									F	4	
237	21							1	120 N	/INU	JTES
1.	The A)	maximum va 1	lue of	$2\sin^2 \Theta$ B)	∂ + 3 c 2	os ² 0 is	s: C)	3		D)	5
2.	Cons 1. 2. 3.	sider the state In a group A closed fi The set of	ements the two nite su all auto	: o cance bset of omorph	ellation a grou nisms o	n laws i up is a of a gro	hold group oup is a	a grouj	р		
	A) B) C) D)	 A) 1 and 2 are true but 3 is not true B) 2 and 3 are true but 1 is not true C) 3 and 1 are true but 2 is not true D) All the three statements are true 									
3.	If n ≥ {1, 2, A)	≥ 2, then coll ,n} forms n	ection a subg B)	of all e roup o $\frac{n!}{2}$	even po of the s	ermuta symme C)	tions c etric gr n!	of Toup <i>S</i>	nof or D)	ler: 2n	
4.	If p and Z_{pq} is A) C)	and q are pri s equal to: pq pq – 1	me nu	mbers,	the nu B) D)	umber (p – pq(p	of gen 1)(q – 0 – 1)(a	erator 1) 7 – 1)	s of th	e cycli	c group
5.	The (2 <i>x</i> + A)	$\begin{array}{l} \text{coordinates } o \\ 3y + 1 = 0 \text{ is} \\ (2, 1) \end{array}$	of the f : B)	foot of 1 (2, -	the not	rmal fr C)	rom P(; (-2,	-4, -2 -1)) on th D)	ne line (–2, ⁻	1)
6.	Integ A)	grating factor $\frac{1}{\sqrt{1-y^2}}$	of the B)	differe $\frac{1}{\sqrt{1+y}}$	ential e	quation C)	n (1 – $\frac{1}{\sqrt{1-x}}$	$(-y^2)\frac{dx}{dy}$	$\frac{2}{y} + yx =$ D)	= ay is: $\frac{1}{\sqrt{1+x}}$	2
7.	The (A) C)	general solut $xy = e^{x} + x^{3}y = e^{x}$	ion of C + C	the diff	ferentia B) D)	al equa x^2y x^3y	$\begin{array}{l} \text{tion } x \\ = e^x \\ = 2e^x \end{array}$	³ dy + + C + C	$(3x^2y)$	– e ^x)dx	x = 0 is:
8.	Two	cards are dr	awn fro	om a w	ell shr	iffled p	ack of	52 ca	rds. Th	e prob	ability

n a well shuffled pack of 52 car ð. that both are spades is: A) $\frac{1}{2}$ B) $\frac{1}{4}$ C) $\frac{1}{17}$ D) None of these obability ie pr

9. If the diagonal of a square is the line joining the points (1,3,2) and (2,1,3), then the area of the square is:

- A) 3 square units B) 4 square units
- C) 2 square units D) 1 square unit

10. The sides of an equilateral triangle are increasing at the rate of 2 cm/sec. The rate at which the area increases when the side is 10 cm is:

- A) $10 \text{ cm}^2/\text{sec}$ C) $\sqrt{3} \text{ cm}^2/\text{sec}$ B) $10\sqrt{3} \text{ cm}^2/\text{sec}$ D) $\frac{10}{\sqrt{2}} \text{ cm}^2/\text{sec}$
- 11. The Value of the definite integral $\int_{0}^{1} x(1-x)^{99} dx$ is equal to
 - The Value of the definite integral $\int_0^1 x(1-x)^{99} dx$ is equal to: A) $\frac{1}{11000}$ B) $\frac{1}{10010}$ C) $\frac{1}{10001}$ D) $\frac{1}{10100}$
- 12. Which among the following statements is **not** true?
 - A) Product topology is the weak topology determined by the projection functions.
 - B) Every open, surjective map is a quotient map.
 - C) Every quotient map is either open or closed.
 - D) Every closed, surjective map is a quotient map.

