

WELCOME TO Adda 247

Math is a journey, not a destination.

SUBSCRIBE NOW

Gate Adda247

YouTube Channel

GATE 2023 RESULT

-- Congratulations FROM ADDA 247 FAMILY

OU TUDE Classes Schedule (2)

EXAM TARGET	SUBJECT	TIME	FACULTY
ALL PSUs	ENGINEERING MATHS	10:00 AM	ANANT SIR
GATE 2024-25	METWORK THEORY	6:00 PM	RAVI SIR
GATE 2024-25	ELECTRICAL MACHINE	7:30 PM	SANTAN SIR
GATE 2024-25	COMMUNICATION	9:00 PM	RENU SIR

OU TUDE Classes Schedule (2)

EXAM TARGET	SUBJECT	TIME	FACULTY
ALL PSUs	ENGINEERING MATHS	10:00 AM	ANANT SIR
ALL PSUs	GEOTECHNICAL	1:00 PM	RUDRA SIR
GATE 2024-25	STEEL STRUCTURE	6.00 PM	REHAN SIR
GATE 2024-25	ENVIRONMENT	8:00 PM	PRATIK SIR
GATE 2024-25	SOM	9:00 PM	MUKESH SIR

OU TUDE Classes Schedule (2)

EXAM TARGET	SUBJECT	TIME	FACULTY
ALL PSUs	ENGINEERING MATHS	10:00 AM	ANANT SIR
ALL PSUs	PRODUCTION	11:30 PM	GAURAV SIR
ALL PSUs	THERMODYNAMICS	3:00 PM	KANISTH SIR
GATE 2024-25	HMT	4:30 PM	YOGESH SIR
GATE 2024-25	SOM	9:00 PM	MUKESH SIR

SUBSCRIBE NOW

Gate Adda247

YouTube Channel

GATE 2023 RESULT

Congratulations
FROM ADDA 247 FAMILY

FREE APP CLASS SCHEDULE

MECHANICAL ENGINEERING

Prachar

~	HMT	MONDAY Live @11AM	YOGESH SIR
'	PRODUCTION	TUESDAY Live @11AM	GAURAV SIR
	som	WEDNESDAY Live @8PM	MUKESH SIR
	THERMODYNAMICS	THURSDAY Live @11AM	KANISTH SIR
	ENGINEERING MATHEMATICS	FRIDAY Live @11AM	ANANT SIR

tree

FREE APP CLASS SCHEDULE

EE & ECEENGINEERING

NETWORK THEORY	SATURDAY Live @11AM	RAVI SIR
COMMUNICATION	WEDNESDAY Live @8PM	RENU SIR
ANALOG ELECTRONICS	THURSDAY Live @8PM	LAWRENCE SIR
ENGINEERING MATHEMATICS	FRIDAY Live @11AM	ANANT SIR
ELECTRICAL MACHINE	MONDAY Live @8PM	SANTAN SIR

FREE APP CLASS SCHEDULE

SOM	WEDNESDAY Live @8PM	MUKESH SIR
ENVIRONMENT	THURSDAY Live @8PM	PRATIK SIR
STEEL STRUCTURE	FRIDAY Live @8PM	REHAN SIR
GEOTECHNICAL	SATURDAY Live @11AM	RUDRA SIR
ENGINEERING MATHEMATICS	FRIDAY Live @11AM	ANANT SIR

Fore sersions

Premium Study Material

PP FEATURES

Download Now

Adda 247 APP

Q:39 Given the following statements about a function $f: R \to R$, select the right option:

P: If f(x) is continuous at $x = x_0$, then it is differential at $x = x_0$.

Q: If f(x) is continuous at $x = x_0$, then it may not be differentiable at $x = x_0$.

R: If f(x) is differentiable at $x=x_0$, then it is also continuous at $x=x_0$

Q:40 The function $f(x) = x \sin x$ satisfies the following equation: f''(x) + f(x) + f(x)t cosx = 0. The value of t is

$$f'(x) + f(x) + t(cosx = 0)$$

$$f(x) = x sinx$$

$$f'(x) = x cosx + sinx$$

$$f''(x) = -x sinx + cosx + cosx = -x sinx + 2 cosx$$

$$-x sinx + 2 cosx + x sinx + t cosx = 0$$

$$+ (cosx = -2 cosx + 3) = 1$$

- Q:41 If a function is continuous at a point,
 - (a) the limit of the function may not exist at the point.
 - (b) the function must be derivable at the point.
 - (c) the limit of the function at the point tends to infinity.
 - (d) the limit must exist at the point and the value of limit should be same as the value of the function at that point.

