

UPPSC AE

Previous Year Paper Civil 2013 Paper 1

Test Prime

ALL EXAMS, ONE SUBSCRIPTION

40,000 + Mock Tests

500+ Exam Covered

Personalised Report Card

Previous Year Papers

Unlimited Re-Attempt

500% Refund

DOWNLOAD NOW

जब तक आपको यह परीक्षण पुस्तिका खोलने को न कहा जाए तब तक न खोलें।

सीरीज़ **В**ता

कोड : KNTCRA-53

1092650

क्रमांक:

2013

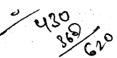
विषय: सिविल अभियान्त्रिकी, प्रश्न-पत्र -।

समय : 2 घण्टे		1 J F		15	पूर्णांक: 100
अपना अनुक्रमांक सामने बॉक्स के	अंकों में	¥ 2	2 /	-	
अन्दर लिखें	शब्दों में	A CONTRACTOR		-	4)

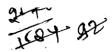
प्रश्नों के उत्तर के लिये केवल काले बॉल-प्याइंट पेन का प्रयोग करें।
अम्यर्थी उत्तर-पत्रक पर उत्तर देने से पहले सभी अनुदेशों को सावधानीपूर्वक पढ़ लें।
आपको अपने सभी उत्तर केवल उत्तर-पत्रक पर ही देने हैं। परीक्षा के उप रांत उत्तर -पत्रक निरीक्षक को सौंप दें।

महत्त्वपूर्ण अनुदेश

- 1. सभी प्रश्नों के उत्तर दें। सभी प्रश्नों के अंक समान हैं।
- 2. उत्तर-पत्रक पर अभ्यर्थी अपना अनुक्रमांक, विषय, प्रश्न-पत्र का सही कोड एवं सीरीज़ अंकित करें अन्यथा उत्तर-पत्रक का मूल्यांकन नहीं किया जाएगा और उसकी जिम्मेदारी स्वयं अभ्यर्थी की होगी।
- 3. इस परीक्षण पुस्तिका में 100 प्रश्न हैं। प्रत्येक प्रश्न के चार (4) वैकल्पिक उत्तर दिए गए हैं। अभ्यर्थी सही उत्तर निर्दिष्ट करते हुए उनमें से केवल एक गोले अथवा बबल को उत्तर-पत्रक पर काले बॉल-प्वाइंट पेन से पूरा गहरा कर दें। एक से अधिक उत्तर देने की दशा में प्रश्न के उत्तर को गलत माना जाएगा एवं उसे जाँचा नहीं जाएगा।
- 4. अनुक्रमांक के अलावा परीक्षण पुस्तिका के कवर पेज पर कुछ न तिखें। इसके अलावा परीक्षण पुस्तिका के अन्दर और कुछ न लिखें। यदि आप रफ़ कार्य करना चाहते हैं, तो आप निरीक्षक से वर्किंग शीट माँग लें व इस पर वांछित सूचनाएँ भर लें।
- 5. परीक्षण पुस्तिका खोलने के तुरन्त बाद जाँच करके देख लें कि परीक्षण पुस्तिका के सभी पेज भली-भाँति छपें हुए हैं। यदि परीक्षण पुस्तिका में कोई कमी हो, तो निरीक्षक को दिखाकर उसी सीरीज़ व कोड की दूसरी पुस्तिका प्राप्त कर लें।


जब तक आपको यह परीक्षण पुस्तिका खोलने को न कहा जाए तब तक न खोलें।

Note: English version of the instructions is **printed on** the back cover of this Booklet.


KNTCRA-53-B

CIVIL ENGINEERING

In a triaxial shear test a sample of c-φ soil

fails making an angle of α_c^o with horizontal,

then value of ϕ can be determined as

(46) (2) $(\alpha_c^{\circ} - 45^{\circ})$ (b) $(\alpha_c^{\circ} + 45^{\circ})$

 $(d) 2(45^{\circ} - \alpha_c^{\circ}) \qquad (d) 2 \alpha_c^{\circ}$

intensity is zero, is given by

- A soil sample with specific gravity of solids 2.70 has a mass specific gravity of 1.84. Assuming soil to be perfectly dry, the yold ratio of soil will be
 - (da) 0.47
- (b) 0.57
- (c) 0.28
- (d) 0.70
- The compactive energy used in IS 2. modified proctor test is _____ times the compactive energy used in case of IS standard proctor test.
 - (a) 4.56
- (c) 2.5
- Maximum permissible upward gradient 3. in a previous sand of porosity n = 45%, specific gravity $G_s = 2.65$ with a factor of safety 4 will be

- Which is not a method of obtaining e 1.65% sflownets?

- (a) Electrical flow analogy
- (b) Capillary flow analogy V
- Sand model
 - (d) Flow model /
- A silty soil of high compressibility is 5. represented by the symbol
 - (a) SM
- (c) OI

Series-B

Depth below the ground surface is c-ф 7. soil, where active earth pressure

(a)
$$\frac{2C\sqrt{K_A}}{\gamma}$$

$$\frac{2C\sqrt{K_A}}{\gamma} \qquad \text{(b) } \frac{2C\gamma}{\sqrt{K_A}}$$

$$\int \frac{1}{\gamma \sqrt{K_A}} \frac{2C}{\sqrt{K_A}}$$

(d)
$$\frac{2C\gamma}{K_A}$$

Where, γ is the effective unit weight of soil.

K_A = coefficient of active earth pressure by the soil.

For 6 m deep excavation in soft clay, 8. $\gamma = 18 \text{ kN/m}^3$, c = 26 kN/m², Taylor's stability number, $S_n = 0.172$, factor of safety (F_c) against sliding will be

- (b) 1.3
- (c) 1.4
- (d) 1.5

Given that Plasticity Index (PI) of local 9. soil is 15 and PI of sand is zero. For a desired PI of 6, the percentage of sand in the mix should be

- (a) 70
- (6) 60
- (c) 40
- (d) 30

सिविल अभियान्त्रिकी - ।

- एक मृदा के नमूने का विशिष्ट घनत्व 2.70 है एवं उसका मास विशिष्ट घनत्व (mass specific gravity) 1.84 है । मृदा को पूर्ण रूप से सूखा मानकर उसका रिक्त अनुपात होगा
 - (a) 0.47
- (b) 0.57
- (c) 0.28
- (d) 0.70
- जो संघनन ऊर्जा IS मॉडीफाइड प्राक्टर टेस्ट में 2. प्रयोग होती है वह IS स्टैन्डर्ड प्राक्टर टेस्ट में प्रयुक्त संघनन ऊर्जा का ____ गुना होती है।
 - (a) 4.56
- (b) 1.0
- (c) 2.5
- (d) 3.14
- एक छिद्रवान बालू जिसकी छिद्रता (porosity) 3. n = 45% और विशिष्ट घनत्व $G_s = 2.65$ है, में सुरक्षा गुणांक = 4 के साथ अधिकतम अनुमति योग्य ऊपर की और प्रवणता होगी
 - (a) 0.425
- (b) 0.225
- (c) 0.375
- (d) 0.275
- फ्लोनेट बनाने के लिए निम्न में से कौन विधि 4. नहीं है ?
 - (a) इलेक्ट्रिकल फ्लो एनालॉगी
 - (b) कैपिलरी फ्लो एनालॉगी
 - (c) सैन्ड माडल
 - (d) फ्लो माङ्ल
- एक उच्च कम्प्रेसिबिलिटी वाली सिल्ट मृदा को 5. निम्न प्रतीक द्वारा व्यक्त करते हैं :
 - (a) SM
- (b) ML
- (c) OI
- (d) MH

KNTCRA-53

172-

एक c-ф मृदा के सैम्पल में शीयर टेस्ट के दौरान वह क्षैतिज से ας का कोण बनाती हुई भंग होती है, तब 'φ' के मान की गणना निम्न होगी:

- (a) $2(\alpha_c^\circ 45^\circ)$ (b) $(\alpha_c^\circ + 45^\circ)$
- (c) $2(45^{\circ} \alpha_c^{\circ})$ (d) $2 \alpha_c^{\circ}$

किसी c-ф मृदा में जमीन की सतह के नीचे जहाँ 7. सक्रिय भूदाब तीव्रता शून्य है, उसकी गहराई निम्न द्वारा व्यक्त की जाती है :