13. Taylor series of $\frac{1}{z}$ about z = 1 is:

- A) $1 + (z-1)^{z} + (z-1)^{2} + (z-1)^{3} + \cdots$
- B) $1 (z 1) (z 1)^2 (z 1)^3 \cdots$
- C) $1 (z 1) + (z 1)^2 (z 1)^3 + \cdots$
- D) $1 (z + 1) + (z + 1)^2 (z + 1)^3 + \cdots$
- 14. If $x + iy = \frac{a+ib}{a-ib}$, then x and y satisfy the equation: A) $x^2 + y^2 = 0$ B) $x^2 + y^2 = 1$ C) $x^2 - y^2 = 0$ D) $x^2 - y^2 = 1$

15. The inverse of the Mobius transformation $f(z) = \frac{az+b}{cz+d}$, where $ad - bc \neq 0$ is: A) $\frac{az-b}{cz-d}$ B) $\frac{dz-b}{a-cz}$ C) $\frac{dz-b}{cz+a}$ D) $\frac{dz+b}{-cz+a}$

- 16. If E_2 denotes the complex plane, among the following statements which is **not** true?
 - A) The function $f(z) = z^n$ where *n* is a positive integer is analytic at all Points in E_2
 - B) Polynomials are analytic everywhere in E_2
 - C) The exponential function $f(z) = e^x$ is analytic everywhere in E_2
 - D) None of these

- 17. A homomorphism f of a group G into a group G' is one-one if and only if the kernel of the function f
 - A) is empty B) contains only one element
 - C) contains G D) contains only the identity element of G'

18. If U and V are vector spaces of dimensions m and n respectively, then the vector space Hom(U, V) is of dimension:

A) m + n B) m - n C) $m \times n$ D) m^n

- 19. Any basis \mathcal{B} for the three dimensional Euclidean space \mathcal{R}^3 over \mathcal{R} , will contain:
 - A) Exactly three elements B) Less than three elements
 - C) At least three elements D) Infinite number of elements
- 20. If *A* and *B* are symmetric matrices of the same order, then which of the following is true?
 - A) AB is always symmetric B) AB is never symmetric
 - C) AB is skew symmetric D) AB is symmetric if and only if AB = BA
- 21. If u and v are two subspaces of a vector space W, then which one of the following results is **not** equivalent to the other three?
 - A) $\mathcal{W} = \mathcal{U} \oplus \mathcal{V}$, \oplus denotes the direct sum
 - B) $\mathcal{U} \cap \mathcal{V} = \phi$ and $\mathcal{U} + \mathcal{V} = \mathcal{W}$
 - C) $\mathcal{U} \cap \mathcal{V} = \{0\} \text{ and } \mathcal{U} + \mathcal{V} = \mathcal{W}$
 - D) Every vector $z \in W$ may be written in the form z = x + y, $x \in U$, $y \in V$, in one and only one way.

22. The matrix
$$A = \begin{pmatrix} 8 & x & 0 \\ 4 & 0 & 2 \\ 12 & 6 & 0 \end{pmatrix}$$
 is singular if:
A) $x = 0$ B) $x = 2$ C) $x = 4$ D) $x = 8$

23. If the characteristic equation of a matrix M is $\lambda^2 - \lambda - 1 = 0$, then A) $M^{-1} = M$ B) $M^{-1} = M + I$ C) $M^{-1} = M - I$ D) None of these

24. If θ is the angle between the two planes x + 2y + z = 7 and 2x - y + z = 13, then θ is equal to: A) $\cos^{-1}(\frac{1}{2})$ B) $\cos^{-1}(\frac{1}{2})$ C) $\cos^{-1}(\frac{1}{4})$ D) $\cos^{-1}(\frac{1}{6})$

