23737

120 MINUTES

1.	Latti A) C)	ce hypothesis explain Bacterial motility Antigen-antibody re		B) D)		s assembly gocytosis							
2.		ning in which of the forening recombinants?	llowing	g vectors demands replica plating for									
	A)	pUC18 B)	λΕΜΙ	BL	C)	M13mp9	D)	pBR322					
3.	Whi	ch among the followin	ıg is an	edibl	e fungu	ıs?							
	A)	Agaricus		B)	Mor	chella							
	C)	Termitomycetes	D)	All of the above									
4.	Shak	Shake flask culture is a culture.											
	A)	Batch		B)	Con	tinuous							
	C)	Semi fedbatch		D)	Fedb	oatch							
5.	Somaclone production is more possible during:												
	A)	Indirect organogene	esis	B)	Dire	ct organogen	esis						
	C)	Embryo rescue		D)	Orga	an Culture							
6.	Which is the most probable reason for non-specificity of RAPD markers? A) Decamer primer B) Low annealing temperature												
	A)	A) Decamer primer			Low	annealing ter	mperatu	ire					
	C)	Dominant nature		D)	Vary	ing buffer co	ncentra	tion					
7.	Gluc	Glucokinase and Lactate dehydrogenases are referred as isozymes because they											
	A)	Act along the same	metabo	olic pa	ıthway								
	B)	Share same structur	al featu	ares b	ut have	different cata	alytic ac	ctivities					
	C)	Catalyse same react	ion des	spite h	aving	different cher	nical str	ructures					
	D)	· · · · · · · · · · · · · · · · · · ·											
8.	What does the following equation represent?												
			$V_0 =$	$(-K_m$	$(\frac{V_0}{[S]} +$	V_{max}							
	A)	Hanes plot equation	ı										
	B)	Lineweaver Burk e	quation	n									
	C)	Eadie-Hofstee plot											
	D)	Miachelis Menten e											
9.	Keto	one bodies which are p	roduce	d in li	ver are	not utilised b	y hepat	tic cells. Why?					
	A)	Absence of acetone						·					
	B)	Absence of CoA tra	nsferas	se									

Absence of CoA dehydrogenase

Both A & B

C) D)

10.						chloroplasts is		on:				
	A)	Accumulation	on of K ⁺ ions	s B)	Accu	mulation of N	a ions					
	C)	Proton gradi	ent	D)	Mem	brane potentia	ıl					
11.	 Which of the following statements are not correct about the utilisation of the NADPH generated from the pentose phosphate pathway? A) It is used for steroid synthesis B) It is used for the regeneration of glutathione to its reduced state C) It is used for the synthesis for synthesis of fatty acid 											
	(C) (D)	It is used for It can be oxid	-	_		-						
12.	Whic	h of the follow	ving is not ar	n essent	ial amii	no acid?						
	A)	Leucine	B) Meth	nionine	C)	Serine	D) A	rginine				
13.	What are the products of urea cycle?											
	A)	A) One molecule of urea, one molecule of ammonia, one molecule of ATP and one molecule of fumaric acid										
	B)	One molecule of urea, one molecule of AMP, two molecules of ADP and one molecule of fumaric acid										
	C)		le of aspartic	acid, or	ne mole	ecule of ammo	onia, on	ne molecule				
	D)	Two molecu		wo mol	ecules o	of ammonia, o	ne mol	lecule of				
14.	Which juice secreted by the organs in the alimentary canal plays a vital role in the digestion of fats?											
		S .										
	A)	Pancreatic Juice, Saliva										
	B)	HCL, Mucus										
	C) D)	Bile juice, Pancreatic juice Mucus, Pancreatic juice										
	,		J			2						
15.	Enzymes are used for the therapy and maintenance of various diseases. Applications of four major enzymes are mentioned below. Choose the CORRECT applications:											
	1.	Streptokinas		cilitate	Wound	d healing						
	2.	Hyaluronida				tion of drug						
	3.	Collagenase				myocardial ir	farctio	าท				
	<i>4</i> .	Chymotrypis				ing the ligame						
	A)	2 & 4 only	B) 1& 3	3 only	C)	1 & 2 only	D)	3 & 4 only				