जहाँ, γ = मृदा का प्रभावी यूनिट भार K_A = सक्रिय भूदाब गुणांक

नरम चिकनी मिट्टी में 6 m गहरी खुदाई में 8. $\gamma = 18 \text{ kN/m}^3$, c = 26 kN/m², ਟੇਕਾਂ स्टेबिलिटी संख्या $S_n = 0.172$, sliding से बचाने के लिए सुरक्षा गुणांक होगा

- (a) 1.2
- (b) 1.3
- (c) 1.4
- (d) 1.5

एक स्थानीय मृदा का प्लास्टीसिटी इन्डेक्स (PI) 9. 15 और बालू का PI शून्य है । इन दोनों से बने मिक्स में आवश्यक PI = 6 प्राप्त करने हेतु बालू का मिक्स में प्रतिशत होगा

- (a) 70
- (b) 60
- (c) 40

3

(d) 30

The natural void ratio of a saturated clay strata, 3 m thick is 0.90. The final void ratio of the clay at the end of the consolidation is expected to be 0.71. The total consolidation settlement of the clay strata is

30 cm

(b) 25 cm

(c) 20 cm

(d) 15 cm

11. A 30 cm diameter friction pile is embedded 10 m into a homogeneous consolidated deposit. Unit cohesion developed between clay and pile shaft is 4t/m² and adhesion factor is 0.7. The safe load for factor of safety 2.5 will be

(a) 21.50 t

(b) 11.57 t

10.55 t

- (d) 6.85 t
- In Newmark's influence chart for stress 12. distribution, there are ten concentric circles and ten radial lines. The influence factor of the chart is

(a) 0.1

(c) 0.001

- (d) 0.0001
- 13. Ultimate bearing capacity (q_f) of a square footing 2.5 m wide resting at 1.5 m depth in a sandy soil having unit weight $\gamma = 18 \text{ kN/m}^3$, $N_q = 33$, $N_r = 48$, using factor of safety as 3, will be

(a) $487 \, \text{kN/m}^2$

(b) 585 kN/m²

(c) $741 \, \text{kN/m}^2$

(d) 512 kN/m^2

Series-B

Using Engineering News formula, the allowable load (Q_a) of a wooden pile hammered with a drop hammer (W = 30kN), having free fall (H) 1.5 m, penetration in last blow (S) 5 mm, using empirical constant (C) as 2.5 and factor of safety as 6, will be

(a) 185 kN

(b) 250 kN

212 kN

(d) 231 kN

The ratio of average permeability in **15.** horizontal direction (k_n) to that in vertical direction (k_v) of a 3 layer soil deposit with thickness ratio 1:2:3. The permeability of second layer is twice that of first and third is twice that of second, $k_n : k_v$ will be

(a) 1:0.51

(b) 1:0.67

(c) 1:0.59

1:0.77

If undisturbed undrained strength of clay 16. is 40.5 kN/m² and its remoulded undrained strength is 26.6 kN/m², the sensitivity of clay will be

(a) 1.42

*(*b) 1.52

(c) 1.62

(d) 1.72

Vertical point load (Q) on the surface is **17.** 500 kN, σ_{z} (pressure increment) at 10 m depth (Z = 10 m,) directly) under the axis of load will be

(a) 1.68 kN/m^2

(6) 2.38 kN/m²

(c) 9.54 kN/m² (d) 4.636 kN/m²

- 10. एक 3 m मोटी संतृप्त मृदा परत का प्राकृतिक रिक्ति अनुपात 0.90 है । संहनन के अन्त में मृदा का अन्तिम रिक्ति अनुपात 0.71 अपेक्षित है । मृदा परत का कुल संहनन निषदन है
 - (a) 30 cm
- (b) 25 cm
- (c) 20 cm
- (d) 15 cm
- 11. एक 30 cm व्यास की घर्षण पाद संहिनत मृदा के जमाव में 10 m धँसी हुई है। पाद एवं मृदा के बीच उत्पन्न यूनिट कोहेसन 4t/m² और अधेशन फैक्टर 0.7 है। सुरक्षा गुणांक 2.5 हेतु सुरक्षित भारवहन क्षमता होगी
 - (a) 21.50 t
- (b) 11.57 t
- (c) 10.55 t
- (d) 6.85 t
- 12. प्रतिबल वितरण हेतु न्यूमार्क इन्फ्लूयेन्स चार्ट में 10 सकेन्द्रीय वृत्त एवं 10 त्रिज्य रेखायें हैं। इस चार्ट का इन्फ्लूयेन्स फैक्टर होगा
 - (a) 0.1
- (b) 0.01
- (c) 0.001
- (d) 0.0001
- 13. एक 2.5 m चौड़ी चौकोर फूटिंग जो 1.5 m गहराई पर रेतीली मिट्टी में रखी है उसकी ultimate bearing capacity (q_f) क्या होगी अगर $\gamma = 18 \text{ kN/m}^3$, $N_q = 33$, $N_r = 48$, एवं फैक्टर ऑफ सेफ्टी 3 है ?
 - (a) 487 kN/m^2
- (b) 585 kN/m²
- (c) 741 kN/m^2
- (d) 512 kN/m²

KNTCRA-53

- 14. Engineering News सूत्र का प्रयोग करते हुए एक लकड़ी की pile जिसको 30 kN drop हैमर, (W = 30 kN) से ठोकते हैं, जिसका फ्री फॉल 1.5 m (H=1.5 m) है तथा आखिरी blow का penetration (S) = 5 mm है और empirical constant (C) = 2.5 तथा सुरक्षा गुणांक = 6 है, उस लकड़ी के पाइल का Allowable load (Q_a) होगा
 - (a) 185 kN
- (b) 250 kN
- (c) 212 kN
- (d) 231 kN.
- 15. एक 3 layer मिट्टी के ढ़ेर में जिसकी मोटाई

 1:2:3 अनुपात में है, दूसरी तह की
 permeability पहली तह की दूनी और तीसरी
 तह की दूसरी तह की दूनी है। अत: औसत
 क्षैतिज (kn) एवं ऊर्घ्वाधर permeability (kv)

का अनुपात k_n : k_v होगा

- (a) 1:0.51
- (b) 1:0.67
- (c) 1:0.59
- (d) 1:0.77
- 16. Clay की sensitivity क्या होगी, अगर उसका undisturbed undrained सामर्थ्य 40.5 kN/m² और remoulded undrained सामर्थ्य 26.6 kN/m² है ?
 - (a) 1.42
- (b) 1.52
- (c) 1.62
- (d) 1.72
- 17. धरातल पर Vertical point load (Q) 500 kN है, pressure increment (σ_z), 10 m की गहराई (Z = 10 m), सीधे भार की axis पर होगा
 - (a) 1.68 kN/m^2
- (b) 2.38 kN/m^2
- (c) 9.54 kN/m²
- (d) 4.636 kN/m^2

18. A soil has discharge velocity of 6×10^{-7} m/s and void ratio of 0.5. Its seepage velocity

is (a) 18×10^{-7} m/s (b) 12×10^{-7} m/s (c) 6×10^{-7} m/s (d) 3×10^{-7} m/s

- 19. In a fully saturated soil, Skempton's pore pressure parameter 'B' becomes equal to
 - (a) 0 (b) 0.5 (c) 0.75 (d) 1.0
- 20. In order to minimize sampling disturbance the area ratio $A_{r'}$ $\left(A_r = \frac{D_e^2 D_i^2}{D_i^2}\right)$ should be
 - (a) zero
 - (b) as high as possible
 - (c) as low as possible
 - (d)_equal to unity
- 21. Four vertical columns of the same material, height and weight have the same end conditions. The buckling load will be the largest for column having the cross-section of
 - (a) solid square (b) thin hollow circle
 - (c) solid circle
- (d) H-section
- 22. Effective length of steel column effectively held at both ends in position but not restrained in directions is 'x' times its length between two ends, where 'x' is equal to
 - (a) 0.65
- (b) 0.85
- (c) 1.00
- (d) 2.00