Q:42 Consider the function f(x) = |x| in the interval $-1 < x \le 1$. At the point x

$$= 0$$
, $f(x)$ is

- (a) continuous and differentiable
 - (b) non continuous and differentiable
 - e) continuous and non-differentiable
 - (d) neither continuous nor differentiable

$$| Imp f(x) - | x | - | x | 0 \le x < 1$$

$$| LH \cdot L - | x | - | x | - | x < 0$$

$$| LH \cdot L - | x | f(x) - 0 | f(x) = 0$$

$$| R \cdot H \cdot L - | x | f(x) = 0$$

$$| R \cdot H \cdot L - | x | f(x) = 0$$

$$| R \cdot H \cdot L - | x | f(x) = 0$$

Q:43 What should be the value of λ such that the function defined below is

continuous at $x = \pi/2$?

$$f(x) = \begin{cases} \frac{\lambda \cos x}{\frac{\pi}{2} - x} & \text{if } x \neq \pi/2\\ \frac{\pi}{2} - x & \text{if } x = \pi/2 \end{cases}$$

(b) $2/\pi$

(d) $\pi/2$

continuous at
$$x = \pi/2$$
?

$$f(x) = \begin{cases} \frac{\lambda \cos x}{\frac{\pi}{2} - x} & \text{if } x \neq \pi/2 \\ 1 & \text{if } x = \pi/2 \end{cases}$$

$$\begin{cases} f(x) = \begin{cases} \frac{\lambda \cos x}{\frac{\pi}{2} - x} & \text{if } x \neq \pi/2 \\ 1 & \text{if } x = \pi/2 \end{cases}$$

$$\begin{cases} f(x) = \begin{cases} \frac{\lambda \cos x}{\frac{\pi}{2} - x} & \text{if } x \neq \pi/2 \\ 1 & \text{if } x = \pi/2 \end{cases}$$

$$\begin{cases} f(x) = \begin{cases} \frac{\lambda \cos x}{\frac{\pi}{2} - x} & \text{if } x \neq \pi/2 \\ 1 & \text{if } x = \pi/2 \end{cases}$$

$$\begin{cases} f(x) = \begin{cases} \frac{\lambda \cos x}{\frac{\pi}{2} - x} & \text{if } x \neq \pi/2 \\ 1 & \text{if } x = \pi/2 \end{cases}$$

$$\begin{cases} f(x) = \begin{cases} \frac{\lambda \cos x}{\frac{\pi}{2} - x} & \text{if } x \neq \pi/2 \\ 1 & \text{if } x = \pi/2 \end{cases}$$

$$\begin{cases} f(x) = \begin{cases} \frac{\lambda \cos x}{\frac{\pi}{2} - x} & \text{if } x \neq \pi/2 \\ 1 & \text{if } x = \pi/2 \end{cases}$$

$$\begin{cases} f(x) = \begin{cases} \frac{\lambda \cos x}{\frac{\pi}{2} - x} & \text{if } x \neq \pi/2 \\ 1 & \text{if } x = \pi/2 \end{cases}$$

$$\begin{cases} f(x) = \begin{cases} \frac{\lambda \cos x}{\frac{\pi}{2} - x} & \text{if } x \neq \pi/2 \\ 1 & \text{if } x = \pi/2 \end{cases}$$

$$\begin{cases} f(x) = \begin{cases} \frac{\lambda \cos x}{\frac{\pi}{2} - x} & \text{if } x \neq \pi/2 \\ 1 & \text{if } x = \pi/2 \end{cases} \end{cases}$$

$$\begin{cases} f(x) = \begin{cases} \frac{\lambda \cos x}{\frac{\pi}{2} - x} & \text{if } x \neq \pi/2 \\ 1 & \text{if } x = \pi/2 \end{cases} \end{cases}$$

$$\begin{cases} f(x) = \begin{cases} \frac{\lambda \cos x}{\frac{\pi}{2} - x} & \text{if } x \neq \pi/2 \\ 1 & \text{if } x = \pi/2 \end{cases} \end{cases}$$

$$\begin{cases} f(x) = \begin{cases} \frac{\lambda \cos x}{\frac{\pi}{2} - x} & \text{if } x \neq \pi/2 \end{cases} \end{cases}$$

