Adda 247

WELCOME TO Adda 2417

ALWAYS DO
YOUR BEST,
WHAT YOU
PLANT NOW
YOU WILL
HARVEST LATER

SUBSCRIBE NOW

Gate Adda247

YouTube Channel

GATE 2023 RESULT

Congratulations FROM ADDA 247 FAMILY

258

Download Now

Adda 247 APP

APP FEATURES

FREE APP CLASS SCHEDULE

MECHANICAL ENGINEERING

нмт	MONDAY Live @11AM	YOGESH SIR	
PRODUCTION	TUESDAY Live @11AM	GAURAV SIR	NEAT & NORK
SOM	WEDNESDAY Live @8PM	MUKESH SIR	A
THERMODYNAMICS	THURSDAY Live @11AM	KANISTH SIR	3MRS
ENGINEERING MATHEMATICS	FRIDAY Live @11AM	ANANT SIR	

ISRO | BHEL | DRDO & OTHER PSUs

Thermodynamics

Thermodynamic Relations

MOST EXPECTED QUESTIONS

PART-1

The throttling of certain gases may be used for getting the refrigeration effect. The value of Joule-Thomson coefficient (µ) for such a throttling process is

(a)
$$\mu = 0$$

(b)
$$\mu = 1$$

(c)
$$\mu < 1$$

(d)
$$\mu > 1$$

[ESE: 2007]

Which one of the following statements is correct?

- (a) Compressibility factor is unity for ideal gases
- (b) Compressibility factor is zero for ideal gases
- (c) Compressibility factor is lesser than unity for ideal gases
- (d) Compressibility factor is more than unity for ideal gases. [ESE: 2007]

Which thermodynamic property is evaluated with the help of Maxwell equations from the data of other measurable properties of a system?

(a) Enthalpy

(b) Entropy

(c) Latent heat

(d) Specific heat

[ESE: 2007]

Which one of the following relationships defines the Helmholtz function F?

(a)
$$F = H + TS$$

(b)
$$F = H - TS$$

(c)
$$F = U - TS$$

(d)
$$F = U + TV$$

[ESE: 2007]

At eritical point the enthalpy of vaporization is

(a) dependent on temperature only

(b) maximum

(c) minimum

(d) zero/

[ESE: 2008]

When a system reaches the state of equilibrium, the following property assumes its maximum value

[ESE: 2012]

- (a) Availability
- (b) Entropy
- (c) Gibbs function
- (d) Helmholtz function

6)0b

When a real gas undergoes Joule-Thomson expansion the temperature

- (a) may remain constant
- (b) always increases
- (c) may increases or decreases
- (d) always decreases

[ESE: 2007]
(P,T)

In a real gas equation pv = zRT, depending on the values of pressure and temperature of the real gas, the value of z

- (a) Should always be less than 1
- (b) May be less than 1, may be greater than 1 or equal to 1
- (c) Should always be greater than 1
- (d) Should always be equal to 1 [ESE: 2014]

Match List I with List II and select the correct answer:

a) 4, 2, 3, 1

List-I

- A. Joule Thomson coefficient -
- B. C_p for monoatomic gas
- C. $C_p C_v$ for diatomic gas
- D. (∂U/∂T)_V
- 1. 5/2 R
- 2. C
- 3. R
- 4. (∂T/∂p),

Codes:

- ABC
- (a) 3 2 4
- (b) 4 1 3 2
- (c) 3 1 4 2
- (d) 4 2 3 1

CSE-PRE

If h, p, T and v refer to enthalpy, pressure, temperature and specific volume respectively; and subscripts g and f refer to saturation conditions of vapour and liquid respectively, then Clausius-Clapeyron equation applied to change of phase from liquid to vapour states is

(a)
$$\frac{dp}{dt} = \frac{(h_g - h_f)}{(v_g - v_f)}$$
 (b) $\frac{dp}{dt} = \frac{(h_g - h_f)}{T(v_g - v_f)}$

(c)
$$\frac{dp}{dt} = \frac{(h_g - h_f)}{T}$$
 (d) $\frac{dp}{dt} = \frac{(h_g - h_f)T}{(h_g - h_f)}$

RKS

Which combination of the following statements is correct? [2 Marks]

- P. A gas cools upon expansion only when its Joule-Thomson coefficient is positive in the temperature range of expansion
- Q. For a system undergoing a process, its entropy remains constant only when the process is reversible
- R. The work done by a closed system in an adiabatic is a point function
- S. A liquid expands upon freezing when the slope of its fusion curve on pressure temperature diagram is negative
- (A) R and S