- 23. Effective length of a column is the length between the points of
 - (a) support
 - (b) maximum moment
 - (zero moment
 - (d) zero shear
- 24. A steel plate is 300 mm wide and 10 mm thick. It has one rivet of nominal diameter 18 mm. The net sectional area of the plate is
 - (a) 1800 mm² V(b) 2805 mm²
 - (c) 2820 mm² (d) 3242 mm²
- 25. Vertical web stiffness are used in plate girder to
 - (a) Avoid buckling of web plate.
 - (b) Improve the asthetic of girder.
 - (c) Increase the moment capacity of girder.
 - (d) None of the above.
- 26. In case of I-section steel beam
 - (a) Shear capacity of flange is reglected.
 - (b) Shear capacity of web is neglected.
 - (c) Shear capacity of both flange and web is neglected.
 - (d) None of the above.
- 27. The weakest plane in a filled web is
 - (a) a side parallel to the force
 - (b) a side normal to the force
 - (c) along the throat
 - (d) normal to the throat

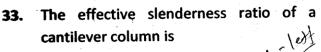
- एक मृदा का रिक्ति अनुपात 0.5 है एवं उससे प्रवाह वेग 6 × 10⁻⁷ m/s है। रिसाव वेग होगा
 - (a) 18×10^{-7} m/s (b) 12×10^{-7} m/s
 - (c) 6×10^{-7} m/s (d) 3×10^{-7} m/s
- किसी पूर्ण संतुप्त मुदा में स्केम्पटन का रंध जल दाब पैरामीटर 'B' निम्न के बराबर होता है :
 - (a) 0
- (b) 0.5
- (c) 0.75
- (d) 1.0
- सैम्पलिंग में disturbance को कम करने के लिए 20.

area ratio, A_r , $\left(A_r = \frac{D_e^2 - D_i^2}{D_i^2}\right)$ को होना चाहिए

- (a) शून्य
- (b) अधिक से अधिक
- (c) कम से कम
- (d) एक के बराबर
- चार स्तम्भ जो एक समान पदार्थ, ऊँचाई, भार 21. तथा सिरे स्थिति वाले हैं । इसमें अधिकतम बकलिंग भार स्तम्भ के इस परिच्छेद के लिए होगा
 - (a) ठोस वर्गाकार
 - (b) पतला खोखलाकार वृत्ताकार
 - (c) ठोस वृत्ताकार
 - (d) H-परिच्छेद
- एक इस्पात स्तम्भ की प्रभावी लम्बाई, जो दोनों 22. सिरों पर स्थिर रखी है, लेकिन दिशा में प्रतिबन्धित नहीं है। दोनों सिरों के बीच इसकी प्रभावी लम्बाई, इसकी लम्बाई का 'x' गुना होती है। जहाँ 'x' का मान निम्न होगा :
 - (a) 0.65
- (b) 0.85
- (c) 1.00
- (d) 2.00

- एक खम्भे की प्रभावी लम्बाई, खंभे के निम्न वो 23. बिन्दुओं के बीच की दूरी के बराबर होती है
 - (a) आधारों
 - (b) अधिकतम आघूर्ण
 - (c) शून्य आघूर्ण
 - (d) शून्य अपरूपक
- एक लोहे की प्लेट 300 mm चौड़ी व 10 mm 24. मोटी है । इसमें 18 mm सामान्य व्यास की एक पिन लगी है। प्लेट का प्रभावी परिच्छेद बराबर होगा
 - (a) 1800 mm²
- (b) 2805 mm²
- (c) 2820 mm²
- (d) 3242 mm²
- प्लेट गर्डर में ऊर्ध्वाधर (Vertical) पुष्टीकरण 25. अंग निम्न के लिए प्रयोग होता है :
 - (a) गर्डर को बकलिंग (Buckling) से बचने के
 - (b) गर्डर का सौन्दर्य बोध सुधारने के लिए
 - (c) गर्डर की आघूर्ण बढ़ाने के लिए
 - (d) उपर्युक्त में से कोई नहीं
- ।-सेक्शने इस्पात धरन के संदर्भ में 26.
 - (a) फ्लैंन्ज (flange) की अपरूपण (shear) क्षमता को नगण्य माना जाता है।
 - (b) वेब (web) की अपरूपण क्षमता को नगण्य माना जाता है।
 - (c) फ्लैंन्ज (flange) एवं वेब (web) दोनों का अपरूपण नगण्य माना जाता है।
 - (d) उपर्युक्त में से कोई नहीं।
- फिल्ड वेब में सबसे कमजोर तल होता है
 - (a) बल के समानान्तर
 - (b) बल के लम्बवत
 - (c) थ्रोट की दिशा में
 - (d) थ्रोट के लम्बवत

- The strength at which steel fails under 28. repeated load applications is known as
 - (a) impact strength
 - (b) tensile strength
 - (c) yield strength


(d) fatigue strength

If the angle between fusion faces of a 29. fillet weld is 60° - 90°, the effective throat thickness as per Indian Standard is

equal to $\frac{2}{\sqrt{5}}$ size of weld

- (b) $\frac{1}{\sqrt{3}}$ size of weld
- (c) $\sqrt{2}$ size of weld
- (d) $\sqrt{3}$ size of weld
- The junction between flange and web of 30. an I-section is called
 - (a) Lap joint
- (b) Butt joint
- (c) Fillet joint
- Shéar joint
- Which one of the following method does 31. not fall under the category of force method?
 - (a) Method of consistent deformation
 - (b) Column analogy method.
 - (e) Equilibrium method 🦠
 - (d) Three moment equation

- 32. In a triangular section placed with its base horizontal, ratio of max. shear stress to average shear stress is
 - (a) 1.25
- (b) 1.33
- (c) 1.43
- (d) 1.53

A horizontal semi-circular beam of radius 34. 'R' is fixed at the ends and carries a uniformally distributed load 'W' over the entire length. The bending moment at the fixed supports is

- WR²

The deflection is 'δ', strain energy 'U' 35. and load 'W' on a truss. These are related by

$$(a) \delta = \frac{\partial U}{\partial W}$$

(a)
$$\delta = \frac{\partial U}{\partial W}$$
 (b) $\delta = \frac{\partial^2 U}{\partial W^2}$

(c)
$$\delta = \frac{\partial^3 U}{\partial W^3}$$

(c)
$$\delta = \frac{\partial^3 U}{\partial W^3}$$
 (d) $\delta = \left(\frac{\partial U}{\partial W}\right)^2$

- 36. Eccentricity of connections introduces
 - (a) Primary stresses
 - (b) Vibrating stresses 1
 - (c) Secondary stresses ---
 - (d) None of the above

- किसी लोहे के अवयव पर बार-बार एक खास भार लगाने से जिस प्रतिबल पर वह भंग हो जाता है, उसे कहते हैं :
 - (a) इम्पैक्ट (Impact) सामर्थ्य
 - (b) तनाव सामर्थ्य
 - (c) यील्ड (Yield) सामर्थ्य
 - (d) फटीग (Fatigue) सामर्थ्य
- 29. फिलेट वेल्ड में यदि संलयन सतहों के बीच का कोण 60° - 90° हो तो भारतीय मानक के अनुसार प्रभावी थ्रोट की मोटाई बराबर होगी
 - (a) a = a = a = a = a (b) a = a = a = a = a a = a = a = a
 - (c) वेल्ड का √2 माप (d) वेल्ड का√3 माप
 - ।-परिच्छेद में फ्लेन्ज और वेब के मध्य बनने वाले जंकशन का नाम है
 - (a) लैप संधि
- (b) बट्ट संधि
- (c) फिलेट संधि
- (d) अपरूपक संधि
- नीचे दिये गये उत्तर में से कौन सा बल विधि 31. (Force Method) में नहीं आता है ?
 - (a) कन्सिस्टेंट डिफार्मेशन विधि
 - (b) कालम एनालागी विधि
 - (c) इक्वीलिब्रियम (Equilibrium) विधि
 - (d) तीन आघूर्ण समीकरण

- एक तृतीय भुज खण्ड जिसका आधार क्षैतिज **32**. रखा है, तो अधिकतम प्रतिबल दाब और औसत प्रतिबल दाब का अनुपात होगा
 - (a) 1.25
- (b) 1.33
- 1.43
- (d) 1.53
- एक कैन्टीलीवर (Cantilever) स्तम्भ का प्रभावी स्लेन्डरनेस अनुपात निम्न होगा