$$\begin{cases} f(x) = \begin{cases} \frac{\lambda \cos x}{\frac{\pi}{2} - x} & \text{if } x \neq \pi/2 \end{cases} \end{cases}$$

$$\begin{cases} f(x) = \begin{cases} \frac{\lambda \cos x}{\frac{\pi}{2} - x} & \text{if } x \neq \pi/2 \end{cases} \end{cases}$$

$$\begin{cases} f(x) = \begin{cases} \frac{\lambda \cos x}{\frac{\pi}{2} - x} & \text{if } x \neq \pi/2 \end{cases} \end{cases}$$

$$\begin{cases} f(x) = \begin{cases} \frac{\lambda \cos x}{\frac{\pi}{2} - x} & \text{if } x \neq \pi/2 \end{cases} \end{cases}$$

$$\begin{cases} f(x) = \begin{cases} \frac{\lambda \cos x}{\frac{\pi}{2} - x} & \text{if } x \neq \pi/2 \end{cases} \end{cases}$$

$$\begin{cases} f(x) = \begin{cases} \frac{\lambda \cos x}{\frac{\pi}{2} - x} & \text{if } x \neq \pi/2 \end{cases} \end{cases}$$

$$\begin{cases} f(x) = \begin{cases} \frac{\lambda \cos x}{\frac{\pi}{2} - x} & \text{if } x \neq \pi/2 \end{cases} \end{cases}$$

$$\begin{cases} f(x) = \begin{cases} \frac{\lambda \cos x}{\frac{\pi}{2} - x} & \text{if } x \neq \pi/2 \end{cases} \end{cases}$$

$$\begin{cases} f(x) = \begin{cases} \frac{\lambda \cos x}{\frac{\pi}{2} - x} & \text{if } x \neq \pi/2 \end{cases} \end{cases}$$

$$\begin{cases} f(x) = \begin{cases} \frac{\lambda \cos x}{\frac{\pi}{2} - x} & \text{if } x \neq \pi/2 \end{cases} \end{cases}$$

$$\begin{cases} f(x) = \begin{cases} \frac{\lambda \cos x}{\frac{\pi}{2} - x} & \text{if } x \neq \pi/2 \end{cases} \end{cases}$$

$$\begin{cases} f(x) = \begin{cases} \frac{\lambda \cos x}{\frac{\pi}{2} - x} & \text{if } x \neq \pi/2 \end{cases} \end{cases}$$

$$\begin{cases} f(x) = \begin{cases} \frac{\lambda \cos x}{\frac{\pi}{2} - x} & \text{if } x \neq \pi/2 \end{cases} \end{cases}$$

$$\begin{cases} f(x) = \begin{cases} \frac{\lambda \cos x}{\frac{\pi}{2} - x} & \text{if } x \neq \pi/2 \end{cases} \end{cases}$$

$$\begin{cases} f(x) = \begin{cases} \frac{\lambda \cos x}{\frac{\pi}{2} - x} & \text{if } x \neq \pi/2 \end{cases} \end{cases}$$

$$\begin{cases} f(x) = \begin{cases} \frac{\lambda \cos x}{\frac{\pi}{2} - x} & \text{if } x \neq \pi/2 \end{cases} \end{cases}$$

- Q:44 The function y = |2 3x| (2-3x) $|2-3x| \ge 0 \Rightarrow x \le \frac{2}{3}$ (a) is continuous $\forall x \in \mathbb{R}$ and differentiable $\forall x \in \mathbb{R}$

 - (b) is continuous $\forall x \in \mathbb{R}$ and differentiable $\forall x \in \mathbb{R}$ except at x = 3/2
 - (c) is continuous $\forall x \in R$ and differentiable $\forall x \in R$ except at x = 2/3

is continuous $\forall x \in R$ except x = 3 and differentiable $\forall x \in R$

The secontinuous
$$\forall x \in \mathbb{R}$$
 except $x = 3$ and differentiable $\forall x \in \mathbb{R}$

for $x \neq \frac{2}{3}$ as $f(x)$ is algebraic polynomial so $f(x)$.