16.	In an experiment, 0.1 ml of protein free urea solution is allowed to react with
	3ml of a colour reagent containing diacetyl monoxime and acid reagent in equal
	proportion. It is boiled at 100°C for 15 minutes and cooled. The concentration of
	the given sample will be:

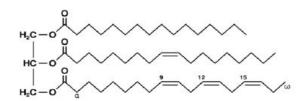
- A) Directly proportional to the absorbance of the light
- B) Directly proportional to the absence of light
- C) Indirectly proportional to the pathlength of the light
- D) Directly proportional to the temperature of the reaction
- 17. Example for a predominant phosphagen or a macroergic compound that is present in vertebral skeletal muscle and brain:
 - A) Calcium Phosphate
- B) Glucose -6- phosphatase
- C) Creatine Phosphate
- D) Phosphoprotein phosphatase
- 18. Application of radiotherapy to conquer cancer cells is done by bombarding the tumor cells with ionizing radiation. The basic mechanism involved in killing cancer cells using ionizing radiation is that radiation----.
 - A) Decreases nutritional levels in tumor cells
 - B) Cause breaks in the double-stranded DNA molecule
 - C) Increases heat sensitivity in tumor cells
 - D) Activates immune cells to prevent cancer
- 19. Which of the following is/are applications of adsorption chromatography?
 - A) Used for isolation of antibiotics
 - B) Used to detect peptides
 - C) Used to separate amino acids
 - D) All of the above
- 20. Specify the features of Photosystem I (PSI):
 - A) Maximum wavelength of excitement is 700nm
 - B) Uses chlorophyll a and b to absorb photon
 - C) Uses chlorophyll a to absorb photon energy
 - D) Both A and C
- 21. Which among the following is CORRECT regarding non-polar molecules?
 - A) O_2 , N_2 and CO are non-polar molecules
 - B) O_2 , N_2 and CO_2 are non-polar molecules
 - C) Possess a positive electric charge in the structure
 - D) Dissolves in water
- 22. The reference electrode of a pH meter is a glass tube which is in contact with the mercuric chloride block. It completes the circuit and is used to provide a stable zero voltage connection. Which solution is utilised to saturate the reference electrode?
 - A) NaCl
- B) KCl
- C) CaCl
- D) KCl and NaCl

23.	chron	xclusion chromatography, also described as gel permeation atography, is a technique that separates molecules depending on their Which among the following is TRUE? Separation occurs via a specific binding interaction between mobile phase and stationary phase Smaller molecules elute first Larger molecules stay in the porous beads in the column Smaller molecules possess more retention time.								
24.		rincipal argun re i = √-1) 150		b, a =	$1 + \sqrt{3}$	i and b	= 1/2	+ √3/2	i = ? D)	30
25.	,	nd b are the ro	oots of th	ne equ	ation 2		+4=0,	then a ²	,	
26.	The eA)	quation whose $x^2 - 2\sqrt{3} x - 2x^2 - 2\sqrt{3} x - 2x^3 - 2\sqrt{3} x - 2x^2 -$	e roots ar 22 = 0 - 28 = 0	re √3 -	– 5 and B) D)	$\sqrt{3} + 5$ $2x^2 - 2$ $x^2 - 2$	is: 2√3 x - √3 x -	- 22 = 0 28 = 0	0	
27.		rigeted genome editing technology which make use of an RNA for site nition: CRISPR B) Zinc Finger Nucleases TALENS D) MEGATALES							A for site	
28.	to pro	E coli DNA ligase mediated ligation TOPO cloning							me day to the	
29.	The mA)	naximum capa 12 Kb	•	lamb 6 Kb	da repl	acemen	it vecto 24 Kb		D)	53 Kb
30.	The so A) C)	electable mark AmpR red- and gam		Ü	B) .	TetR		on: protein	1	
31.	The v screer A)	ectors which a ning: pLITMUS pUC	are not u	sing a	alpha co B) D)	omplem pBLU pcDN	ESCR		recomb	inant