26.	The v A)	alue of x sati 14	sfying t B) 2	he equ 22	uation	150 <i>x</i> ≡ C)	= 35(mod31) 24	is: D)	12
27.	If E_0 lemm A) C)	and E_1 are dina states that for $F _{E_0} = 0$ and $F(x) = 1$ for	sjoint cl there exist $F _{E_1} = 0$ all $x \in 0$	osed s ists a c 0 <i>X</i>	subsets continu B) D)	s of a r uous fu F(x) = none o	netric space x inction $F = X$ x = 0 for all $x = 0of these$	X, then $T \rightarrow [0,]$ $\equiv X$	Urysohn's 1] such that:
28.	For 1 that :	$\leq p < \infty \operatorname{con}_{x}$	sider the .) and y	e seque v = (0	ence s	pace <i>l^p</i> .), the	with p norm n $ x - y _p$ is	. If x, gequal	$y \in l^p$ such to:
	A)	1	B) 2	2		C)	2 ^{<i>p</i>}	D)	$2^{\frac{1}{p}}$
29.	 Consider the statements: A discrete metric space is complete The set of real numbers with usual metric is complete 								
	A) C)	1 is true but Both 1 and	2 is fals 2 are tru	se le	B) D)	2 is tru Both 1	ue but 1 is fal and 2 are fa	se alse	
30.	Let x and y be measurable functions with measure m on a set E, $1 and \frac{1}{p} + \frac{1}{q} = 1. Then Holder's inequality is:A) \int_{E} xy dm \le (\int_{E} x dm) (\int_{E} y dm)$								
	B)	$\int_{E} xy dm \le$	$(\int_{E} x ^{p} dx)$	$lm)^{\frac{1}{p}}(\int$	$\int_{E} y ^{q} d$	$lm)^{\frac{1}{q}}$			
	C)	$(\int_{E} x + y ^{p} d$	$(m)^{\frac{1}{p}} \leq ($	$\int_{E} x ^{p} dx$	$dm)^{\frac{1}{p}}$ +	$-(\int_{E} y)$	$(p^{p}dm)^{\frac{1}{p}}$		
	D)	$(\int_{E} x + y ^{q} d$	$(m)^{\frac{1}{q}} \leq (1)$	$\int_{E} y ^{q} dx$	$dm)^{\frac{1}{q}} +$	$-(\int_{E} y $	$ ^{q}dm)^{\frac{1}{q}}$		
31.	Let X space $f \in X$ A) C)	T be a norme of Y. Then H X' such that: f = g f Y = g and	d space Iahn Bar <i>f</i> =	over nach E g	K,Y b Extens B) D)	e a sub ion the f X = none of	ospace of X orem states f g and $ f =$ of these	and g that the $ g $	$\in Y'$, the dual ere is some
32.	Let X 1. If 2. If 3. If	$\begin{array}{l} f be a normed \\ E_1 \subset X \text{ is an} \\ E \subset X \text{ is con} \\ Y \text{ is a subspa} \end{array}$	linear s open se vex, the ce of X, f	pace. et and n so is then ¥	Consident $E_2 \subset E_2 \subset S E^0$ ar	der the $X, the $ ad \overline{E} if and	statements: $n E_1 + E_2$ is only if $Y^0 =$	open. Φ	
	A)	1 is a false s	statemer	nt	B)	2 is a	false stateme	ent	

C) 3 is a false statement D) None of 1, 2 or 3 is a false statement

33. A linear operator on
$$\mathbb{R}^2$$
 with standard inner product is defined by $T(x, y) = (x + 2y, x - y)$ Then the adjoint T^* is given by $T^*(x, y) = A$ $(x + 2x - y)$ B) $(x - y, 2x + y)$
() $(x - y, 2x - y)$ D) $(x + y, 2x + y)$
34. If the sets A and B are defined by $A = \{(x, y): y = e^x, x \in \mathbb{R}\}$ and $B = \{(x, y): y = x, x \in \mathbb{R}\}$. Then
(A) $A \subseteq B$ B) $B \subseteq A$ C) $A \cap B = \varphi$ D) $A \cup B = A$
35. If $f(x) = \frac{a^x + a^{-x}}{2}$ then $f(x + y) + f(x - y)$ is:
(A) $f(x)f(y)$ B) $2f(x)f(y)$ C) $\frac{f(x)}{f(y)}$ D) None of these
36. $\int \frac{\sin x}{\sin x - \cos x} dx$ is:
(A) $\frac{x}{2} - \frac{1}{2} \ln |\sin x - \cos x| + c$
(B) $\frac{x}{2} + \frac{1}{2} \ln |\sin x + \cos x| + c$
(C) $\frac{x}{2} + \frac{1}{2} \ln |\sin x + \cos x| + c$
37. The solution of $\frac{dy}{dx} = 1 + \tan (y - x)$ is:
(A) $\sin(y + x) = e^{-x} + c$ B) $\sin(y - x) = e^x + c$
(C) $\cos(y - x) = e^{-x} + c$ D) $\cos((y - x)) = e^x + c$
38. The equation of the plane which passes through the points (1,1,1),(3,-1,2) and (-3,5,-4) is:
(A) $x + 2y - 3z = 7$ B) $x + 5y - 3z = 1$
(C) $x - 4y + z = 3$ D) $x + y - 2 = 0$
39. The slope of the curve $y^3 - xy^2 = 4$ at the point $y = 2$ is:
(A) 2 B) $-\frac{1}{2}$ C) $\frac{1}{2}$ D) -2
40. A linear transformation maps a point (x, y) in the plane to another point (\hat{x}, \hat{y}) according to the rule $\hat{x} = 3y$ and $\hat{y} = 2x$. Then the disc $x^2 + y^2 \le 1$ gets transformed into the region with an area equal to:
(A) 12π B) 6π C) 60π D) 8π
41. What is the value of the definite integral $\int_{-2}^{3} |x + 1| dx?$
(A) $\frac{5}{2}$ B) $\frac{11}{2}$ C) $\frac{7}{2}$ D) $\frac{17}{2}$

