JUNIOR ENGINEERS (ELECTRICAL) EXAMINATION

Indicative Syllabus

The standard of the questions in Engineering subjects will be approximately of the level of Diploma in Engineering (Electrical) from a recognized Institute, Board or University recognized by All India Board of Technical Education. All the questions will be set in SI units. The details of the syllabus are given below:

Section-I

- 1. <u>General Intelligence & Reasoning:</u> The Syllabus for General Intelligence would include questions of both verbal and non-verbal type. The test may include questions on analogies, similarities, differences, space visualization, problem solving, analysis, judgement, decision making, visual memory, discrimination, observation, relationship concepts, arithmetical reasoning, verbal and figure classification, arithmetical number series etc. The test will also include questions designed to test the candidate's abilities to deal with abstract ideas and symbols and their relationships, arithmetical computations and other analytical functions.
- 2. <u>General Awareness:</u> Questions will be aimed at testing the candidate's general awareness of the environment around him/her and its application to society. Questions will also be designed to test knowledge of current events and of such matters of everyday observations and experience in their scientific aspect as may be expected of any educated person. The test will also include questions relating to India and its neighbouring countries especially pertaining to History, Culture, Geography, Economic Scene, General Polity and Scientific Research, etc. These questions will be such that they do not require a special study of any discipline.

Section-II: Electrical Engineering

<u>Basic concepts</u>: Concepts of resistance, inductance, capacitance, and various factors affecting them. Concepts of current, voltage, power, energy and their units.

<u>Circuit law</u>: Kirchhoff's law, Simple Circuit solution using network theorems.

<u>Magnetic Circuit</u>: Concepts of flux, mmf, reluctance, Different kinds of magnetic materials, Magnetic calculations for conductors of different configuration e.g. straight, circular, solenoidal, etc. Electromagnetic induction, self and mutual induction.

<u>AC Fundamentals</u>: Instantaneous, peak, R.M.S. and average values of alternating waves, Representation of sinusoidal wave form, simple series and parallel AC Circuits consisting of R.L. and C, Resonance, Tank Circuit. Poly Phase system – star and delta connection, 3 phase power, DC and sinusoidal response of R-Land R-C circuit.

<u>Measurement and measuring instruments</u>: Measurement of power (1 phase and 3 phase, both active and re-active) and energy, 2 wattmeter method of 3 phase power measurement. Measurement of frequency and phase angle. Ammeter and voltmeter (both moving oil and moving iron type), extension of range wattmeter, Multimeters, Megger, Energy meter AC

Bridges. Use of CRO, Signal Generator, CT, PT and their uses. Earth Fault detection.

<u>Electrical Machines</u>: (a) D.C. Machine – Construction, Basic Principles of D.C. motors and generators, their characteristics, speed control and starting of D.C. Motors. Method of braking motor, Losses and efficiency of D.C. Machines. (b) 1 phase and 3 phase transformers – Construction, Principles of operation, equivalent circuit, voltage regulation, O.C. and S.C. Tests, Losses and efficiency. Effect of voltage, frequency and wave form on losses. Parallel operation of 1 phase /3 phase transformers. Auto transformers. (c) 3 phase induction motors, rotating magnetic field, principle of operation, equivalent circuit, torque-speed characteristics, starting and speed control of 3 phase induction motors. Methods of braking, effect of voltage and frequency variation on torque speed characteristics.

Fractional Kilowatt Motors and Single Phase Induction Motors: Characteristics and applications.

<u>Synchronous Machines</u> - Generation of 3-phase e.m.f. armature reaction, voltage regulation, parallel operation of two alternators, synchronizing, control of active and reactive power. Starting and applications of synchronous motors.

<u>Generation, Transmission and Distribution</u> – Different types of power stations, Load factor, diversity factor, demand factor, cost of generation, inter-connection of power stations. Power factor improvement, various types of tariffs, types of faults, short circuit current for symmetrical faults. Switchgears – rating of circuit breakers, Principles of arc extinction by oil and air, H.R.C. Fuses, Protection against earth leakage / over current, etc. Buchholtz relay, Merz-Price system of protection of generators & transformers, protection of feeders and bus bars. Lightning arresters, various transmission and distribution system, comparison of conductor materials, efficiency of different system. Cable – Different type of cables, cable rating and derating factor.

<u>Estimation and costing</u>: Estimation of lighting scheme, electric installation of machines and relevant IE rules. Earthing practices and IE Rules.

<u>Utilization of Electrical Energy</u>: Illumination, Electric heating, Electric welding, Electroplating, Electric drives and motors.

<u>Basic Electronics</u>: Working of various electronic devices e.g. P N Junction diodes, Transistors (NPN and PNP type), BJT and JFET. Simple circuits using these devices.

<u>Properties of Matter – </u>

- Elasticity: definition of stress and strain, moduli of elasticity, Hooke's law, significance of stress-strain curve.
- Pressure: definition, units, atmospheric pressure, gauge pressure, absolute pressure, Fortin's Barometer and its applications.
- Surface tension: concept, units, cohesive and adhesive forces, angle of contact, applications of surface tension, effect of temperature and impurity on surface tension.
- Viscosity and coefficient of viscosity: Terminal velocity, Stoke's law and effect of temperature on viscosity, application in hydraulic systems.

Hydrodynamics

• Fluid motion, stream line and turbulent flow, Reynold's number, Equation of continuity, Bernoulli's Theorem and its applications.

Engineering Drawing:

- Introduction to orthographic projection, First angle and Third angle method, their symbols
- Conversion of pictorial view into Orthographic Views object containing plain surfaces, slanting surfaces, slots, ribs, cylindrical surfaces
- Introduction to isometric projections
- Conversion of orthographic views into isometric view /projection.