32.	Identify the A) Taq	e thermostable B)	polymeras Tth	e with pro	oof reading ac Pfu	ctivity: D)	All of these
	A) Taq	D)	I tii	C)	Tu	D)	An of these
33.	•	hydrogen bon ng with the ten		ned by a p	rimer with th	e sequer	ice 5'agtcggaatt3'
	A) 12	B)	24	C)	18	D)	10
34.	Which amo	ong the follow	ing is codo	minant mo	olecular mark	ker?	
	A) RFL	LP B)	AFLP	C)	RAPD	D)	VNTR
35.	A) Abi	odd one among SOLid nina	g the follow B D) Pyro	generation se esequencing scope	quencing	g platforms:
36.	Match the	following:					
	a. Apyraso			. LR clona			
	b. Ligation	n a Excisionase		High fide	•		
	d. Pfu	a Excisionase		. Pyrosequ . ABi SoL			
	A) a-3,	b-4, c-2, d-1	В) a-4,	b-1, c-2, d-3		
	C) a-3,	b-4, c-1, d-2	D	a-1,	b-4, c-3, d-2		
37.	Which amo	ong the follow NA B)	_	-	ular for anim PichiaPink		nes? pSPORT
38.	The cis acti	ing region req	uired for T	DNA tran	sfer:		
	A) vir A		В	*	specific endo		es
	C) rol	locus	D) left a	and right bor	ders	
39.	The microb	e developed a	ıs a biowea	pon:			
	,	ostridium	В	*	illus anthrac	is	
	C) Vari	iola virus	D)) All t	he above		
40.	-	aign initiative		•			
	,	dana Siva	В	*	na Murthy		
	C) Sum	nan Sahai	D)) Shru	ti Kapoor		
41.	wrong?	ner the followi			•	vel two a	are correct or
	Statement 2	-	mplex virus ontaminatio	-	athogen red in the fac	cility	
	,	n 1 and 2 are correct and 2 i			1 and 2 are wrong and 2	_	t

42.	Self-1 A) C)	Embryo resc Ovule cultur	ue	nts can	B) D)	Endo	by: sperm culture er culture		
43.	ĺ	easiest method Doubled Hap Embryo resc	to deve	elop ho		ous lin Endos		on	
44.	Mace A) B) C) D)	Pectinase Cellulase Pectinase and	activ d Hemi	icellulas			·		
45.	An ex A)	clusive protei DDJB	n struc B)	ture dat EMBI		: C)	GENBANK	D)	PIR
46.	Whic A)	h among the fo MUSLE	ollowin B)	ig is no MAFI		ltiple S C)	Sequence Align BLAST	nment A	Algorithm? CLUSTAL
47.	The s	tandalone plat SEQUIN	form fo	or data s BankI		ssion to C)	GENBANK: MUSCLE	D)	MEGA
48.	The s	oftware which Mr Bayes	is excl	lusive f		kimum C)	Parsimony Ar PAUP	nalysis: D)	MEGA
49.	The f A) B) C) D)	ulform of UAS Upflow Ana Upwell Anad Upwell Aero Upflow Aero	erobic S erobic Slu bic Slu	Sludge I Idge Bla	Blanke anket				
50.	The n	najor compone Methane	ent in B B)	Biogas: H ₂ S		C)	Acetylene	D)	Butane
51.	IPM : A) B) C) D)	stands for: Integrated Pl Integrated Pe Interventions Interventions	est Mar al Pest	nageme Manage	nt ement				
52.	In B2 A) C)	0 Biodiesel 20 Biodiesel co Anti-knockii	mponei	nt	percen B) D)	Petro	f leum compone Cooking Oil	ent	

