Adda|24

Subject 9210/TFU-MATH/ELG-II SET -

Question Booklet No. 600475

TOTAL TO MILL TO	परीक्षार्थी द्वारा बॉल-प्वाइण्ट पेन से भरा जाए To be filled in by Candidate by Ball-Point pen only	उत्तर-शीट का क्र Sl. No. of Answe	
Seal of Superintendent of Examination Centre	अनुक्रमांक Roll No. घोषणा : मैंने नीचे दिये गये निर्देश अच्छी तरह पढ़कर Declaration : I have read and understood the ir	समझ लिए हैं। nstructions given	below.
वीक्षक के हस्ताक्षर (Signature of Invigilator) वीक्षक के नाम	अभ्यर्थी के हस्ताक्षर (Signature of Candidate) अभ्यर्थी का नाम		
(Name of Invigilator)	(Name of Candidate)	Maximum Marks:	200
Paper: II Subject: MAIHEMAI	0 2 7	A rivery	100

Paper: II इस प्रश्न-पुस्तिका में पृष्ठों की संख्या Number of Pages in this Question Booklet

इस प्रश्न-पुस्तिका में प्रश्नों की संख्या Number of Questions in this Question Booklet

INSTRUCTION TO CANDIDATES

1. Immediately after getting the Booklet read instructions carefully, mentioned on the front and back page of the Question Booklet and do not open the seal given on the right hand side, unless asked by the invigilator. Do not accept a booklet without sticker-seal and do not accept an open booklet. As soon as you are instructed to open the booklet in the first 5 minutes you should compulsorily tally the number of pages and number of questions in the booklet with the information printed on the cover page. Faulty booklets due to pages/questions missing or duplicate or not in serial order or any other discrepancy should be got replaced immediately within 5 minutes. Afterwards, neither the Question Booklet will be replaced nor any extra time will be given.

2. Write your Roll No., Answer-Sheet No., in the specified places

given above and put your signature. Make all entries in the OMR Answer-Sheet as per the given instructions, otherwise Answer-Sheet will not be evaluated.

For each question in the Question Booklet choose only one correct/most appropriate answer, out of four options given and darken the circle provided against that option in the OMR Answer-Sheet, bearing the same serial number of the question. Darken the circle with Black or Blue ball-point

5. Darken the circle of chosen option fully, otherwise answers will not be evaluated.

(C) (D) If (B) is correct answer. Example: (A) There are 100 objective type questions in this Booklet.

All questions carry two marks each. - 60 Questions PART - II (A) Mathematics Group - 40 Questions 61-100

OR - 40 Questions 61-100 PART - II (B) Statistics Group Part - I is compulsory. Candidate has to attempt Part - II (A)

or Part - II (B). 7. Do not write anything anywhere in the Question Booklet or on the Answer-Sheet except making entries in the specified places. Rough work is to be done in the space provided in

8. When the examination is over, original OMR Answer Sheet is this booklet. to be handed over to the invigilator before leaving the examination hall, while the Question Booklet and carbon copy of the Answer-Sheet can be retained by the candidate.

There is no negative marks for incorrect answer.

10. Use of any calculator/log table/mobile phone is prohibited. 11. In case of any ambiguity in Hindi & English versions, the

English version shall be considered authentic. For Technical words terminology in English shall be considered as standard.

अभ्यर्थियों के लिए निर्देश

1. प्रश्न-पुस्तिका मिलते ही मुख पृष्ठ एवं अंतिम पृष्ठ में दिए गए निर्देशों को अच्छी तरह पढ़ लें। दाहिनी ओर लगी सील को वीक्षक के कहने से पूर्व न खोलें। स्टीकर सील के बगैर प्रश्न पुस्तिका या खुले हुथे प्रश्न पुस्तिका को स्वीकार न करें। प्रश्न पुस्तिका को खोलने के लिए जैसा ही कहा जायेगा प्रथम 5 मिनिट में अनिवार्यतः मुख पृष्ठ पर अंकित पृष्ठों की संख्या एवं प्रश्नों की संख्या को पुस्तिका में पृष्ठों की संख्या एवं प्रश्नों की संख्या से मिलान कर लेवें। पृथ्वों/प्रश्नों का छूटना या पुन: मुद्रित हो जाना या क्रम में नहीं रहना या अन्य किसी विरोधाभास के कारण प्राप्त त्रुटिपूर्ण प्रश्न पुस्तिका को इन्हों 5 मिनिट के अंदर बदलवा लेवें। इसके पश्चात न ही प्रश्न पुस्तिका बदला जा सकता है और न ही कोई अतिरिक्त समय दिया जायेगा।