- एक समतल अर्धगोलार्ध धरन जिसकी त्रिज्या 34. 'R' है, किनारों पर दृढ़ है। इस धरन पर 'W' एकसमान भार पूरी लम्बाई में लगाया गया है। इसके दृढ़ किनारों पर बंकन आघूर्ण होगा :
 - WR²

- (d) WR^2
- अगर एक दूस पर ·W भार हो, तथा विक्षेप ·δ' 35. हो और स्ट्रेन ऊर्जा 'U' हो तो परस्पर निम्नलिखित सम्बन्ध होगा:

 - (a) $\delta = \frac{\partial U}{\partial W}$ (b) $\delta = \frac{\partial^2 U}{\partial W^2}$

 - (c) $\delta = \frac{\partial^3 U}{\partial W^3}$ (d) $\delta = \left(\frac{\partial U}{\partial W}\right)^2$
- (connections) के विकेन्द्रीकरण 36. (eccentricity) की वजह से निम्न होता है :
 - (a) मुख्य प्रतिबल
 - (b) झुनझुनाहट प्रतिबल
 - (c) सेकेन्डरी प्रतिबल
 - (d) उपरोक्त कोई नहीं

- 37. A point load 'W' is acting at a distance 'a' from the left support of a three hinged arch of span 2 / and rise 'h' hinged at the crown. The horizontal reaction at the support is
 - (a) Wa/h
- (b) Wa/2h
- (c) 2W/ha
- (d) 2h/Wa
- 38. As per IS code, the reinforcement in a column should not be less than
 - (a) 0.5% and not more than 5% of gross sectional area.
 - (b) 0.6% and not more than 6% of gross sectional area.
 - (c) 0.7% and not more than 7% of gross sectional area.
- (d) 0.8% and not more than 8% of gross sectional area.
- 39. As per IS 456 : 2000, the development length is given by
 - (a) $\frac{\phi \sigma_s}{8\tau bc}$
- $\sqrt{(b)} \frac{\phi \sigma_s}{4\tau \, bd}$
- (c) $\frac{8\tau \, bd}{\phi \, \sigma_s}$
- (d) $\frac{4\tau bc}{\phi \sigma_s}$
- **40.** The target mean strength of concrete mix should be
 - The characteristic strength + 1.65 times standard deviation.
 - (b) The characteristic strength + 1.45 times standard deviation.
 - (c) The ultimate strength + 1.65 times standard deviation.
 - (d) The ultimate strength + 1.45 times standard deviation.

Series-B

10

- 41. A stationary hydraulic jump occurs in a rectangular channel with the initial and sequent depths being equal to 0.20 m and 1.20 m respectively. The energy loss will be equal to
 - (a) 1.042 m
- (b) 0.521 m
- (c) 1.563 m
- (d) 0.265 m
- 42. In a rectangular channel, the depth of flow is 1.6 m and the specific energy at that section is 2.7 m, the flow is
 - √a) Sub critical
 - (b) Super critical
 - (c) Critical
 - (d) Not possible
- 43. For a triangular channel having side slope of a 2 horizontal to 1 vertical, the Froude number, F is given by
 - $\sqrt{(a)} \frac{V}{\sqrt{gy}}$
- (b) $\frac{2V}{\sqrt{gy}}$
 - $\frac{N}{8(\sqrt{2})}$
- (c) $\sqrt{2gy}$
- V8(1/12)
- 44. Lacey's regime scour depth, D is expressed by equation, D =
 - (a) $1.35 \left(\frac{q^2}{f}\right)^{\frac{1}{6}}$ (b) $1.35 \left(\frac{q^2}{f}\right)^{\frac{1}{3}}$
 - (c) $1.35 \left(\frac{q}{f}\right)^{\frac{1}{3}}$
 - (d) $1.35 \left(\frac{q}{f}\right)^{\frac{1}{6}}$

Where q = Discharge

f = silt factor

- 2/ विस्तृति एवं h ऊँचाई की एक तीन कब्जेदार डाट जिसमें तीसरा कब्जा शीर्ष पर है, पर बायें आधार से 'a' दूरी पर एक बिन्दु बल 'W' लगा हुआ है। आधार पर क्षैतिज प्रतिक्रिया होगी
 - (a) Wa/h
- (b) Wa/2h

41.

- (c) 2W/ha
- (d) 2h/Wa
- भारतीय मानक के अनुसार स्तम्भ में प्रबलन 38. नहीं होना चाहिए
 - (a) सकल काट क्षेत्रफल के 0.5% से कम तथा 5% से अधिक
 - (b) सकल काट क्षेत्रफल के 0.6% से कम तथा 6% से अधिक
 - (c) सकल काट क्षेत्रफल के 0.7% से कम तथा 7% से अधिक
 - (d) सकल काट क्षेत्रफल के 0.8% से कम तथा 8% से अधिक
- IS 456 : 2000 के हिसाब से, डेवलपमेन्ट लम्बाई होनी चाहिए
- (b) $\frac{1}{4\tau \, bd}$

- किसी कान्क्रीट मिक्स के लिए औसत लक्ष्य सामर्थ्य निम्न के बराबर होना चाहिए :
 - (a) लाक्षणिक सामर्थ्य + 1.65 × मानक विचलन
 - (b) लाक्षणिक सामर्थ्य + 1.45 × मानक विचलन
 - (c) अल्टीमेट सामर्थ्य + 1.65 × मानक विचलन
 - (d) अल्टीमेट सामर्थ्य + 1.45 × मानक विचलन

और 1.20 m के सेक्वेन्ट गहराई का एक स्थिर जलोत्छाल होता है। ऊर्जा क्षरण होगा (a) 1.042 m (b) 0.521 m (c) 1.563 m (d) 0.265 m

एक आयताकार वाहिका में क्रमश: 0.20 m

- एक आयताकार वाहिका में किसी सेक्शन पर 42. प्रवाह की गहराई 1.6 m है और विशिष्ट ऊर्जा 2.7 m है। प्रवाह है
 - (a) सब क्रिटिकल (b) सुपर क्रिटिकल
 - (c) क्रिटिकल (d) प्रवाह सम्भव नहीं।
- एक 2 क्षैतिज और 1 ऊर्ध्वाधर साइड स्लोप 43. वाले त्रिभुजाकार वाहिका के लिए फ्राउड संख्या व्यक्त की जायेगी, F =
- (d) $\frac{V}{\sqrt{g(v/2)}}$
- लेसी के रिजीम की स्कावर डेप्थ, D को'निम्न समीकरण से व्यक्त किया जाता है, D =
 - (a) $1.35 \left(\frac{q^2}{f}\right)^{\frac{2}{6}}$ (b) $1.35 \left(\frac{q^2}{f}\right)^{\frac{2}{3}}$

 - (c) $1.35 \left(\frac{q}{f}\right)^{\frac{1}{3}}$ (d) $1.35 \left(\frac{q}{f}\right)^{\frac{1}{6}}$

जहाँ, q = डिस्चार्ज

f = सिल्ट गुणांक

- 45. Neglecting uplift pressure, the base width of an elementary profile of a gravity dam shall be taken as
 - (a) $\frac{H}{\mu G}$
 - (e) greater of $\frac{H}{\sqrt{G}}$ & $\frac{H}{\mu G}$
 - (d) lesser of $\frac{H}{\sqrt{G}}$ & $\frac{H}{\mu G}$
- 46. The graphical solution of Kennedy's equation and Kutter's equation is given
 - ✓(a) Garret's diagram
 - (b) Mohr's diagram
 - (c) Kennedy's diagram
 - (d) Kutter's diagram
- Which of the following conditions is the 47. chief characteristics of critical flow?
 - (a) $\frac{Q^2T}{gA^3} = 1$ (b) $\frac{QT^2}{gA^2} = 1$

 - (c) $\frac{Q^2R}{gA^3} = 1$ (d) $\frac{Q^2T^2}{gA^3} = 1$
- The velocity of pressure wave in a rigid 48. pipe carrying a fluid of density 'ρ', viscosity 'µ' varies as
 - (a) ρ

- The flow will be in super critical state in the following profile:
 - \checkmark (a) M_3 , S_3 and M_1 (b) M_2 , S_1 and M_3
 - (c) S_2 , S_3 and M_3 (d) S_1 , S_2 and S_3
- **50.** The critical velocity $V_0 = 0.55 \text{ my}^{0.64}$ as suggested by Kennedy for design of trapezoidal irrigation channel is

the maximum permissible velocity.