53.		$\left(\frac{a}{b}\right) + \log\left(\frac{b}{a}\right) = \log\left(a + b\right)$										
	A)	a + b = 1		a-b=1								
	C)	a = b	D)	$a^2 - b^2 = 1$								
54.		manure plants belong to wh	-	•								
	A)	Asteraceae	B)	1								
	C)	Leguminosae	D)	Malvaceae								
55.	Rushton stirrers are not used in fungal bioreactors because it causes A) non-uniform mixing											
		poor radial mixing										
	C)	poor bulk mixing										
	D) air bubble flooding with high airflow rates											
56.		is the height to diameter rat										
	A)	3:1 B) 2:1		C) 4:1 D) 5:1								
57.		ommercial citric acid produ	_									
	A)	1 0	B)									
	C)	Aspergillus and Candida	D)	Penicillium								
58.		ıll-form of BASIC:										
	A)	Beginners All Purpose Syr										
	B)	Basic All Purpose Symbolic Instruction CodeBeginners All Purpose Simple Instruction Code										
	D)	Basic All purpose Simple	mstruci	non Code								
59.	Which	n among the following is no	t a mea	-								
	A)	Mean	B)									
	C)	Median	D)	Mode								
60.	Oligo	onucleotides can be synthesi	sed ont	to a solid surface by:								
	A)	Photolithography	B)	UV Crosslinking								
	C)	Oven Baking	D)	LaseR Ablation								
61.		U 1	on of fr	ruits and vegetables is temperature								
	nearer A)	to 0°C and 60-65 % humidity	,									
	B)	0°C and 85-95 % humidity										
	C)	-20°C and 85-95 % humic										
	D)	-20°C and 90-99 % humic	•									
62.	Small	est bacteria are:										
	A)	Archaebacteria	B)	Rickettsiae								
	C)	Chlamydiae	D)	Mycoplasma								


63.	A virus will contain:												
	A)	DNA only			B)	RNA	A only						
	C)	Either DN	A or RN	ΙA	D)	Both	DNA and R	NA					
64.	Bloc	od agar can be	called	a me	edium.								
	A)	Differentia	1		B) Selective								
	C)	Enrichmen	t		D)	Tran	sport						
65.	The	mechanism o	of action	n of peni	icillin i	s inhil	oition of						
	A)	protein syn	thesis		B)	pept	idoglycan syr	thesis					
	C)	DNA repli	cation		D)	lipid	synthesis						
66.		Phagocytosis was first described by:											
	A)	Lister			B)	Paste	eur						
	C)	Metchniko	ff		D)	Ehr	lich						
67.	Imm	unity obtaine	d by va	ccinatio	n is	imn	nunity.						
	A)	Natural pas		B)		ficial passive							
	C)	Natural act	tive		D)	Artif	ficial active						
68.	Imm	unoglobulin	class res	sponsibl	e for lo	cal in	nmunity:						
	A)	IgG	B)	IgA		C)	IgM	D)	IgD				
69.	Imm	unoglobulin	class se	en in hig	ghest co	oncent	ration in seru	m:					
	A)	IgG	B)	IgA		C)	IgM	D)	IgD				
70.	Size of bacterium is commonly expressed in:												
	A)	Micron	B)	Millir	micron	C)	Nanometer	D)	Angstrom				
71.	Example for a sequestered antigen:												
	A)	Lens Prote	in		B)	Bilirubin							
	C)	Rheumatoi	d factor	ſ	D)	C-re	active protein	1					
72.	Hybridoma technology is used for the production of:												
	A)	Recombina	ant vacc	ines	B)		unit vaccines						
	C)	Monoclona	al antibo	odies	D)	Reag	gin antibodies	;					
73.	Gas	- pak is used	for:										
	A)	For provid	_										
	B)	For provid											
	C)	Aerobic cu											
	D)	Anaerobic	cultivat	tion of b	acteria								
74.	Min	imum holding	g period	require	d for au	ıtocla	ving at 121°C	:					
	A)	10 min	B)	15 mi	in	C)	30min	D)	60 min				

- 75. Outcherlony procedure is based on:
 A) Radial immunodiffusion B)
 C) PAGE D)
 - D) Immunoelectrophoresis

Double immunodiffusion

- 76. Which of the following has an autoimmune etiology?
 - A) Contact dermatitis
- B) Arthus reaction
- C) Infectious mononucleosis D)
- Rheumatoid arthritis
- 77. HAT medium is used in:
 - A) Hybridoma technology
- B) Virus cultivation
- C) Vaccine production
- D) Fermentation
- 78. Which type of vaccine is hepatitis B vaccine?
 - A) Killed whole virus vaccine
 - B) Live attenuated vaccine
 - C) Subunit vaccine
 - D) DNA vaccine
- 79. Gram staining was originally devised by Christian Gram in:
 - A) 1884
- B) 1896
- C) 1902
- D) 1936

- 80. Albert's staining is for staining ----.
 - A) Bacterial flagella
- B) Endospore
- C) Volutin granules
- D) Bacterial capsule
- 81. The number of OH group present in the below given fats can be expressed as --- number.