ऊपर दिए हुए निर्धारित स्थानों में अपना अनुक्रमांक, उत्तर-पुस्तिका का क्रमांक लिखें तथा अपने हस्ताक्षर करें।

ओ.एम.आर. उत्तर-शीट में समस्त प्रविष्टियां दिये गये निर्देशानुसार करें अन्यथा उत्तर-शीट का मूल्यांकन नहीं किया जाएगा।

प्रत्येक प्रश्न के उत्तर हेर्तु प्रश्न-पुस्तिका में प्रश्न के नीचे दिए गए चार विकल्पों में से सही/सबसे उपयुक्त केवल एक ही विकल्प का चयन कर ओ.एम.आर. उत्तर-शीट में उसी विकल्प वाले गोले को, जो उस प्रश्न के सरल क्रमांक से सम्बंधित हो, काले या नीले बॉल-प्वाइण्ट पेन से भरें।

सही उत्तर वाले गोले को अच्छी तरह से भरें, अन्यथा उत्तरों का मूल्यांकन नहीं होगा।

(C) (D) यदि (B) उत्तर सही है। उदाहरण : (A)

प्रश्न-पुस्तिका में 100 वस्तुनिष्ठ प्रश्न दिए गए हैं। प्रत्येक प्रश्न के लिए 2 अंक निर्धारित है।

60 प्रश्न 1-60 भाग-1 61-100 40 ਪੁਝਜ भाग-II (A) गणित समूह अथवा

40 प्रश्न भाग-II (B) सांख्यिकी समृह भाग-I अनिवार्य है। अभ्यर्थी को भाग-II (A) अथवा भाग-II (B) का उत्तर देना आवश्यक है।

 प्रश्न-पुस्तिका तथा उत्तर-शीट में निर्दिष्ट स्थानों पर प्रविष्टियां भरने के अतिरिक्त कहीं भी कुछ न लिखें। एफ कार्य, इस पुस्तिका में उपलब्ध स्थान पर करें।

 परीक्षा समाप्ति के उपरान्त तथा कक्ष छोड़ने के पूर्व मूल ओ.एम.आर. उत्तर-शीट वीक्षक को सौंपा जाए। प्रश्न-पुस्तिको एवं उत्तर-शीट की कार्बन कॉपी परीक्षार्थी अपने साथ ले जा सकते हैं।

गलत उत्तर के लिए ऋणात्मक मूल्यांकन नहीं किया जावेगा।

10. किसी भी तरह के कैलकुलेटर/लॉग टेबल/मोबाइल फोन का प्रयोग वर्जित है।

11. प्रश्नों की संरचना में यदि हिन्दी एवं अंग्रेजी के मुद्रण में कोई संशय की स्थिति हो, तो अंग्रेजी मुद्रण को प्रामाणिक माना जायेगा। तकनीकी शब्दों के लिये अंग्रेजी शब्दावली ही मानक माना जायेगा।

9210/TFU-MATH/ELG-II

Set - A

SPACE FOR ROUGH WORK / रफ कार्य के लिये जगह

The same of the sa

Out 16 and property of the plantage of the property of the first of the plantage of the planta