- **始** the minimum permissible velocity. ✓
 - (c) both (a)and (b)
 - (d) None of these
- 51. If $\psi = 2 xy$, the magnitude of velocity (b) 4 24 = 24 = **vector** at (2, – 2) is
 - Uar 4√2

- $(d) \sqrt{2} \quad \frac{\partial \Psi}{\partial t} = \frac{Q}{24}$
- **52.** The velocity potential function for a line source varies with radial distance, r as
 - (a) $\frac{1}{x}$
- (c) r

12

- **53**. In a pipeline the hydraulic grade line is above the pipe centre line in the longitudinal section at point A and below the pipe centre line at another point B. From this it can be inferred that
 - (a) Vacuum pressure prevails at B
 - (b) Vacuum pressure prevails at A
 - (c) the flow is from A to B
 - (d) the flow is from B to A

- अपलिफ्ट दबाव को नगण्य मानते हुए ग्रेविटी 45. बाँध के इलीमेन्टरी प्रोफाइल की चौड़ाई होगी
 - (a) $\frac{H}{\mu G}$
 - (b) $\frac{H}{\sqrt{G}}$
 - (c) $\frac{H}{\sqrt{G}}$ एवं $\frac{H}{\mu G}$ में अधिक वाला
 - (d) $\frac{H}{\sqrt{G}}$ $\nabla \vec{a} \frac{H}{\mu G} \vec{P}$ \vec{a} \vec{b} \vec{a} \vec{b} \vec{c}
- केनेडी और कुटर के समीकरण का ग्राफिकल 46. हल निम्न द्वारा दिया जाता है :
 - (a) गैरेट का रेखाचित्र
 - (b) मोहर का रेखाचित्र
 - (c) केनेडी का रेखाचित्र

6+16

- (d) कुटर का रेखाचित्र
- निम्न में से कौन सी अवस्था क्रान्तिक प्रवाह का मुख्य गुण है ?
 - (a) $\frac{Q^2T}{gA^3} = 1$ (b) $\frac{QT^2}{gA^2} = 1$

 - (c) $\frac{Q^2R}{gA^3} = 1$ (d) $\frac{Q^2T^2}{gA^3} = 1$
- एक दबाव लहर की गति एक रिजिड पाइप 48. जिसमें द्रव का घनत्व 'ρ' तथा श्यानता 'μ' है, निम्न के अनुसार बदलती है :
 - (a) ρ

- (d) $\frac{1}{\sqrt{\rho}}$

- निम्न प्रोफाइल में प्रवाह सुपर क्रिटिकल स्टेट में होगा :
 - (a) M_3 , S_3 और M_1 (b) M_2 , S_1 और M_3
 - (c) S_2 , S_3 और M_3 (d) S_1 , S_2 और S_3
- एक ट्रेपेज्वायडल (Trapezoidal) सिंचाई 50. वाहिका की डिजाइन में केनेडी द्वारा बतायी गयी क्रान्तिक वेग V₀ = 0.55 my^{0.64} है
 - (a) अधिकतम अनुमति योग्य वेग
 - (b) न्यूनतम अनुमति योग्य वेग
 - (c) दोनों (a) एवं (b)
 - (d) इनमें से कोई नहीं
- यदि ψ = 2 xy हो, तो बिन्दु (2, 2) पर वेग 51. वेक्टर की मात्रा होगी
 - (a) $4\sqrt{2}$
- (b) 4
- (c) 8
- (d) $\sqrt{2}$
- एक रेखीय स्रोत के लिए वेग विभव अभिलक्षक त्रिज्यीय दूरी, r के साथ निम्नानुसार परिवर्तित होता है :
 - (a) $\frac{1}{r}$
- (b) $\frac{1}{r^2}$
- (c) r
- (d) In r
- एक पाइप लाइन में लान्गीट्यूडिनल सेक्शन 53. (longitudinal section) में किसी बिन्दु A पर हाइड्रालिक ग्रेड लाइन पाइप सेन्टर लाइन के ऊपर है और दूसरे बिन्दु B पर सेन्टर लाइन के नीचे है। इससे यह निष्कर्ष निकलता है कि
 - (a) बिन्दु B पर निर्वात दबाव है।
 - (b) बिन्दु A पर निर्वात दबाव है।
 - (c) A से B की ओर प्रवाह है।
 - (d) B से A की ओर प्रवाह है।

54. In a steady incompressible fluid flow with uniform velocity distribution, the momentum flux in a given x-direction past a given section is expressed as M_x =

Jal pQ1

(b) $\frac{\rho V^2}{2}$

fc pav

(d) $\frac{Q^2}{\Delta}$

In a tidal model, the horizontal scale ratio is 1/500. The vertical scale ratio is 1/50. The model period corresponding to a prototype period of 12 hours will be

- (a) 10 minutes 10 second
- 1 minute 10 second
 - (c) 5 minutes 5 second
 - (d) 10 minutes
- 56. The equation of motion for laminar flow of a real fluid are known as
 - (a) Euler's equation
 - (b) Bernoulli's equation
 - (c) Navier-Stokes' equation $\sqrt{}$
 - (d) Hagen-Poiseuille equation
- 57. In turbulent pipe flow, inside the laminar boundary, the velocity distribution is

(a) Parabolic

- (b) Linear
- (c) Logarthimic
- (d) Exponential decay type

Series-B

flow was found to be 0.04. The Reynold number of the flow is

(a) 2000

b) 1000

(c) 800

(d) 1600

59. In a turbulent flow through a pipe of radius r₀, the radial distance at which the local velocity is equal to the mean velocity

(a) 0.1 r₀

(b) 0.223 r₀

(c) 0.777 r₀

(d) 0.5 r₀

- 60. In the Moody diagram the values of 'f' for turbulent flow are based on
 - (a) Mikuradse's uniform sand grain.
 - (b) Data on non-uniform sand grains coated in pipe.
 - (c) Colebook-white data on commercial pipe.
 - (d) Hazen-William pipe flow formula.
- 61. The head loss in a sudden expansion from 6 cm diameter pipe to 12 cm diameter pipe, in terms of velocity V₁, in the 6 cm dia pipe is

(a) $\frac{15}{16} \cdot \frac{V_1^2}{2g}$

(b) $\frac{3}{4} \cdot \frac{V_1^2}{2g}$

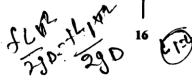
(c) $\frac{1}{4} \cdot \frac{V_1^2}{2g}$

(d) $\frac{9}{16} \cdot \frac{V_1^2}{2g}$

- 54. एकसमान वेग वितरण वाले स्टेडी एवं असंघनित द्रव प्रवाह में समान प्रवाह वेग वितरण की स्थिति में, किसी दिये गये x-अक्ष दिशा में किसी सेक्शन पर आवेग फ्लेक्स, M, को व्यक्त किया जाता है
 - (a) pQV
- (b) $\frac{\rho V^2}{2}$
- (c) ρQV_x
- (d) $\frac{Q^2}{\Delta}$
- एक टाइडल माडल में क्षैतिज स्केल अनुपात 1/500 है । ऊर्घ्वाधर स्केल अनुपात 1/50 है । अत: 12 घंटे के प्रोटोटाइप पीरियङ के समकक्ष माडल पीरियड होगा
 - (a) 10 मिनट 10 सेकण्ड
 - (b) 1 मिनट 10 सेकण्ड
 - (c) 5 मिनट 5 सेकण्ड
 - (d) 10 मिनट
- एक वास्तविक द्रव में स्तरीय प्रवाह हेतु गतिज 56. का समीकरण निम्न के रूप में जाना जाता है :
 - (a) आइलर का समीकरण
 - (b) बरनौली का समीकरण
 - (c) नेवियर-स्टोक्स का समीकरण
 - (d) हैजेन-प्वाइजली का समीकरण
- एक विक्षुब्ध पाइप प्रवाह में, लैमिनर दीवार के 57. अन्दर गति का वितरण निम्न होगा
 - (a) परवलयाकार
 - (b) एक लाइन में
 - (c) लघुगणक
 - (d) इक्स्पोनेन्शियल क्षीण होने की तरह