A) Polenske

B) Reichert-Meissil

C) Acetyl

- D) Iodine
- 82. State whether the two statements given below are correct or wrong:

Statement 1: Philadelphia chromosome is associated with Chronic Myeloid

Leukaemia

Statement 2: It is a chromosome 9 and chromosome 22 fusion

- A) Both 1 and 2 are correct B) Both
 - B) Both 1 and 2 are wrong
- C) 1 is correct but 2 is wrong D)
- 1 is wrong but 2 is correct

83.	Identify the wrong statement:										
	A)	MAP kinase	s are se	erine thr	eonine	e kinase	es				
	B)	Cyclin deper	ndent k	Kinases a	are clo	sely re	lated to MAP	kinases	S		
	C)	ERKs and JNks are MAP kinases									
	D)										
84.	Which	n among the f	ollowi	ng is an	oncog	ene?					
	A)	RB	B)	P53		C)	APC	D)	c-myc		
									-		
85.	Identify the correct statement.										
	A)	•									
		formation									
	B)	Hunchback is a homeotic gene									
	C)	Hox is a maternal effect gene									
	D)	Caudal is a maternal effect gene									
86.	The plant hormones involved in flowering:										
	A)	Gibberellin B) Auxins C) Cytokinins D) ABA									
87.		ntibiotic that		ss proka	•	-					
	A)	Streptomyci			B)	Ampi					
	C)	Nalidixic Ac	cid		D)	Chlor	amphenicol				
00	ъ.										
88.		se is a:			D)	DNIA	1				
	A)	RNA polym			B)		polymerase				
	C)	Ribonucleop	rotein		D)	None	of the above				
89.	Interc	alating agents	Called								
6).	A)	Transitions	s cause.	•	B)	Trans	version				
	C)	Frame shift			D)		ense mutation	1			
	<i>C)</i>	Transc sint			D)	1 (0113)	chise matation	L			
90.	Stater	ment 1: In E	coli. R	NA prin	ner foi	r DNA	replication is	synthes	sised by		
, , ,	~						- P	5,1101102	315 3 a 3 j		
	E coli RNA polymerase Statement 2: E. coli replication is sensitive to Rifampicin										
	Zancinica. 2. 2. con repression to constant to rutampiem										
	A) Both the statements are correct and statement 1 is the correct reason for										
	statement 2										
	B)	Both stateme	ents are	e correct	t and s	tateme	nt 2 is the cor	rect rea	son for		
		statement 1									
	C)	Both stateme	ents are	e correct	t, but t	hey are	unrelated				
	D)	Statement 1	is wro	ng, state	ment 2	2 is cor	rect				
91.							ed single gene				
				g males.	. What	t will th	ne percentage	ot attec	cted temales		
		same populat		0.001		C'	0.1	ъ,	NT C.S		
	A)	0.0001	B)	0.001		C)	0.1	D)	None of these		

92.	 A hypothetical gene of <i>E coli</i> expresses to produce an mRNA of 1200nt long. What is the possible number of introns in this gene? A) One B) Two C) Zero D) Cannot determine from the given information 										
93.	 Which following statement about membrane carbohydrates is not true? A) Some are bound to proteins and some are bound to lipids B) They show little diversity C) They are added to proteins in the Golgi apparatus D) They are important in cell surface recognition reactions 										
94.	Which of the following is not a second messenger? A) ATP B) Calcium ions C) Inositol triphosphate D) Cyclic AMP										
95.	Linked genes A) Are on the same chromosome B) Have allele that assort independently of one another C) Never show crossing over D) Always have multiple alleles										
96.	 A clade is A) A type of phylogenetic tree B) A group of evolutionary related species that share a common ancestor C) An extinct species D) An ancestral species 										
97.	 Which among the following is not a prezygotic reproductive barrier? A) Temporal segregation of breeding seasons B) Hybrid infertility C) Spatial segregation of mating sites D) Sperm that cannot penetrate an egg 										
98.	Predation and herbivory are examples of interactions. A) Antagonistic B) Mutualistic C) Commensal D) Competitive										
99.	A group of individuals born at the same time frame are called: A) A deme B) A subpopulation C) A cohort D) A taxon										