- 42. Two persons sit in at a round table along with 10 others. What is the probability that the two persons always sit together?
 - 5 9 $\frac{2}{11}$ C) A) B) D)
- 43. Which of the following is **not** true?
 - A) Subset of a countable set is countable
 - B) Superset of an uncountable set is uncountable
 - C) Countable union of countable set is countable
 - D) Countable product of countable set is countable
- If $\{y_n\}$ is strictly increasing and diverges to $+\infty$ and $\frac{x_n x_{n-1}}{y_n y_{n-1}} \to l$ then $\frac{x_n}{y_n}$ 44. converges to: C) l B) 1 D) A) 0 $+\infty$
- The supremum and infimum of the set $\left\{\frac{1}{m} \frac{1}{n} \middle| m, n \in \mathbb{N}\right\}$ is respectively: (A) 2 0 B) 2,1 C) 1, -1 D) None of these 45.
- 46. Which of the following is **not** true?
 - Strictly monotonic functions are always one-one A)
 - Strictly monotonic functions on an interval are always continuous B)
 - There always exists continuous onto function $f:(0,1) \rightarrow [0,1]$ C)
 - There exists no continuous onto function $f: [0,1] \rightarrow (0,1)$ D)
- 47. If f and g are uniformly continuous on a set A, then which of the following is **not** true?
 - f + g is uniformly continuous on A A)
 - f g is uniformly continuous on A B)
 - fg is uniformly continuous on A C)
 - $\frac{1}{f}$ is uniformly continuous on A if f is bounded away from 0 D)
- 48. Which of the following is **not** true?
 - G_{δ} sets are Borel set A)
 - F_{σ} sets are Borel set B)
 - F_{σ} sets need not be a Borel set C)
 - D) A countable intersection of open sets is a Borel set
- 49.
- The radius of convergence of the series $f(z) = \sum 4^n z^{2n}$ A) 1 B) $\frac{1}{2}$ C) 2 D) ∞

- 50. Which one of the following is true?
 - A) The Cantor set C is open, uncountable set of measure zero
 - B) The Cantor set C is closed, uncountable set of measure zero
 - C) The Cantor set C is open, countable set of measure zero
 - D) The Cantor set C is closed, countable set of measure zero
- 51. Which of the following is true?
 - A) If f is differentiable at z_0 then $\overline{f(\overline{z})}$ is differentiable at z_0
 - B) If f is continuous at z_0 then $\overline{f(\overline{z})}$ is continuous at z_0
 - C) If f is analytic in an unit disc, then $\overline{f(\overline{z})}$ is analytic in that unit disc
 - D) None of these