PART - I भाग - I

7	71	Contract Contract		· Same	
1.	Choose	tho	12	CO	
	CILOUSE	LLIC	La	136	

- (A) The set of all m×n matrices with rational elements is not a vector space over the field of real numbers.
- (B) The set $\{(a, 2a, 2a+1) : a \in R\}$ is a subspace of $R^3(R)$.
- (C) The vectors (2, 0, 0), (0, 2, 0) and (0, 0, 2) are linearly independent in R³(R).
- (D) Linear span of a subset of a vector space need not be a subspace.
- 2. An n×n matrix A is invertible if and only if the corresponding linear transformation T is:
 - (A) Non-singular
 - (B) Singular
 - (C) Symmetric
 - (D) Skew symmetric
- 3. Suppose (X, | | | |) is a normed linear space. Which of the following is true?
 - (A) X is a metric space and | | | | is a real valued function on X.
 - (B) X is a vector space and | | | | is a real valued function on X.
 - (C) X is a vector space and | | | | is a complex valued function on X.
 - (D) None of above

1. गलत को चयन कीजिए:

- (A) परिमेय अवयवों के सभी m×n आव्यूहों का समुच्चय, वास्तविक संख्याओं के क्षेत्र के ऊपर सदिश समष्टि नहीं है।
- (B) समुच्चय {(a, 2a, 2a+1) : a ∈ R}, R³(R) का उपसमिष्ट है।
- (C) R³(R) में सदिश (2, 0, 0), (0, 2, 0) और (0, 0, 2) रैखिकत: स्वतंत्र हैं।
- (D) सदिश समिष्ट के उप-समुच्चय का रैखिक विस्तृति उपसमिष्ट होना आवश्यक नहीं है।
- 2. एक n×n आव्यूह A व्युत्क्रमणीय है यदि और केवल यदि T का संगत रैखिक रूपांतरण होगा :
 - (A) अव्युत्क्रमणीय
 - (B) व्युत्क्रमणीय
 - (C) सममित
 - (D) विषम सममित
- माना कि (X, || ||) एक मानकित रैखिक समिष्टि है तो निम्न में से कौन–सा सही है?
 - (A) X एक दूरीक समष्टि है और || ||, X पर वास्तविक मान फलन है।
 - (B) X एक सदिश समष्टि है और || ||, X पर वास्तविक मान फलन है।
 - (C) X एक सदिश समष्टि है और || ||, X पर संम्मिश्रमानी फलन है।
 - (D) उपरोक्त कोई भी नहीं

4.	The series	$\sum_{n=1}^{\infty}$	$\frac{(-1)^n}{\sqrt{n}}$	$\left(1+\right)$	$\frac{1}{n^2}$:
----	------------	-----------------------	---------------------------	-------------------	-----------------	---

- (A) is bounded, but divergent
- (B) converges absolutely
- (C) converges to +∞
- (D) converges conditionally, but not absolutely
- 5. Let $T: V_2 \rightarrow V_3$ be a linear transformation defined by

$$T(x_1, x_2) = (x_1 + x_2, 2x_1 - x_2, 7x_2)$$

If
$$B_1 = \{e_1, e_2\}$$
 and $B_2 = \{f_1, f_2, f_3\}$

are standard bases of V_2 and V_3 respectively, then the matrix of T relative to B_1 and B_2 is:

(A)
$$\begin{bmatrix} 1 & 1 \\ 2 & -1 \\ 0 & 7 \end{bmatrix}$$

(B)
$$\begin{bmatrix} 1 & 1 \\ 2 & -1 \\ 1 & 7 \end{bmatrix}$$

(C)
$$\begin{bmatrix} 1 & 1 \\ 2 & 1 \\ 0 & -7 \end{bmatrix}$$

(D)
$$\begin{bmatrix} 1 & 0 \\ 2 & -1 \\ 0 & -7 \end{bmatrix}$$

4. श्रेणीक्रम,
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n}} \left(1 + \frac{1}{n^2}\right)$$
:

- (A) परिसीमित है परन्तु अपसारी है
- (B) सम्पूर्ण अभिसरण होता है
- (C) + ∞ तक अभिसरीत होता है
- (D) शर्त आधारीत अभिसरण परन्तु सम्पूर्ण अभिसरण नहीं
- 5. माना कि $T: V_2 \rightarrow V_3$ रैखिक रूपांतरण है जिसे $T(x_1, x_2) = (x_1 + x_2, 2x_1 x_2, 7x_2)$ से परिभाषित किया गया है।