Continuous $\forall x \in \mathbb{R}$ except $x = 3$ and differentiable $\forall x \in \mathbb{R}$

Continuous $\forall x \in \mathbb{R}$ except $x = 3$ and differentiable $\forall x \in \mathbb{R}$

Continuous $\forall x \in \mathbb{R}$ except $x = 3$ and differentiable $\forall x \in \mathbb{R}$

Continuous $\forall x \in \mathbb{R}$ except $x = 3$ and differentiable $\forall x \in \mathbb{R}$

Continuous $\forall x \in \mathbb{R}$ except $x = 3$ and differentiable $\forall x \in \mathbb{R}$

Continuous $\forall x \in \mathbb{R}$ except $x = 3$ and differentiable $\forall x \in \mathbb{R}$

Continuous $\forall x \in \mathbb{R}$ except $x = 3$ and differentiable $\forall x \in \mathbb{R}$

Continuous $\forall x \in \mathbb{R}$ except $x = 3$ and differentiable $\forall x \in \mathbb{R}$

Continuous $\forall x \in \mathbb{R}$ except $x = 3$ and differentiable $\forall x \in \mathbb{R}$

Continuous $\forall x \in \mathbb{R}$ except $x = 3$ and differentiable $\forall x \in \mathbb{R}$

Continuous $\forall x \in \mathbb{R}$ except $x = 3$ and differentiable $\forall x \in \mathbb{R}$

Continuous $\forall x \in \mathbb{R}$ except $x = 3$ and differentiable $\forall x \in \mathbb{R}$

Continuous \forall

R.H.D. =
$$\lim_{\lambda \to \infty} f(x) = +3$$

L.H.D. $f(x)$

Q:45 Consider the function $f(x) = |x^3|$, where x is real. then the function f(x) at x = 0 is

- (a) continuous but not differentiable
- once differentiable but not twice
- (c) twice differentiable but not thrice

then the function
$$f(x)$$
 at $x = 0$ is

(a) continuous but not differentiable

(b) once differentiable but not twice

(c) twice differentiable but not thrice

(d) three differentiable

(e) three differentiable

(f) $f'(x) = 0$

(g) $f''(x) = 0$

(h) $f''(x) = 0$

Q:46 Which one of the following functions is continuous at x = 3?

$$\int_{X} f(x) = \begin{cases}
2, & \text{if } x = 3 \\
x - 1, & \text{if } x > 3
\end{cases}$$

$$\int_{X} f(x = 3) - 2$$

$$\int_{X} f(x = 3) - 3$$

$$\int_$$

(b)
$$f(x) = \begin{cases} 4, & \text{if } x = 3 \\ 8-x & \text{if } x \neq 3 \end{cases}$$

 $f(x=3) = 4$
L.H.L. = $8-3=5$

(d)
$$f(x) = \frac{1}{x^3 - 27}$$
, if $x \neq 3$
function is not defined at $x = 3$
—9 Not - Continuous

Q:47 The values of x for which the function $f(x) = \frac{x^2 - 3x - 4}{x^2 + 3x - 4}$ is NOT continuous are

- (a) 4 and -1
- (b) 4 and 1

$$\chi^{2} + 3\chi - 4 = 0$$

$$\chi^{2} + 4\chi - \chi - 4 = 0$$

$$(\chi + 4)(\chi - 1) = 0$$

$$\chi = -4, 1$$

$$\chi = -3 \pm \sqrt{9 + 16} = -3 \pm \sqrt{24}$$

$$2 = -1, -4$$

While minimizing the function f(x), necessary and sufficient conditions for a point x_0 to be minima are

(a)
$$f'(x_0) > 0$$
 and $f''(x_0) = 0$

(b)
$$f'(x_0) < 0$$
 and $f''(x_0) = 0$

(c)
$$f'(x_0) = 0$$
 and $f''(x_0) < 0$

(d)
$$f'(x_0) = 0$$
 and $f''(x_0) > 0$

- Q:49At x = 0, the function f(x) = |x| has -
 - (a) a minimum
 - (b) a maximum
 - (c) a point of inflection
 - (d) neither a maximum nor minimum

- O:50 The function $f(x) = 2x x^2 + 3$ has -
 - (a) a maxima at x = 1 and a minima at x = 5
 - (b) a maxima at x = 1 and a minima at x = -5
 - (c) only a maxima at x = 1
 - (d) only a minima at x = 1

Q:51

If the sum of the diagonal elements of a 2×2 symmetric matrix is - 6, then the maximum possible value of determinant of the matrix is

THANKS FOR

Watching Adda 247