	D)	None of the	30									
52.	Whic	h of the follo	wing f	functio	ns are	contin	uous at orig	in?				
	A)	$f(x,y)=\frac{1}{x}$	$\frac{xy}{x^2+y^2}$		B)	$f(x_i)$	$y) = \frac{x^2 y^2}{(x+y^2)}$	3				
	C)	$f(x,y)=\frac{x}{x}$	$\frac{x^3 - 2y^3}{x^2 + y^2}$		D)	$f(x_i)$	$y) = \frac{x^2 y^2}{x^4 + y^4}$					
53.	The residue of <i>cot</i> z at $z = 0$ is:											
	A)	0	B)	1		C)	i	D)	$\sqrt{2}$			
54.	Number of homomorphisms from $\mathbb{Z}_4 \to \mathbb{Z}_2 \times \mathbb{Z}_2$:											
	A)	1	B)	2	-	C)	3	D)	4			
55.	The number of Sylow-3 subgroups of D_6 :											
	A)	1	B)	2	•	C)	3	D)	4			
56.	Which of the following is not true?											
	A)	A) Every group of order 99 is abelian.										
	B)	Every group of order 255 is cyclic.										
	C)	Every group of order 25 is simple.										
	D)	The centre of	of a gr	oup is	always	norma	al and abelia	an.				
57.	Number of zero divisors of \mathbb{Z}_{18} :											
	A)	2	B)	4		C)	9	D)	11			
58.	Whic	h of the follo	wing i	is not t	rue?							
	A)	If R is an integral dam	integr	al don	nain ar	nd I is	s an ideal,	then R	/I is also a	ın		
	D)	Integral don	ita ao	mmuto	tivo rin	a with	unity than	0110201	movimal ida	പ		
	<i>(</i> 0	is a prime ideal										
		*										

- C) < 2 + 2i > is not a prime ideal in $\mathbb{Z}[i]$
- D) $\mathbb{Z}_5[i]$ is not an integral domain

- 59. Which of the following is **not** true?
 - Every finite extension is an algebraic extension A)
 - B) Every simple is a finite extension
 - C) $\mathbb{Q}(\pi)$ is not a finite extension of \mathbb{Q}
 - $\mathbb{Q}(\sqrt{2})$ is a finite extension of \mathbb{Q} D)
- 60. Which of the following is **not** true?
 - A) $\mathbb{Z}[i]$ is a subring of \mathbb{C}
 - $\{0,2,4\}$ is a subring of \mathbb{Z}_6 B)
 - $\left\{ \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix} \middle| a, b \in \mathbb{Z} \right\}$ is a subring of ring of all 2 × 2 matrices over \mathbb{Z} C)
 - $\{n\sqrt{2}|n \in \mathbb{Z}\}$ is a subring of \mathbb{R} D)
- 61. If a and b are idempotent elements in a commutative ring, then which of the following is **not** idempotent?

C) a - ab D) a + b - abA) ab B) a + b

- 62. Which of the following is **not** true?
 - $2x^2 + 4$ is irreducible over \mathbb{R} A)
 - $x^2 + 1$ is irreducible over \mathbb{Z}_3 B)
 - C)
 - $x^{2} + 1$ is irreducible over \mathbb{Z}_{5} $x^{3} + x + 1$ is irreducible over \mathbb{Z}_{2} D)
- 63. Which of the following is **not** true?
 - Any set containing the zero vector is linearly independent A)
 - B) The empty set is linearly independent
 - C) The singleton set $\{x\}, x \neq 0$ is linearly independent
 - D) A subset of any linearly independent is linearly independent

If *B* is a non-singular matrix and $A = B \begin{pmatrix} 0 & 1 & 2 \\ 0 & 0 & 3 \\ 0 & 0 & 0 \end{pmatrix} B^{-1}$, then which of the 64.

following is true? A) $A^2 = I$ B) $A^3 = I$ C) $A^2 = 0$ D) $A^3 = 0$

Let $M_n(\mathbb{R})$ be the vector space of all $n \times n$ matrices over \mathbb{R} . Then which of 65. the following is a subspace of $M_n(\mathbb{R})$?