यदि
$$B_1 = \{e_1, e_2\}$$
 तथा $B_2 = \{f_1, f_2, f_3\}$

क्रमशः V_2 तथा V_3 के मानक आधार हैं, तो B_1 तथा B_2 के सापेक्ष T का आव्यूह होगा :

(A)
$$\begin{bmatrix} 1 & 1 \\ 2 & -1 \\ 0 & 7 \end{bmatrix}$$

(B)
$$\begin{bmatrix} 1 & 1 \\ 2 & -1 \\ 1 & 7 \end{bmatrix}$$

(C) $\begin{bmatrix} 1 & 1 \\ 2 & 1 \\ 0 & -7 \end{bmatrix}$

(D)
$$\begin{bmatrix} 1 & 0 \\ 2 & -1 \\ 0 & -7 \end{bmatrix}$$

6. Which of the following integral(s) converges?

(a)
$$\int_{-\infty}^{0} \frac{\mathrm{dX}}{\left(X-1\right)^2}$$

(b)
$$\int_{-\infty}^{\infty} e^{-X} dX$$

(c)
$$\int_{1}^{\infty} \frac{3x^2 dX}{\sqrt{x^3}}$$

- (A) (a) only
- (B) (c) only
- (C) (a) and (b) only
- (D) (a), (b) and (c)
- 7. For the function $f: \mathbb{R}^2 \to \mathbb{R}$ defined by

$$f(x, y) = \begin{cases} x, & \text{if } y = 0 \\ y, & \text{if } x = 0 \\ 1, & \text{otherwise} \end{cases}$$

Which of the following is/are true?

- (a) $f_x(0, 0) = f_y(0, 0) = 1$
- (b) f is not continuous at (0, 0).
- (c) f is not differentiable at (0, 0).
- (A) (a) only
- (B) (b) and (c) only
- (C) (a) and (c) only
- (D) (a), (b) and (c)

 निम्नांकित में कौन सा समाकल अभिसरित करता है?

(a)
$$\int_{-\infty}^{0} \frac{dX}{(X-1)^2}$$

(b)
$$\int_{-\infty}^{\infty} e^{-X} dX$$

(c)
$$\int_{1}^{\infty} \frac{3x^2 dX}{\sqrt{x^3}}$$

- (A) केवल (a)
- (B) केवल (c)
- (C) केवल (a) और (b)
- (D) (a), (b) और (c)

$$f(x, y) = \begin{cases} x, & \text{at } y = 0 \\ y, & \text{at } x = 0 \\ 1, & \text{f } \text{ all}, \end{cases}$$

के द्वारा परिभाषित फलन $f: \mathbb{R}^2 \to \mathbb{R}$ के लिए

निम्न में से कौन-सा सही है/हैं?

- (a) $f_x(0, 0) = f_y(0, 0) = 1$
- (b) f, (0, 0) में संतत नहीं है।
- (c) f, (0, 0) में अवकलनीय नहीं है।
- (A) केवल (a)
- (B) केवल (b) और (c)
- (C) केवल (a) और (c)
- (D) (a), (b) और (c)

SPACE FOR ROUGH WORK / रफ कार्य के लिये जगह

7.

- 8. The limit superior and the limit inferior of the sequence $\{a_n\}_{n=1}^{\infty}$, where $a_n = \sin\left(\frac{n\pi}{3}\right)$ are:
 - (A) 1 and 0
 - (B) $\frac{\sqrt{3}}{2}$ and $-\frac{\sqrt{3}}{2}$
 - (C) $\frac{1}{2}$ and $-\frac{1}{2}$
 - (D) 0 and -1
- 9. Which one of the following integral represents the Riemann sum:

$$\lim_{n \to \infty} \sum_{k=1}^{n} \log \left(2 + \frac{5k}{n} \right) \frac{5}{n} ?$$

