ગુજરાત જાહેર સેવા આયોગ છ-૩ સર્કલ પાસે, છ રોડ, સેક્ટર-૧૦/એ, ગાંધીનગર-૩૮૨૦૧૦ જા.ક. ૫૬/૨૦૨૦-૨૧ ## જગ્યાનું નામ: સરકારી વિનયન, વાણિજ્ય અને વિજ્ઞાન કોલેજો ખાતે ગણિતશાસ્ત્ર વિષયના મદદનીશ પ્રાધ્યાપક, વર્ગ-ર (શિક્ષણ વિભાગ) ભાગ-૧ અને ભાગ-૨ ના ૧૮૦ મિનિટના સંયુક્ત પ્રશ્વપત્રની પ્રાથમિક કસોટીનો #### અભ્યાસક્રમ | <u>પ્રાથમિક કસોટીનો અભ્યાસક્રમ ભાગ -૧</u> | | | |---|--|--| | માધ્યમ: ગુજરાતી કુલ ગુણ :૧૦૦ | | | | 9 | ભારતની ભૂગોળ - ભૌગોલિક, આર્થિક, સામાજિક, કુદરતી સંસાધન અને વસ્તી અંગેની બાબતો- ગુજરાતના ખાસ
સંદર્ભ સાથે | | | ૨ | ભારતનો સાંસ્કૃતિક વારસો- સાહિત્ય, કલા, ધર્મ અને સ્થાપત્યો- ગુજરાતના ખાસ સંદર્ભ સાથે | | | 3 | ભારતનો ઈતિહાસ- ગુજરાતના ખાસ સંદર્ભ સાથે | | | 8 | ભારતની અર્થવ્યવસ્થા અને આયોજન | | | ц | ભારતીય રાજનીતિ અને ભારતનું બંધારણ: (૧) આમુખ (૨) મૂળભૂત અધિકારો અને ફરજો (૩) રાજ્યનીતિના માર્ગદર્શક સિદ્ધાંતો (૪) સંસદની રચના (૫) રાષ્ટ્રપતિની સત્તા (૬) રાજ્યપાલની સત્તા (૭) ન્યાયતંત્ર (૮) અનુસૂચિત જાતિ, અનુસૂચિત જનજાતિ અને સમાજના પછાત વર્ગો માટેની જોગવાઈઓ (૯) એટર્ની જનરલ (૧૦) નીતિ આયોગ (૧૧) પંચાયતી રાજ (૧૨) નાણા પંચ (૧૩) બંધારણીય તથા વૈધનિક સંસ્થાઓ- ભારતનું ચૂંટણી પંચ, સંઘ લોક સેવા આયોગ, રાજ્ય લોક સેવા આયોગ, કોમ્પ્ટ્રોલર એન્ડ ઓડિટર જનરલ; કેન્દ્રીય સતર્કતા આયોગ, લોકપાલ તથા લોકાયુક્ત અને કેન્દ્રીય માહિતી આયોગ | | | E | સામાન્ય બૌદ્ધિક ક્ષમતા કસોટી | | | 9 | સામાન્ય વિજ્ઞાન, પર્યાવરણ અને ઈન્ફર્મેશન એન્ડ કોમ્યુનિકેશન ટેકનોલોજી | | | ۷ | ખેલ જગત સહિત રોજબરોજના પ્રાદેશિક, રાષ્ટ્રીય અને આંતરરાષ્ટ્રીય મહત્વના બનાવો | | ### Advertise No. 56/2020-21 # <u>Assistant Professor of Mathematics in Govt. Arts, Science, Commerce College</u> <u>Class-II</u> ## Syllabus of Preliminary Test | Paper-1 | | | |-----------------------------------|---|--| | Medium: Gujarati Total Marks- 100 | | | | 1 | Geography of India-Physical, Economic, Social, Natural Resources and population | | | | related topics- with special reference to Gujarat | | | 2 | Cultural heritage of India-Literature, Art, Religion and Architecture- with special | | | | reference to Gujarat | | | 3 | History of India with special reference to Gujarat | | | | Thistory of mala with special reference to dajarat | | | 4 | Indian Economy and Planning | | | 5 | Indian Polity and the Constitution of India: | | | | (1) Preamble | | | | (2) Fundamental Rights and Fundamental Duties | | | | (3) Directive Principles of State Policy | | | | (4) Composition of Parliament | | | | (5) Powers of the President of India | | | | (6) Powers of Governor | | | | (7) Judiciary | | | | (8) Provisions for Scheduled Castes, Scheduled Tribes and backward classes of the | | | | society | | | | (9) Attorney General | | | | (10) NITIAayog | | | | (11) Panchayati Raj Institutions | | | | (12) Finance Commission | | | | (13) Constitutional and Statutory Bodies: Election Commission of India, Union | | | | Public Service Commission, State Public Service Commission, Comptroller and | | | | Auditor General; Central Vigilance Commission, Lokpal and Lokayukta, | | | | Central Information Commission | | | 6 | General Mental Ability | | | 7 | General Science, Environment and Information & Communication Technology | | | 8 | Daily events of Regional, National and International Importance including Sports | | | | | | # Syllabus for the preliminary test for the recruitment of Assistant Professor (Mathematics), Class II in Govt. Arts, Commerce and Science colleges Marks - 200 Questions - 200 Medium - English Analysis: Elementary set theory, finite, countable and uncountable sets, Real number system as a complete ordered field, Archimedean property, supremum, infimum. Sequences and series, convergence, limsup, liminf. Bolzano Weierstrass theorem, Heine Borel theorem. Continuity, uniform continuity, differentiability, mean value theorem. Sequences and series of functions, uniform convergence. Riemann sums and Riemann integral, Improper Integrals. Monotonic functions, types of discontinuity, functions of bounded variation, Lebesgue measure, Lebesgue