A)	$\{A Trace(A) = 0\}$	B)	$\{A det(A) = 0\}$
C)	$\{A det(A) \neq 0\}$	D)	$\{A det(A) = 1\}$

The dimension of the vector space $M_2(\mathbb{C})$ of all 2×2 matrices with 66. complex entries over \mathbb{R} is:

67.	Which of the following is not a linear transformation? A) $T: \mathbb{R}^2 \to \mathbb{R}^2$ given by $T(x, y) = (y, x)$ B) $T: \mathbb{R}^2 \to \mathbb{R}$ given by $T(x, y) = x$ C) $T: \mathbb{R}^2 \to \mathbb{R}^2$ given by $T(x, y) = (0, y)$ D) $T: \mathbb{R}^2 \to \mathbb{R}^2$ given by $T(x, y) = (1, x)$									
68.	If λ is an eigen value of a matrix A , then which of the following is not true? A) $\lambda - k$ is an eigen value of $A - kI$ B) $\lambda^2 + \lambda + 1$ is an eigen value of $A^2 + A + I$ C) $\frac{1}{\lambda}$ is an eigen value of $adj(A)$ D) λ^2 is an eigen value of A^2									
69.	The unit digit of 7^{2023} is:									
	A)	3	B)	5		C)	7	D)	9	
70.	If ø is A)	s the Euler To 192	otient f B)	unction 144	n, then	φ(φ(C)	1001)) is: 202	D)	248	
71.	Integ A)	rating factor $\frac{1}{x}$	of the B)	$\frac{1}{x^2}$	ntial ec	quatior C)	$\frac{1}{-\frac{1}{x^2}} + (x^2)$	y – x) D)	$dy = 0$ is $-\frac{1}{x}$	
72.	The p A) C)	the partial differential equation $\frac{\partial^2 u}{\partial t^2} - c^2 \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \right) = 0, c \neq 0$ is called: () Laplace Equation B) Heat Equation () Wave Equation D) None of these								
73.	The general solution of the partial differential equation $y^2 \frac{\partial z}{\partial x} - xy \frac{\partial z}{\partial y} = x(z - 2y)$ is: A) $\varphi(x^2 + y^2, y^2 - yz) = 0$ B) $\varphi(x^3 - x^2y, x + y + z) = 0$ C) $\varphi(x^2 + xy, y + z) = 0$ D) $\varphi(x^2 - y^3, y - z) = 0$									
74.	 Let (X, d) be discrete metric space, Consider the following statements and state which is true? 1. Every open cover of X has a finite subcover 									

- Every infinite subset of X is not compact. 2.
- Both 1 and 2 are false A) Both 1 and 2 are true B)
- C) 1 is true and 2 is false D) 1 is false and 2 is true

- 75. Let $f: X \to Y$ be a closed bijective map between metric spaces X and Y such that Y is compact. Then
 - A) X need not be compact but f is continuous
 - B) X is compact but f need not be continuous
 - C) X need not be compact and f need not be continuous
 - D) X is compact and f is continuous
- 76. Which of the following is **not** true?
 - A) Let (X, d) be a metric space and $\subseteq X$. Then $a \in A$ is a boundary point of A if and only if a is a limit point of X / A
 - B) A connected subset A of \mathbb{R} is connected in \mathbb{R}^2
 - C) A totally bounded and complete metric space is compact
 - D) If a metric space X is connected then there exists a non-constant continuous function $f: X \to \{0,1\}$
- 77. Which of the following subset of \mathbb{R} with usual metric is neither open set nor closed?

A) (3,5) B) $\{1,2,3,4\}$ C) $[1,2]\cup(3,4)$ D) $[1,4]\cup(2,3)$

- 78. Let X={a,b,c,d,e} and $\tau = \{x,\phi,\{a,b,c\},\{c\},\{c,d,e\}\}$. Then which of the following is true?
 - A) $\{a,d,e\}$ is in closed set of X
 - B) X,ϕ are the only closed subsets of X
 - C) X is connected
 - D) X is not compact
- 79. Which of the following is a Banach space? A) \mathbb{R}^n B) ℓ^{∞} C) \mathbb{C}^n D) All of these

80. In \mathbb{R}^2 , Which of the following norms are equivalent for $x = (x_1, x_2)$ $||x||_1 = \sqrt{x_1^2 + x_2^2}$

$$\|x\|_{2} = |x_{1}| + |x_{2}|$$

$$\|x\|_{3} = \max(|x_{1}|, |x_{2}|)$$

- A) $||x||_1$ and $||x||_2$ only B) $||x||_1$ and $||x||_3$ only
- C) $||x||_2$ and $||x||_3$ only D) $||x||_1$, $||x||_2$ and $||x||_3$