- $(A) \int_0^1 \log(2+5x) \, \mathrm{d}x$
- (B) $\int_{0}^{5} 5 \log(2+x) dx$
 - (C) $\int_{2}^{7} \log(x) \, \mathrm{d}x$
 - $(D) \int_{0}^{7} \log(2+x) dx$

- 8. अनुक्रम $\left\{a_{n}\right\}_{n=1}^{\infty}$, जहाँ $a_{n}=\sin\left(\frac{n\pi}{3}\right)$ है का लिमिट सुपिरीयर तथा लिमिट इन्फीरियर हैं:
 - (A) 1 और 0
 - (B) $\frac{\sqrt{3}}{2}$ और $-\frac{\sqrt{3}}{2}$
 - (C) $\frac{1}{2}$ और $-\frac{1}{2}$
 - (D) 0 और -1
- 9. निम्न में कौन सा पूर्णांकीय रीमान योगफल :

$$\lim_{n \to \infty} \sum_{k=1}^{n} \log \left(2 + \frac{5k}{n} \right) \frac{5}{n}$$
 को दर्शाता है?

$$(A) \int_{0}^{1} \log(2+5x) dx$$

(B)
$$\int_{0}^{5} 5 \log(2 + x) dx$$

(C)
$$\int_{2}^{7} \log(x) \, \mathrm{d}x$$

(D)
$$\int_{0}^{7} \log(2+x) \, \mathrm{d}x$$

- 10. Which of the following subsets of \mathbb{R}^n are in fact linear subspaces of \mathbb{R}^n (n>2)?
 - (a) $\{\mathbf{X}|x_i \ge 0\}$
 - (b) $\{X | x_1 x_2 = 0\}$
 - (c) $\{X | x_1 = 0\}$
 - (d) $\left\{ \mathbf{X} \middle| \sum_{j=1}^{n} x_j = 0 \right\}$

Choose the correct answer.

- (A) (a) and (b)
- (B) (b) and (c)
- (C) (c) and (d)
- (D) (b) and (d)
- 11. Which one of the following is not true for a set in R?
 - (A) A set may not have an infimum in R.
 - (B) Infimum of a set may not belong to the set.
 - (C) Supremum of a bounded below set always exists in **R**.
 - (D) Supremum and infimum of a set may be equal.

- 10. Rⁿ के निम्न उपसमुच्चयों में से कौन Rⁿ (n>2) का रैखिक उपसमध्य भी है?
 - (a) $\{X | x_i \ge 0\}$
 - (b) $\{\mathbf{X}|x_1x_2=0\}$
 - (c) $\{X | x_1 = 0\}$
 - $(d) \quad \left\{ \mathbf{X} \middle| \sum_{j=1}^{n} x_j = 0 \right\}$

सही उत्तर चुनें।

- (A) (a) तथा (b)
- (B) (b) तथा (c)
- (C) (c) तथा (d)
- (D) (b) तथा (d)
- 11. R में एक सेट के लिए क्या सत्य **नहीं** है निम्नांकित में से बताइए।
 - (A) R के सेट में इन्फीमम नहीं भी हो सकता है।
 - (B) किसी सेट का इन्फीमम उसी सेट का नहीं भी हो सकता है।
 - (C) किसी निम्न परिसीमित सेट का सुप्रीमम हमेशा R में विद्यमान रहता है।
 - (D) किसी सेट का सुप्रीमम तथा इन्फीमम बराबर हो सकता है।

- 12. The value of C satisfying the mean value theorem for the function $f(x) = e^{ix}$ on $[0, 2\pi]$ is:
 - (A) T
 - (B) $\frac{2\pi}{3}$
 - (C) $\frac{\pi}{2}$
 - (D) Does not exists
- **13.** On the metric space (€ ; 1.1), which of the following is/are false?
 - (a) The set $\{z \in (1:1 \le |z| \le 2\}$ is both compact and connected.
 - (b) The set $\{z \in \mathbb{C} : |Re(z)| \ge 1\}$ is compact, but not connected.
 - (c) The set $\{z \in (: |Re(z)| \le 1\}$ is connected, but not compact.
 - (A) (c) only
 - (B) (b) only
 - (C) (b) and (c) only
 - (D) (a) and (c) only
- 14. Consider the following statements:
 - (a) If a matrix A is diagonalizable, then no eigen value of A is repeated.
 - (b) If no eigen value of a matrix A is repeated, then A is diagonalizable.