integral. Functions of several variables, directional derivative, partial derivative, derivative as a linear transformation, inverse and implicit function theorems. Metric spaces, compactness, connectedness. Normed linear Spaces. Spaces of continuous functions as examples. **2. Linear Algebra:** Vector spaces, subspaces, linear dependence, basis, dimension, algebra of linear transformations. Algebra of matrices, rank and determinant of matrices, linear equations. Eigenvalues and eigenvectors, Cayley-Hamilton theorem. Matrix representation of linear transformations. Change of basis, canonical forms, diagonal forms, triangular forms, Jordan forms. Inner product spaces, orthonormal basis. Quadratic forms, reduction and classification of quadratic forms **3. Complex Analysis:** Algebra of complex numbers, the complex plane, polynomials, power series, transcendental functions such as exponential, trigonometric and hyperbolic functions. Analytic functions, Cauchy-Riemann equations. Contour integral, Cauchy's theorem, Cauchy's integral formula, Liouville's theorem, Maximum modulus principle, Schwarz lemma, Open mapping theorem. Taylor series, Laurent series, calculus of residues. Conformal mappings, Mobius transformations. **4. Algebra:** Permutations, combinations, pigeon-hole principle, inclusion-exclusion principle, derangements. Fundamental theorem of arithmetic, divisibility in Z, congruences, Chinese Remainder Theorem, Euler's Ø- function, primitive roots. Groups, subgroups, normal subgroups, quotient groups, homomorphisms, cyclic groups, permutation groups, Cayley's theorem, class equations, Sylow theorems. Rings, ideals, prime and maximal ideals, quotient rings, unique factorization domain, principal ideal domain, Euclidean domain. Polynomial rings and irreducibility criteria. Fields, finite fields, field extensions, Galois Theory. **5. Topology**: basis, dense sets, subspace and product topology, separation axioms, connectedness and compactness. #### 6. Ordinary Differential Equations (ODEs): Existence and uniqueness of solutions of initial value problems for first order ordinary differential equations, singular solutions of first order ODEs, system of first order ODEs. General theory of homogenous and non-homogeneous linear ODEs, variation of parameters, Sturm-Liouville boundary value problem, Green's function. #### 7. Partial Differential Equations (PDEs): Lagrange and Charpit methods for solving first order PDEs, Cauchy problem for first order PDEs. Classification of second order PDEs, General solution of higher order PDEs with constant coefficients, Method of separation of variables for Laplace, Heat and Wave equations. #### 8. Numerical Analysis: Numerical solutions of algebraic equations, Method of iteration and Newton-Raphson method, Rate of convergence, Solution of systems of linear algebraic equations using Gauss elimination and Gauss-Seidel methods, Finite differences, Lagrange, Hermite and spline interpolation, Numerical differentiation and integration, Numerical solutions of ODEs using Picard, Euler, modified Euler and Runge-Kutta methods. #### 9. Calculus of Variations: Variation of a functional, Euler-Lagrange equation, Necessary and sufficient conditions for extrema. Variational methods for boundary value problems in ordinary and partial differential equations. #### 10. Linear Integral Equations: Linear integral equation of the first and second kind of Fredholm and Volterra type, Solutions with separable kernels. Characteristic numbers and eigenfunctions, resolvent kernel. #### 11. Classical Mechanics: Generalized coordinates, Lagrange's equations, Hamilton's canonical equations, Hamilton's principle and principle of least action, Two-dimensional motion of rigid bodies, Euler's dynamical equations for the motion of a rigid body about an axis, theory of small oscillations. #### 12. Current Trends and Recent Advancements in Relevant field.