- एक स्तरीय पाइप प्रवाह में घर्षण गुणक 'f' 0.04 है। प्रवाह की रेनाल्ड संख्या है
 - (a) 2000
- (b) 1000
- (c) 800
- (d) 1600
- एक 📭 त्रिज्या के पाइप में, जिसमें विक्षुब्ध प्रवाह **59**. हो रहा है, के लिए वह बिन्दु जहाँ पर स्थानीय वेग, औसत वेग के बराबर होता है, उसकी त्रिज्य दूरी होगी
 - (a) 0.1 r₀
- (b) 0.223 r₀
- (c) $0.777 r_0$ (d) $0.5 r_0$
- मूडी चित्र में विक्षुब्ध प्रवाह के लिए र का मान 60. निर्भर करता है
 - (a) निकार्डस यूनीफार्म सैन्ड ग्रेन डेटा पर
 - (b) पाइप में चिपके नॉन-यूनीफार्म सैन्ड ग्रेन डेटा पर
 - (c) कामर्शियल पाइप में कोल बुक सफेद डेटा पर
 - (d) हैजेन-विलियम पाइप प्रवाह सूत्र पर
- 61. एक 6 cm व्यास की पाइप से 12 cm व्यास की पाइप में अचानक फैलाव की वजह से हेड क्षरण $\mathbf{6} \ \mathbf{cm} \ \mathbf{can} \ \mathbf{a} \ \mathbf{m} \ \mathbf{a} \ \mathbf{m} \ \mathbf{a} \ \mathbf{m} \ \mathbf{a} \ \mathbf{m} \ \mathbf{m} \ \mathbf{a} \ \mathbf{a} \ \mathbf{m} \ \mathbf{a} \ \mathbf{a} \ \mathbf{m} \ \mathbf{a} \ \mathbf{a$
 - (a) $\frac{15}{16} \cdot \frac{V_1^2}{2g}$ (b) $\frac{3}{4} \cdot \frac{V_1^2}{2g}$

 - (c) $\frac{1}{4} \cdot \frac{V_1^2}{2g}$ (d) $\frac{9}{16} \cdot \frac{V_1^2}{2g}$



For maximum transmission of power through a pipeline with total head, H, the head loss due to friction, (h,) is given

by 'b' = √a) H/3 √ (b) H/2

- (d) 0.1 H
- Two identical pipes of length L, diameter 63. D and friction factor f, are connected in parallel between two points. The length of a single pipe of diameter D and the same friction factor f, equivalent to the above pair is
 - (a) $\sqrt{2}$ L
- (c) $L/\sqrt{2}$
- (d) L/4
- 64. Which one of the following is analogous to normal shock wave?
 - (a) An elementary wave in a still liquid.
 - (b) Flow of liquid in an expanding nozzle.
 - (c) Hydraulic jump
 - (d) Subcritical flow in a rough channel.
- 65. The Mach number, M of a compressible fluid flow is 0.3 < M < 0.8. The fluid flow is usually classified as
 - (a) Incompressible (b) Subsonic
 - (c) Supersonic
- (d) Hypersonic
- With increasing aging of pipes, the 66. proportion between maximum velocity and the mean velocity in turbulent flow
 - (a) initially decreases and then increases.
 - (b) initially increases and . then decreases.
 - (c) decreases
 - (d) increases.

Series-B

- **67.** In a laminar flow between two fixed parallel plates, the shear stress is
 - (a) constant across the passage.
 - maximum at centre and zero at boundary.
 - (c) zero all through the passage.
 - (d) maximum at the boundary and zero at the centre.
- 68. The Blasius equation for friction factor 'f' in a turbulent flow through pipes relates 'f' to the Reynold's number 'Re' as, f =

(b)
$$\frac{0.316}{1.2}$$

1.328

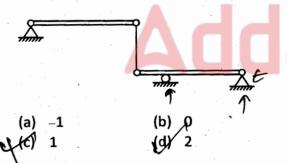
)
$$\frac{0.316}{\text{Re}^{\frac{1}{5}}}$$

- According to Lacy, regime theory is **69**. applicable to channel in
 - (a) Initial regime (b) True regime
 - (c) Final regime (d) both (b) and (c)
- **70**. For a hydraulically efficient triangular section the hydraulic radius, R =

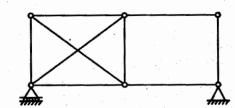
(c) $\frac{y}{2}$

(d) y

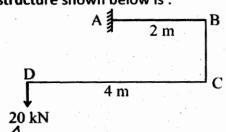
- एक पाइप में कुल हेड, H पर प्रवाह हो रहा है। इसमें अधिकतम शक्ति संचरण हेतू घर्षण के कारण हेड क्षरण, h_e होगा
 - (a) H/3
- (b) H/2
- (c) $\frac{2}{3}$ H
- (d) 0.1 H
- दो समान पाइप जिनकी लम्बाई L, व्यास D और 63. घर्षण फैक्टर कि है, दो बिन्दु के बीच समानान्तर जुड़े हैं। उक्त जोड़े के समतुल्य एक व्यास D और समान घर्षण फैक्टर की वाली एकल पाइप की लम्बाई होगी
 - (a) $\sqrt{2L}$
- (b) L/2
- (c) $L/\sqrt{2}$
- (d) L/4
- निम्न में से कौन सामान्य शॉक वेव के समरूप है?
 - (a) स्थिर द्रव में एक शुरुआती तरंग
 - (b) फैलती हुई नॉजल में द्रव का प्रवाह
 - (c) हाइड्रालिक जम्प
 - (d) खुरदरी वाहिका में सब-क्रिटिकल प्रवाह
- 65. एक संघनित द्रव प्रवाह में मैक संख्या M. 0.3 < M < 0.8 रैन्ज में है । तब प्रवाह को सामान्यत: वर्गीकृत किया जाता है
 - (a) असंघनित
- (b) सबसोनिक
- (c) सुपरसोनिक
- (d) हाइपरसोनिक
- किसी विक्षुब्ध प्रवाह में पाइप की बढ़ती उम्र के **66**. साथ अधिकतम और औसत वेग का अनुपात
 - (a) शुरू में घटता है और तब बढ़ता है।
 - (b) शुरू में बढ़ता है और तब घटता है।
 - (c) घटता है।
 - (d) बढ़ता है।
- KNTCRA-53


- दो स्थिर समानान्तर प्लेटों के बीच स्तरीय प्रवाह हेतु शीयर स्ट्रेस होता है
 - (a) पैसेज एक्रास (across) स्थिर
 - (b) केन्द्र पर अधिकतम और बाउन्ड्री पर शून्य
 - (c) पैसेज में सभी जगह शून्य
 - (d) बाउन्ड्री पर अधिकतम और केन्द्र पर शुन्य
- पाइप में विक्षुब्ध प्रवाह हेत्, ब्लासियस 68. समीकरण के अनुसार घर्षण गुणक '' को रेनाल्ड संख्या, Re के रूप में व्यक्त किया जाता है, f =
 - (a) Re
- (d)
- लेसी के अनुसार रिजीम सिद्धान्त उस वाहिका 69. के लिए मान्य है जो होती हैं
 - (a) प्रारम्भिक रिजीम (b) वास्तविक रिजीम

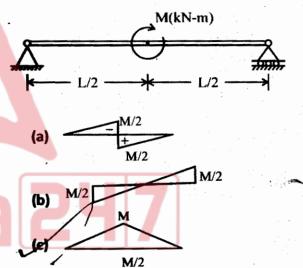
 - (c) अन्तिम रिजीम (d) दोनों (b) और (c)
- **70.** एक हाइड्रोलिकली इफीशियेन्ट (efficient) त्रिमुजाकार सेक्शन हेतु, हाइड्रोलिक त्रिज्या, R=
 - (a) $2\sqrt{2} y$
- (c) $\frac{y}{2}$
- (d) y