Choose the correct answer.

- (A) (a) is correct, (b) is incorrect.
- (B) (b) is correct, (a) is incorrect.
- (C) both (a) and (b) are correct.
- (D) both (a) and (b) are incorrect.

- 12. $[0, 2\pi]$ पर फलन $f(x) = e^{ix}$ के लिए माध्य मान प्रमेय को संतुष्ट करने वाला C का मान है :
 - (A) π
 - (B) $\frac{2\pi}{3}$
 - (C) $\frac{\pi}{2}$
 - (D) कोई अस्तित्व नहीं है
- दूरीक समिष्ट ((; 1.1), के आधार पर निम्न में से कौन-सा गलत है/हैं?
 - (a) सेट {z ∈ (:1 ≤ |z| ≤ 2} संहत और संपर्कित दोनों हैं।
 - (b) सेट $\{z \in \{ (z) | z \} \}$ संहत है, परन्तु संपर्कित नहीं।
 - (c) सेट $\{z \in \mathbb{C} : |\text{Re}(z)| \le 1\}$ संपर्कित है, परन्तु संहत नहीं है।
 - (A) केवल (c)
 - (B) केवल (b)
 - (C) केवल (b) और (c)
 - (D) केवल (a) और (c)
- 14. निम्न कथनों पर विचार करें :
 - (a) यदि आव्यूह A विकर्णीय हो, तो A के किसी भी अभिलाक्षणिक मान की पुनरावृत्ति नहीं होगी।
 - (b) यदि आव्यूह A के किसी भी अभिलाक्षणिक मान की पुनरावृत्ति नहीं हो, तो A विकर्णीय होगा।

सही उत्तर चुनें।

- (A) (a) सही है, (b) गलत है।
- (B) (b) सही है, (a) गलत है।
- (C) (a) तथा (b) दोनों सही हैं।
- (D) (a) तथा (b) दोनों गलत हैं।

15	Matala	41.	Callaria a
15.	Match	the	following

(a)
$$\begin{bmatrix} 2 & 2 & 1 \\ 1 & 3 & 1 \\ 1 & 2 & 2 \end{bmatrix}$$

(i) 4 is the

determinant

(b)
$$\begin{bmatrix} 7 & 12 & 6 \\ 6 & 13 & 6 \\ 6 & 12 & 7 \end{bmatrix}$$

(ii) 1, 1, 5 are

characteristic roots

(c)
$$\begin{bmatrix} 1 & 2 & 3 \\ 0 & 2 & 3 \\ 0 & 0 & 2 \end{bmatrix}$$

(iii) 5 is the sum of the

characteristic roots

(d)
$$\begin{bmatrix} 7 & 0 & 0 \\ 8 & -4 & 0 \\ 1 & 5 & 2 \end{bmatrix}$$

(iv) 1, 1, 25 are the

characteristic roots

- (A) (ii) (iii) (i) (iv)
- (B) (iv) (i) (iii) (ii)
- (C) (ii) (iv) (i) (iii)
- (D) None of above

16. The rank of a positive definite quadratic form in n variables is :

- (A) n
- (B) > n
- (C) < n
- (D) None

15. निम्न को सुमेलित कीजिए:

(a)
$$\begin{bmatrix} 2 & 2 & 1 \\ 1 & 3 & 1 \\ 1 & 2 & 2 \end{bmatrix}$$
 (i)