100.	Ecological Succession is the change in											
	A)	species ov	er time									
	B)	communit	y compo	sition a	fter a c	listurba	ance					
	C)	a forest as	plants g	row								
	D)	the build-u	ıp of soi	l nutrier	nts							
101.	Whic	h of the foll	owing is	not cui	rrently	a majo	or cause of	species ex	tinction's	?		
	A)	Habitat de		ı								
	B)											
	C) Introduction of exotic predators											
	D)	Over explo	oitation									
102.		ndric genes	are:									
	A)	X linked			B)	Y lin						
	C)	Autosoma	1		D)	All t	he above					
103.	The p	oolyploidy co	ondition	which o	can be	called	as an ampl	hidiploids:				
	A)	AAA	B)	AAA	A	C)	AABB	D)	AA			
104.	How	many differ	ent types	s of mal	e gam	etes are	e produced	by trihybi	rid?			
	A)	9	B)	8		C)	4	D)	6			
105.	Which among the following is not true about Biopol?											
	A)											
	B)	3) It is made from PHB										
	C)	C) It is soluble in water										
	D) It has properties similar to polypropelene											
106.	The approximate size of Human Genome is:											
	A)	6.3 Mega l	bases		B)	6.3 C	Giga bases					
	C)	63 Mega b	ases		D)	63 G	iga bases					
107.	Which among the following is a disadvantage of Bayesian Algorithm compared											
		aximum Lik										
	A)	A specific				-						
	B) No specific mutation model is required											
	C)	Posterior I			bution	is use	d					
	D)	None of th	e above									
108.		h among the		ng is n o					main pro	teins		
	A)	Stable Cor	-		B)		stable inter					
	C)	Transient 1	Interacti	on	D)	None	e of the abo	ove				

109.	 Which among the following is not true about Yeast Two Hybrid Screen? A) A specific Bait to Prey interaction is assumed B) It is a method to study protein-protein interaction. C) Nonspecific Bait Prey Interactions do not affect the result. D) A DBD and TAD are the components of yeast two hybrid system 								
110.	Which of the following is not patentable in India? A) Random DNA sequences B) A plasmid vector C) An artificial animal Cellline D) A cloning methodology								
111.	State whether the two statements given below about plant variety protection in India are correct or wrong: Statement 1: In Indian Sui Generis system of plant protection plant patents are permitted Statement 2: Farmers rights to their varieties are inherent in PPVFR act of 2001								
	 A) Both 1 and 2 are correct B) Both 1 and 2 are wrong C) 1 is correct but 2 is wrong D) 1 is wrong but 2 is correct 								
112.	 The full form of UPOV: A) International Union for the Protection of new Plants B) International Union for the Protection of new Varieties of Plants C) International Convention for the protection of new plants D) International Union for Plant Patent 								
113.	The international agreement which specifies deposition of Microorganisms in IDA: A) Budapest Treaty B) Kairo Agreement C) Kyoto Agreement D) PCT								
114.	 Which among the following is patentable in India? A) An invention involving Nuclear energy B) A Scientific Principle C) A combination medicine with known ingredients D) A new design to an automobile 								
115.	State whether the two statements about Refinement in Indian patenting given below are correct or wrong: Statement 1: Dimminaco AG case changed the concept of live organism patenting in India Statement 2: Dimminaco AG case was for patenting a live recombinant organism								
	 A) Both 1 and 2 are correct B) Both 1 and 2 are wrong C) 1 is correct and 2 is wrong D) 1 is wrong and 2 is correct 								

116.	Geographical Indication registry Office of India is situated at:								
	A)	Kolkatha	B)	New D	elhi	C)	Mumbai	D)	Chennai
117.	The maximum cell to cell junctions is found in:								
	A)	5			B)		omyocytes		
	C)	Nephrocytes			Ď)	Epithelial cells			
118.	Gap junctions are absent in:								
	A)	Erythrocytes	S		B)	Cardi	ocytes		
	C)	Epithelial ce	ells		D)	Hepat	ocytes		
119.	Peroxisomes are produced from:								
	A)	Golgi Bodie	es		B)	Mitoc	hondria		
	C)	ER			D)	Nucle	eus		
120.	The polysaccharide absent in plant cell walls:								
	A)	Cellulose		-	B)	Pectin	1		
	C)	Hemicellulo	ose		Ď)	Chitin	1		