- 71. The effect of sinking of supports by 'δ' is to create a bending moment equal to
 - (a) $\frac{2EI\delta}{\rho^2}$
- $\sqrt{(b)} \frac{6EI \delta}{\rho}$
- (c) $\frac{3EI\delta}{\rho^2}$
- (d) $\frac{El\delta}{l^2}$
- 72. Column Analogy method may be used to analyse
 - (a) Fixed beam
- (b) Portal frame
- (c) Box frame
- (d) All of the above
- 73. Which of the followings are indeterminate structure?
 - (a) 3-hinged arch
 - (b) continuous beam
 - (c) nedundant frame
 - (d) both (b) and (c)
- 74. No. of degree of static indeterminancy for the beam shown below is

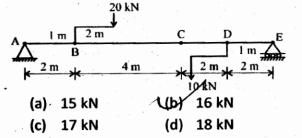


75. In the truss shown below which statement is correct?



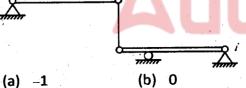
- (a) Externally unstable
- (b) Internally unstable
- (c) Statically determinante structure
- (d) Statically indeterminante structure
- n Statically indeterminance structu

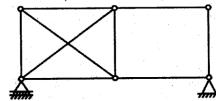
76. The fixed end moment at A for the structure shown below is :


- **√a)** 40 kN-m
- (b) 80 kN-m
- (c) 100 kN-m
- (d) 120 kN-m
- 77. For the beam shown below, correct BMD is:

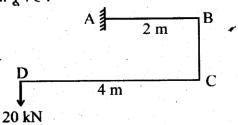
- 78. The line of thrust in a parabolic arch is
 - (b) Circular

(d)

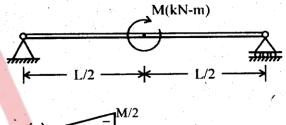

- (c) Triangular
- (d) Funnicular Polygon
- 79. The reaction at support A for the beam shown below is

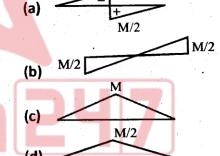


- अगर टेकों में धसना कि हो, तो उसके द्वारा बंकन आघूर्ण होगा
 - (a) $\frac{2EI \delta}{l^2}$
- (b) $\frac{6EI\delta}{l^2}$
- (d) $\frac{El \delta}{l^2}$
- कॉलम एनालागी विधि द्वारा निम्न का विश्लेषण 72. किया जाता है :
 - (a) धरन दृढ़तापूर्वक बंधी हो।
 - (b) पोर्टल ढ़ाँचा
 - (c) बॉक्स ढ़ाँचा
 - (d) उपरोक्त सभी
- निम्न में से कौन अपरिमित ढ़ाँचा है ? **73.**
 - (a) 3-कब्जे वाला वक्राकार ढ़ाँचा
 - (b) लगातार वाली धरन
 - (c) अतिरिक्त फ्रेम
 - (d) (b) तथा (c) दोनों
- नीचे दिये गये धरन में कितने Degree of static indeterminancy 言?

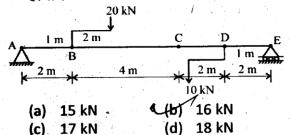


- (c) 1
- (d) 2
- नीचे दिये गये ट्रस के लिए कौन सा स्टेटमेन्ट **75.** सही है ?



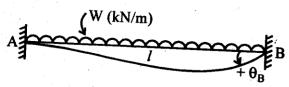

- (a) बाह्य रूप से अस्थिर
- (b) आन्तरिक रूप से अस्थिर
- (c) स्थैतिक रूप से निर्धाय संरचना
- (d) स्थैतिक रूप से अनिर्घाय संरचना

नीचे दी गई संरचना में A बिन्दु पर स्थिर अंतिम **76**. आघूर्ण है :



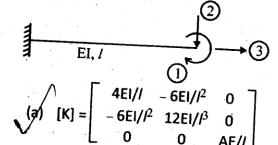
- (a) 40 kN-m
- (b) 80 kN-m
- (c) 100 kN-m ^{*}
- (d) 120 kN-m
- नीचे दिये गये धरन के लिए सही BMD है :

- एक परवलयाकार Arch में Line of thrust **78.** होता है :
 - (a) परवलीय
 - (b) वृत्ताकार
 - (c) त्रिभुजाकार
 - (d) फनीकुलर पॉलीगन (Funnicular Polygon)
- नीचे दिये गये धरन में A पर प्रतिक्रिया कितनी 79. होगी?



KNTCRA-53

Adda[24]7]



- The point of contraflexure is the point whére
 - (a) bending moment changes sign
 - (b) bending moment is maximum
 - (c) bending moment is minimum
 - (d) shear force is zero
- 81. A two hinged arch / is statically indeterminate by
 - (a) 0 degree
- 他)1 degree
- (c) 2 degree
- (d) 3 degree
- In three hinged arch, maximum hogging moment occurs when, the point load is at
 - (a) \springing
- (b) crown
- (c) quarter span (d) the section itself
- 83. Deflections in a truss depends upon
 - (a) axial rigidity
 - (b) flexural rigidity
 - (c) axial and flexural rigidity
 - (d) None of these
- Influence line diagram for bending moment in a simply supported beam is a
 - (a) /straight line
- (b) parabola
- (g) triangle
- (d) None of these
- 85. For a fixed beam loaded as shown below, if the support, B rotates + θ_{B} radian anticlockwise, the fixed end moment at 'B' is

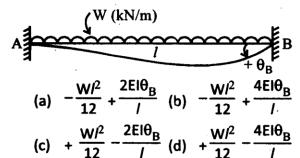
(a)
$$-\frac{Wl^2}{12} + \frac{2El\theta_B}{l}$$
 (b) $-\frac{Wl^2}{12} + \frac{4El\theta_B}{l}$ (c) $+\frac{Wl^2}{12} - \frac{2El\theta_B}{l}$ (d) $+\frac{Wl^2}{12} - \frac{4El\theta_B}{l}$

Stiffness matrix with reference to coordinates 1, 2 and 3 as shown in Fig. below is:

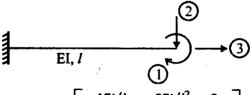
(b) [K] =
$$\begin{bmatrix} -6EI/l^2 & 4EI/l & 0\\ 4EI/l & 12EI/l^3 & 0\\ 0 & 0 & AE/l \end{bmatrix}$$

(c) [K] =
$$\begin{bmatrix} 0 & 4EI/I - 6EI/I^2 \\ 4EI/I & 0 & 12EI/I^3 \\ 0 & 0 & AE/I \end{bmatrix}$$

(d) [K] =
$$\begin{bmatrix} 0 & 4EI/I - 6EI/I^2 \\ 4EI/I & 0 & 12EI/I^3 \\ AE/I & 0 & 0 \end{bmatrix}$$


- The plastic theory is generally used for **87.**
 - (a) Column
 - (此) Beams
 - (c) Rigid frame structures
 - (d) Roofs
- The reversible nature of loads are 88.
 - (a) Earthquake loads
 - (b) Wind loads
 - Both (a) and(b)
 - (d) None of the above
- An under reinforced section means
 - (a) reinforcing steel reaches its yield stress first.
 - (b) concrete reaches its maximum stress first.
 - (c) reinforcement provided is equal to maximum reinforcement.
 - (d) None of the above.