(i) 4 सारिणक है

(b)
$$\begin{bmatrix} 7 & 12 & 6 \\ 6 & 13 & 6 \\ 6 & 12 & 7 \end{bmatrix}$$

(ii) 1, 1, 5 अभिलाक्षणिक

मूल हैं

(c)
$$\begin{bmatrix} 1 & 2 & 3 \\ 0 & 2 & 3 \\ 0 & 0 & 2 \end{bmatrix}$$

(iii) 5 अभिलाक्षणिक मूलों

का योगफल है।

$$\begin{bmatrix} 7 & 0 & 0 \\ 8 & -4 & 0 \\ 1 & 5 & 2 \end{bmatrix}$$

(iv) 1, 1, 25

अभिलाक्षणिक मूल हैं

- (A) (ii) (iii) (i) (iv)
- (B) (iv) (i) (iii) (ii)
- (C) (ii) (iv) (i) (iii)
- (D) उपरोक्त कोई भी नहीं

- (A) n
- (B) > n
- (C) < n
- (D) कोई भी नहीं

- 17. The positive term series $\sum_{n=1}^{\infty} \frac{1}{np}$ is convergent if and only if:
 - (A) p = 1
 - (B) p>1
 - (C) p<1
 - (D) p=0
- 18. The spectral radius of the matrix

$$\begin{bmatrix} -3 & 1 & -1 \\ -7 & 5 & -1 \\ -6 & 6 & -2 \end{bmatrix}$$
 is:

- (A) 1
- (B) 2
- (C) 3
- (D) 4

17. एक धनात्मक पद श्रेणी $\sum\limits_{n=1}^{\infty} \frac{1}{np}$ तभी अभिसारी

आव्यूह $\begin{bmatrix} -3 & 1 & -1 \\ -7 & 5 & -1 \\ -6 & 6 & -2 \end{bmatrix}$ की मानावलीय त्रिज्या है :

होगा यदि और केवल यदि :

(A) p=1

(B) p>1

(C) p<1

(D) p=0

- (A) 1
- (C) 3
- (D) 4

19. If
$$A = \begin{pmatrix} 2 & 1 \\ 5 & -2 \end{pmatrix}$$
, then A^{100} is:

- (A) 9 I
- (B) 9⁵⁰ I
- (C) 9100 I
- (D) 9¹⁰¹ I

(A) 9 I

19. $\overline{A} = \begin{pmatrix} 2 & 1 \\ 5 & -2 \end{pmatrix} \hat{\xi}, \ \hat{d} A^{100} \hat{\xi} :$

- (B) 9⁵⁰ I
- (C) 9100 I
- (D) 9¹⁰¹ I

20. If
$$x = u - v + w$$
,
 $y = u^2 - v^2 - w^2$ and
 $z = u^3 + v$, then

the value of the Jacobian $\frac{\partial(x,y,z)}{\partial(u,v,w)}$ is :

(A)
$$6wu^2 - 2u + 6u^2v - 2w$$

(B)
$$6wu^2 + 2u + 6u^2v + 2w$$

(C)
$$-3wu^2 + 2u + 6u^2v$$

(D)
$$wu^2 + 6u + u^2v + 2w$$

21. Which of the following is **not** a complete normed space?

(A)
$$\mathbb{R}^{n}$$
 with $||x|| = \left(\sum_{i=1}^{n} |x_{i}|^{2}\right)^{\frac{1}{2}}$ where $x = (x_{1}, x_{2}, \dots, x_{i}, \dots, x_{n}) \in \mathbb{R}^{n}$

- (B) C[a, b] the set of all bounded continuous scalar valued functions on [a, b] with $||f|| = \sup_{x \in [a,b]} |f(x)| \forall f \in C[a,b]$
- (C) C[0, 1] the set of all continuous real valued functions on [0, 1] with $||x|| = \int_{0}^{1} x(f) dt \ \forall \ x \in \mathbb{C}[0, 1]$
- (D) None of above

20. यदि
$$x = u - v + w$$
, $y = u^2 - v^2 - w^2$ तथा $z = u^3 + v$, तब

जैकोबी
$$\frac{\partial(x,y,z)}{\partial(u,v,w)}$$
 का मान है :

(A)
$$6wu^2 - 2u + 6u^2v - 2w$$

(B)
$$6wu^2 + 2u + 6u^2v + 2w$$

(C)
$$-3wu^2 + 2u + 6u^2v$$

(D)
$$wu^2 + 6u + u^2v + 2w$$

21. निम्न में से कौन-सा एक सम्पूर्ण मानकित समष्टि नहीं है?

