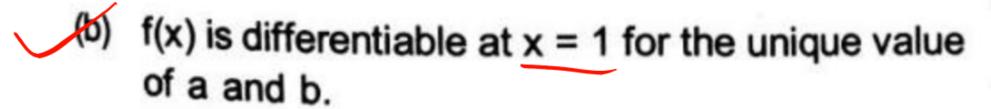
Q:36 The tangent to the curve represented by y = x In x is required to have 45° inclination with the x-axis. The coordinates of the tangent point would be

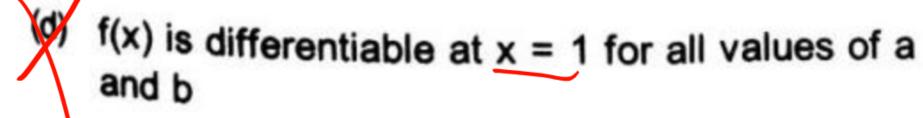
(d)
$$(\sqrt{2}, \sqrt{2})$$

(d)
$$(\sqrt{2}, \sqrt{2})$$
 slope of tangential $\frac{dy}{dx} = m = tan 0$

$$x \cdot \frac{1}{x} + \ln x = \tan 45^{\circ}$$
 $1 + \ln x = 1$
 $\lim_{x \to 0} |x| = 1 + \ln x = 0$
 $\lim_{x \to 0} |x| = 1 + \ln x = 0$
 $\lim_{x \to 0} |x| = 1 + \ln x = 0$
 $\lim_{x \to 0} |x| = 1 + \ln x = 0$


$$= |x| = |x| = |x| = 0$$
 $= |x| = 0$


Dedicated batches available on ADDA247 App, Use offer code Y657


f(x) is defined function as

$$\begin{cases} e^{x}, & x < 1 \\ \ln x + ax^{2} + bx & x \ge 1 \end{cases}, \text{ where } x \in \mathbb{R}. \text{ Which one of the following statement is TRUE?}$$

f(x) is differentiable at x = 1 for all values of a and b such that a + b = e.

$$e^{x} = 1 + x + x^{2} + 2^{3$$

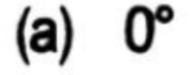
For I.H.D. to be equal to R.H.D.

1+29+ん= と
20+ん= と-1 ~②

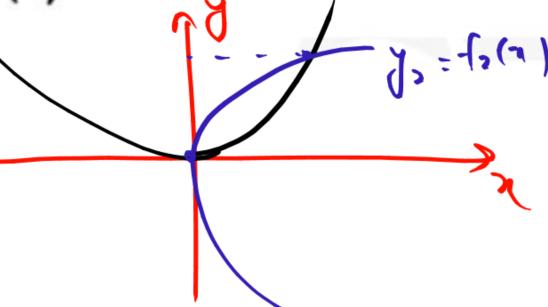
for function to differentiable at x-1 can O2 Q both must satisfy.

9+b-e-0 29+b-e-1-0

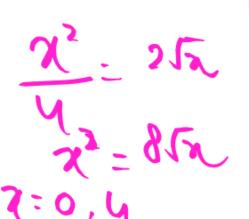
(2) -(0) => &= e+1


9,2,4 by = (2 9,2,4

Dedicated batches available on ADDA247 App, Use offer code Y657 Adda247



The angle of intersection of the curve $x^2 = 4y$ and y^2



$$J_1 = \frac{x^2}{4}$$

$$= J_2 = 2\sqrt{\pi}$$

$$\frac{dy_1}{dx} = \frac{x}{2} \Big|_{(0,0)} = 0 = m_1 = tand_1$$

$$\frac{dy_{1}}{dx}\Big|_{(0,0)} = \frac{1}{\sqrt{x}}\Big|_{(0,0)} = \infty = m_{x} = d\pi n 0 \times 2$$

$$9 = 9 c^{0}$$

$$9 = 9 c^{0}$$

$$9 = 9 c^{0}$$

$$1 = 9 c^{0}$$

$$1 = 9 c^{0}$$

$$1 = 9 c^{0}$$

$$1 = 9 c^{0}$$

$$2 = 9 c^{0}$$

$$2 = 9 c^{0}$$

$$3 = 9 c^{0}$$

$$4 = 9 c^{0}$$

$$4 = 9 c^{0}$$

$$4 = 9 c^{0}$$

$$4 = 9 c^{0}$$

$$5 = 9 c^{0}$$

$$6 = 9 c^{0}$$

$$6 = 9 c^{0}$$

$$6 = 9 c^{0}$$

$$6 = 9 c^{0}$$

$$7 = 9 c^{0}$$

$$1 = 9 c^{0}$$

$$1 = 9 c^{0}$$

$$1 = 9 c^{0}$$

$$2 = 9 c^{0}$$

$$3 = 9 c^{0}$$

$$4 = 9 c^{0}$$

$$4 = 9 c^{0}$$

$$5 = 9 c^{0}$$

$$6 = 9 c^{0}$$

$$7 = 9 c^{0}$$

$$1 = 9 c^{0$$

$$\frac{dy_1}{dx_1} = \frac{x_1}{2} = \frac{x_2}{(u,u)} = \frac{2 - m_1}{2 + m_1}$$
 $\frac{dy_1}{dx_2} = \frac{x_1}{2} = \frac{x_2}{(u,u)} = \frac{2 - m_1}{2 + m_1} = \frac{x_1}{2} = \frac{x_$

$$\frac{dy_{i}}{dz}\Big|_{(y,u)} = \frac{1}{5\kappa}\Big|_{(y,u)} = \frac{1}{2} = mz$$

$$0z = teni(z)$$

$$0z = teni(z)$$

$$0ngle of intersection = [0,0z] = [tani(z) - teni(z)]$$

THANKS FOR

Watching Adda 247