(B) P and Q

(C) Q, R and S

(D) P, Q and R

For a simple compressible system v, s, p and T are specific volume, specific entropy, pressure and temperature respectively. As per Max-wells relations

$$\left(\frac{\partial v}{\partial s}\right)_{P}$$
 is equal to

[1 Mark]

$$(A) \left(\frac{\partial p}{\partial v} \right)_T$$

(B)
$$\left(\frac{\partial T}{\partial p}\right)$$

$$(C)\left(\frac{\partial s}{\partial T}\right)_{p}$$

(D)
$$-\left(\frac{\partial T}{\partial v}\right)_p$$

$$(\frac{\partial V}{\partial s})_{p} = (\frac{\partial T}{\partial p})_{s}$$

$$(\frac{\partial V}{\partial s})_{p} = (\frac{\partial T}{\partial p})_{s}$$

For a gas, pressure p, volume v and temperature T are dependent on each other. Then which one of the following p - v - T relationship will be obeyed?

(a)
$$\left(\frac{\partial p}{\partial T}\right)_{V} \left(\frac{\partial V}{\partial T}\right)_{p} \left(\frac{\partial V}{\partial p}\right)_{T} = -1$$

(b)
$$\left(\frac{\partial p}{\partial T}\right)_{v} \left(\frac{\partial T}{\partial v}\right)_{p} \left(\frac{\partial v}{\partial p}\right)_{T} = -1$$

(c)
$$\left(\frac{\partial p}{\partial T}\right)_{V} \left(\frac{\partial V}{\partial T}\right)_{p} \left(\frac{\partial p}{\partial V}\right)_{T} = -1$$

(d)
$$\left(\frac{\partial p}{\partial T}\right)_{v} = \left(\frac{\partial T}{\partial v}\right)_{p} \left(\frac{\partial p}{\partial v}\right)_{T}$$

$$\left(\frac{\partial x}{\partial y}\right) \left(\frac{\partial y}{\partial z}\right) \left(\frac{\partial z}{\partial x}\right) = -1$$

$$x \rightarrow P \qquad \left(\frac{\partial P}{\partial y}\right) \left(\frac{\partial P}{\partial y}\right) \left(\frac{\partial T}{\partial p}\right) = -1$$

$$z \rightarrow T \qquad \left(\frac{\partial V}{\partial p}\right) \left(\frac{\partial T}{\partial p}\right) \left(\frac{\partial P}{\partial p}\right) = -1$$

Which of the following thermodynamic properties relate to the Clausius-Clapeyron equation?

- Pressure
- Temperature
- Entropy
- Specific volume
- Enthalpy
- Internal energy

Select the correct answer using the code given below:

- (a) 1, 2, 6, 5
- (b) 4, 2, 3, 5

(c) 6, 4, 1

d 4, 5, 2, 1

For water at 25°C,

$$\frac{dp_S}{dT_S} = 0.189 \text{ kPa/K}$$

(p_s is the saturation pressure in kPa and $T_{\rm s}$ is the saturation temperature in K) and the specific volume of dry saturated vapour is 43.38 m³/kg. Assume that the specific volume of liquid is negligible in comparison with that of vapour. Using the Clausius-Clapeyron equation, an estimate of the enthalpy of evaporation of water at 25°C (in kJ/kg) [1 Mark]

$$\frac{dP}{dT} = \frac{hfg}{T(vg-yf)}$$

$$hfg = \left(\frac{dP}{dT}\right) \times P \times Vg$$

$$\Rightarrow 0.189 \times (298)(43.38)$$

$$\Rightarrow 0$$

The INCORRECT statement about the characteristics of critical point of a pure substance is that [1 Mark]

- (A) There is no constant temperature vaporization process
- (B) It has point of inflection with zero slope
- (C) The ice directly converts from solid phase to vapor phase
- (D) Saturated liquid and saturated vapor states are identical

Which one of the following statements is correct for a superheated vapour?

[1 Mark]

- (A) Its pressure is less than the saturation pressure at a given temperature.)
- (B) Its temperature is less than the saturation temperature at a given pressure.
- (C) Its volume is less than the volume of the saturated vapour at a given temperature.
- (D) Its enthalpy is less than enthalpy of the saturated vapour at a given / pressure.

Which one of the following is the correct statement? Clapeyron equation is used for

- (a) finding specific volume of vapour
- (b) finding specific volume of liquid
- (c) finding latent heat of vaporization
- (d) finding sensible heat

Gate Adda247

YouTube Channel

GATE 2023 RESULT

Congratulations FROM ADDA 247 FAMILY

258

