

WELCOME TO Adda 247

"There is nothing impossible to they who will try."

SUBSCRIBE NOW

Gate Adda247

YouTube Channel

GATE 2023 RESULT

-- Congratulations FROM ADDA 247 FAMILY

OU TUDE Classes Schedule (2)

EXAM TARGET	SUBJECT	TIME	FACULTY
ALL PSUs	ENGINEERING MATHS	10:00 AM	ANANT SIR
ALL PSUs	PRODUCTION	11:30 AM	GAURAV SIR
ALL PSUs	THERMODYNAMICS	3:00 PM	KANISTH SIR
GATE 2024-25	HMT	4:30 PM	YOGESH SIR
GATE 2024-25	SOM	9:00 PM	MUKESH SIR

FREE APP CLASS SCHEDULE

MECHANICAL ENGINEERING

нмт	MONDAY Live @11AM	YOGESH SIR
PRODUCTION	TUESDAY Live @11AM	GAURAV SIR
som	WEDNESDAY Live @8PM	MUKESH SIR
THERMODYNAMICS	THURSDAY Live @11AM	KANISTH SIR
ENGINEERING MATHEMATICS	FRIDAY Live @11AM	ANANT SIR

69)

Which of the following statements is correct?

- (a) Iron-carbon and TTT diagrams are both equilibrium diagrams.
- (b) Iron-carbon and TTT diagrams are both non-equilibrium diagrams.
- (c) Iron-carbon diagram is an equilibrium diagram but TTT diagram is a non-equilibrium diagram
- (d) Iron carbon diagram is a non-equilibrium diagram but TTT diagram is an equilibrium diagram.

Consider the following statements:

- Heat treatment is effective only in case of certain alloys.
- Cooling rate is an important factor in any heat treatment process.
- The temperature at which the change starts on heating the steel is called lower critical temperature.

Which of the above statements are correct?

- (a) 1 and 2 only (b) 2 and 3 only
- (c) 1 and 3 only (d) 1, 2 and 3

At room temperature, α-iron contains negligible amount of carbon, cementite contains 6.67% C and pearlite contains 0.8% C. Pearlite contains how much cementite?

(a) 8%

b) 10%

(c) 12%

(d) 14%

When steel containing less than 0.85% carbon is cooled slowly below the lower critical point, it contains

- (a) Ferrite mainly
- (b) Pearlite mainly
- (e) Ferrite and pearlite > < + + = 3 <
 - (d) Pearlite and cementite

The correct order of cooling media for decreasing cooling rate is:

- (a) Air, Water, Oil and Fused salt
- (b) Water, Air, Fused salt and OW
- (c) Oil, Fused salt, Air and Water
- (d) Water, Oil, Fused salt and Air

Case Hardening

Surface Hardening

* cynading

* Nitriding

Which of the following case hardening processes, result in a change in the composition in a steel component?

Carburizing

Cyaniding

Nitriding

- Flame hardening
- (a) 2, 3 and 4 only
- (b) 1, 3 and 4 only
- (c) 1, 2 and 3 only
- (d) 1, 2, 3 and 4

Cooling Media

(Quenching Media)

Cooling order

X Brine > 140 > 0il > Air
Solution > 150 > 0il > Air

Consider the following:

Water

Brine solution 4. Oi

Which of these is/are used as quenching media in case of Alloy steels?

(a) 1, 2 and 3 only

(b) 2, 3 and 4 only

(c) 1 and 4 only

(d) 4 only

Match List-I (Quenching media) with List-II (Structure produced) and select the correct answer using the code given below the lists:

List-I

- Water
- C. Air
 - List-II
- Coarse pearlite
- Very fine pearlite

Code:

- Oil
- Furnace cool
- Martensite
- Fine pearlite

Annealing
(Furnace cooling)

** Ductility

** Machinability

** Toughness

** * coarse Pearlite

Isothermal annealing is mainly used in alloy steels to improve.

- (a) Machinability
 - (c) Ductility

- (b) Toughness
- (d) Weldability

* Hardness /

* Strength / 60 * Isothermal Annealing

Machinibility)

* Tempering

Martensite at lower Critical temperature Tempering is a process of annealing

- (a) martensite at low temperatures
 - (b) martensite at higher temperatures
 - (c) bainite at low temperatures
 - (d) bainite at higher temperatures

* Austempering > Bainite Structure formed

Which one of the following is the process to refine the grains of metal after it has been distorted by hammering or cold working?

(a) Annealing

- (b) Softening
- (c) Recrystallizing

(d) Normalizing

Match List-I (Effect of Cooling) with List-II (Cooling Medium) and select the correct answer using the codes given below the lists:

usii	ng the	e coa	es gi	ven	beic	w the lists;		
	List-I					List-II		
A.	Mart	ensite	e <u></u>		1.	Water quenched		
В.	Very fine pearlite 2.				Air cooled			
C.	Fine pearlite 3.				Furnace cooled			
D.	Coarse pearlite 4.				Oil quenched			
Co	des:							
	A	В	C	D				
(a)	1	4	2	3				
(b)	2	3	1	4				
(c)	2	3	4	1				
(d)	1	2	3	4				

0.008/c

The eutectoid of carbon in iron, above lower critical temperature, when cooled, results in

- (a) Ferrite and austenite
- (b) Ferrite and cementite
- (c) Cementite and austenite
- (d) Ferrite, cementite and austenite

Austempering is employed to obtain

- (a) 100% martensitic structure
- (b) 100% bainitic structure
- (c) 50% martensitic and 50% bainitic structure
- (d) 100% peaerlitic structure

T.T.T. diagram indicates time and temperature transformation of

Full Annealing

W

Ductility

Spheroidizing => Machinibility

Consider the following pairs:

Heat treatment

Effects on medium carbon steel

- 2. Full annealing -: Uniform grain structure
- 3. Martempering _____ Decreased ductility
- Spheroidizing —— Maximum softness

Which of the pairs given above are correctly matched?

(a) 1 and 2

(b) 2 and 3

(c) 3 and 4

(d) 1, 2, 3 and 4

Machine Tool Guideways

OR

Machine Tool Bed > C.I

I lame Hardening (New)

Machines tool guideways are usually hardness by

- (a) vacuum hardening
- (b) martempering
- (c) induction hardening
- (d) flame hardening

Match List-I (Heat treatment) with List-II (Effect on the properties) and select the correct answer using the codes given below

List-I

- A. Annealing
- B. Nitriding
- C. Martempering
- D. Normalising

List-II

- Refined grain structure
- 2. Improves the hardness of the whole mass
- Increases surface hardness
- 4. Improves ductility

Codes:

	A	В	C	D
(a)	4	3	2	1
(b)	1	3	4	2
(c)	4	2	1	3
(d)	2	1	3	4

APP FEATURES

Download Now

Adda 247 APP

Singh. gaurov & Adda 347 Study Material