20



- 80. नित परिवर्तन बिन्दु (point of contraflexure) वह बिन्दु है, जहाँ :
 - (a) बंकन आघूर्ण की दिशा बदलती है।
 - (b) बंकन आघूर्ण अधिकतम है।
 - (c) बंकन आधूर्ण न्यूनतम है।
 - (d) अपरूपण बल शुन्य है।
- 81. दो कब्जेदार आर्च (arch) निम्न डिग्री (अंश) द्वारा स्थैतिक रूप से अनिर्धाय होती है
 - (a) 0 अंश
- (b) 1 अंश
- (c) 2 अंश
- (d) 3 अंश
- 82. तीन कब्जेदार डाट में हॉगिंग बंकन आघूर्ण अधिकतम तब होता है, जब बिन्दु बल निम्नलिखित स्थान पर होता है :
 - (a) स्प्रिन्गिन्ग (springing)
 - (b) शीर्ष (crown)
 - (c) चौथाई विस्तृति
 - (d) काट पर
- 83. कैंची (truss) में विक्षेप निम्नलिखित पर निर्भर करता है :
 - (a) अक्षीय दृढ़ता (axial rigidity)
 - (b) फ्लेक्जरल दृढ़ता (flexural rigidity)
 - (c) अक्षीय एवं फ्लेक्जरल हढ़ता
 - (d) इनमें से कोई नहीं
- 84. साधारण रूप से आधारित धरन में बंकन आधूर्ण के लिए खींचा गया प्रभावी रेखाचित्र होता है
 - (a) सीधी रेखा
- (b) परवलय
- (c) त्रिभुज
- (d) इनमें से कोई नहीं
- 85. नीचे दिये गये भार के साथ fixed धरन के Support B, + θ_B से घड़ी की विपरीत दिशा में घूम रहा हो, तो Support 'B' पर निश्चित अंत आघूर्ण (Fixed end moment) होगा

86. नीचे दिये गये धरन में Stiffness matrix चित्र में 1, 2 और 3 के आधार से निम्न होगी :

(a) [K] =
$$\begin{bmatrix} 4EI/I - 6EI/I^2 & 0 \\ -6EI/I^2 & 12EI/I^3 & 0 \\ 0 & 0 & AE/I \end{bmatrix}$$

(b) [K] =
$$\begin{bmatrix} -6EI/l^2 & 4EI/l & 0\\ 4EI/l & 12EI/l^3 & 0\\ 0 & 0 & AE/l \end{bmatrix}$$

(c) [K] =
$$\begin{bmatrix} 0 & 4EI/I - 6EI/I^2 \\ 4EI/I & 0 & 12EI/I^3 \\ 0 & 0 & AE/I \end{bmatrix}$$

(d) [K] =
$$\begin{bmatrix} 0 & 4EI/I - 6EI/I^2 \\ 4EI/I & 0 & 12EI/I^3 \\ AE/I & 0 & 0 \end{bmatrix}$$

- 87. प्लास्टिक सिद्धान्त निम्न के लिए इस्तेमाल होता है :
 - (a) स्तम्भ (कॉलम) (b) धरन
 - (c) कड़े फ्रेम के ढ़ाँचे (d) छतें
- 88. उलटवाँ प्रकृति का भार निम्न होगा
 - (a) भूकम्प भार
 - (b) हवा का भार
 - (c) (a) एवं (b) दोनों
 - (d) उपरोक्त कोई नहीं
- 89. अल्प प्रबलित काट वह काट है, जिसमें
 - (a) प्रबलन सरिये यील्ड प्रतिबल पर पहले पहुँच जाये।
 - (b) काँक्रीट में अधिकतम प्रतिबल पहले आ जाये।
 - (c) प्रबलन अधिकतम प्रबलन के बृराबर हो।
 - (d) इनमें से कोई नहीं।

Series_R

- The live load to be considered for an 90. inaccessible roof is
 - (a) 0
- (c) 150 kg/m^2
- Spacing of shear stirrups in a rectangular 91. RC simply supported beam is
 - (a) kept constant throughout the span.
 - (b) decreased towards the centre of beam.

increased towards the ends of beam.

- increased towards the centre of beam.
- The minimum grade of concrete that can be used for pre-tensioned beam system is
 - (a) M20
- (b) M25
- M30
- (d) M40
- The strength of compression member 93. with helical reinforcement shall be taken as the no. of times the strength of similar member with lateral ties
 - (a) 1.03
- (b) 1.05
- (c) 1.10
- (d) 1.15
- Partial safety factor concrete and steel 94. respectively may be taken as
 - (a) 1.5 and 1.15
- (b) 1.5 and 1.5
- (c) 1.5 and 1.75
- (d) 1.75 and 1.5

- In case of cantilever beam, the vertical **95**. deflection limits may generally be assumed to be satisfied provided that the span to depth ratio are not greater than
 - (a) 7
- (b) 20
- (d) 30
- 96. The diameter of longitudinal bars of an RC column should not be less than
 - (a) 6 mm
- (b) 8 mm
- 10 mm
- Enlarged head of a supporting column of 97. an Be flat slab is called
 - (a) capital
- (b) drop panel
- (c) column head
- (d) None of these
- An RC column is reported as long column 98. if the ratio of its effective length and least lateral dimension exceeds
 - (a) 10
- 5 (b) 12
- (c) 15
- (d) 20
- 99. Distribution reinforcement in a simply supported RC slab is provided to distribute
 - (a) Jøad
 - **ਪ්ර)** temperature stresses
 - (c) shrinkage stresses
 - (d) All of these
- 100. As per IS 456: 2000, the tensile strength of concrete can be obtained from
 - $0.67 \sqrt{f_{ck}}$
- (b) $0.7\sqrt{f_{ck}}$
- (c) $0.75 \sqrt{f_{ck}}$ (d) $0.87 \sqrt{f_{ck}}$

90.	वह छत जिस प	ार कोई जा न	सके के	लिए चल
		7.5	· · · .	
	बल (live load)) का मान होगा		17-1

- (a) 0
- (b) 75 kg/m²
- (c) 150 kg/m^2
- (d) 250 kg/m^2

- (a) पूरी विस्तृति पर समान रखा जाता है।
- (b) धरन के मध्य की ओर कम लिया जाता है।
- (c) धरन के सिरों की ओर बढ़ाया जाता है।
- (d) धरन के मध्य की ओर बढ़ाया जाता है।
- 92. पूर्व तनन (pre-tensioned) धरन सदस्यों में काँक्रीट की न्यूनतम श्रेणी जो प्रयोग की जा सकती है, निम्नलिखित है
 - (a) M20
- (b) M25
- (c) M30
- (d) M40
- 93. एक संपीडन अवयव की सामर्थ्य जो पेचदार प्रबलन में है, वह उसी जैसी लेटरल टाई वाली संपीडन अवयव के सामर्थ्य की कितनी गुना होगी?
 - (a) 1.03
- (b) 1.05
- (c) 1.10
- (d) 1.15
- 94. काँक्रीट और स्टील का आंशिक सुरक्षा घटक क्रमश: लिया जा सकता है
 - (a) 1.5 और 1.15
- (b) 1.5 और 1.5
- (c) 1.5 और 1.75
- (d) 1.75 और 1.5

- 95. कैन्टीलीवर (cantilever) धरन के प्रकरण में, सामान्यत: ऊर्ध्वाधर विक्षेप (vertical deflection) हद संतुष्ट तब होता है जब विस्तृति और गहराई का अनुपात इससे बड़ा न हो
 - (a) 7
- (b) 20
- (c) 26
- (d) 30
- 96. एक प्रबलित काँक्रीट स्तम्भ में अनुदैर्ध्य सरियों का व्यास निम्नलिखित से कम नहीं होना चाहिए:
 - (a) 6 मिमी.
- (b) 8 मिमी.
- (c) 10 मिमी.
- (d) 12 मिमी.
- 97. एक प्रबलित काँक्रीट फ्लैट स्लैब (flat slab) को आधार देने वाले स्तम्भ के विस्तारित शीर्ष को कहते हैं
 - (a) कैपिटल (capital)
 - (b) ड्राप पैनेल (drop panel)
 - (c) स्तम्भ शीर्ष (column head)
 - (d) इनमें से कोई नहीं
- 98. एक प्रबलित काँक्रीट स्तम्भ को लम्बा स्तम्भ तब माना जाता है जब इसकी प्रभावी लम्बाई एवं न्यूनतम पार्श्व आयाम का अनुपात निम्नलिखित से अधिक हो :
 - (a) 10
- (b) 12
- (c) 15
- (d) 20
- 99. शुद्धालम्बित प्रबलित काँक्रीट स्लैब में वितरण प्रबलन (Distribution reinforcement) निम्नलिखित के वितरण के लिए दिया जाता है :
 - (a) बल
- (b) ताप प्रतिबल
- (c) सिकुड़न प्रतिबल (d) यह सभी
- 100. IS 456 : 2000 के हिसाब से, काँक्रीट का तनाव सामर्थ्य निम्न से प्राप्त किया जा सकता है :
 - (a) 0.67 $\sqrt{f_{ck}}$
- (b) $0.7\sqrt{f_{ck}}$
- (c) $0.75 \sqrt{f_{ck}}$
- (d) $0.87 \sqrt{f_{ck}}$