(A)
$$||x|| = \left(\sum_{i=1}^{n} |x_i|^2\right)^{\frac{1}{2}}$$
 के साथ \mathbb{R}^n जहाँ $x = (x_1, x_2, ..., x_i, ..., x_n) \in \mathbb{R}^n$

(B) $||f|| = \sup_{x \in [a,b]} |f(x)| \forall f \in \mathbb{C}[a,b]$ के साथ [a,b] पर सभी परिबद्ध संतत स्केलार मान फलनों के एक समुच्चय

C[a, b] 1

- (C) [0, 1] $\forall x \|x\| = \int_{0}^{1} x(f) dt \ \forall x \in \mathbb{C}[0, 1]$ के साथ सभी संतत वास्तविक मान फलनों का एक समुच्चय $\mathbb{C}[0, 1]$ ।
- (D) उपरोक्त कोई भी नहीं

- 22. Which of the following sets is/are countable?
 - S₁: Collection of all infinite sequences consisting of 0's and 1's.
 - S₂: Collection of all functions from N to {0, 1}.
 - S₃: Collection of all roots of polynomials in a single variable over **Z**.
 - (A) S₂ only
 - (B) S₃ only
 - (C) S_1 and S_2 only
 - (D) S₂ and S₃ only
- 23. Let A be a 2×2 matrix such that the sum of the entries in each row and each column is λ. Then which of the following must be an eigen vector of the matrix A?
 - (a) $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$
 - (b) $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$
 - (c) $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$

Choose the correct answer.

- (A) (a) only
- (B) (c) only
- (C) (a) and (b) only
- (D) (b) and (c) only

- 22. निम्न में कौन सा सेट गणनीय है/हैं ?
 - ${f S_1}: \ 0$ तथा 1 के सभी अपरिमित अनुक्रमों का संग्रहण
 - $S_2: N$ से $\{0,1\}$ तक के सभी फलनों का संग्रहण
 - S₃: Z पर एकल चर में बहुपदों के सभी मूलों का संग्रहण
 - (A) केवल S₂
 - (B) केवल S₃
 - (C) केवल S_1 तथा S_2
 - (D) केवल S_2 तथा S_3
- 23. माना A, 2×2 का इस प्रकार का आव्यूह कि प्रत्येक पंक्ति एवं स्तंभ में प्रविष्टियों का योगफल λ है। तो निम्न में कौन सा आव्यूह A का एक आइगन सदिश होगा?
 - (a) $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$
 - (b) $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$
 - (c) $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$

सही उत्तर चुनें।

- (A) केवल (a)
- (B) केवल (c)
- (C) केवल (a) और (b)
- (D) केवल (b) और (c)

24. Identify the correct statements:

Suppose $T: X \rightarrow Y$ is a linear transformation on a normed linear space X into a NLS Y.

- (A) Then T is bounded iff bounded sets in X are mopped onto bounded sets in Y.
- (B) Suppose T is as defined in A. Then T is continuous iff T is bounded.
- (C) A linear operator defined on a finite dimensional normed space is always bounded.
- (D) All of above

25. Consider the following sets:

$$A_1 = \{(1, 1, 0), (0, 1, 1), (1, -1, -2)\}$$

$$A_2 = \{(0, 1, 0), (1, 1, 0), (0, 1, 1)\}$$

$$A_3 = \{(1, 1, 0), (2, 1, 0), (1, 1, 0)\}$$

Which of the above sets are linearly dependent?

- (A) A_1 and A_2
- (B) A_1 and A_3
- (C) A_2 and A_3
- (D) $A_1, A_2 \text{ and } A_3$

24. सही कथन को पहचानिए :

माना कि NLS Y में मानकित रैखिक समिष्ट पर $T: X \to Y$ रैखिक रूपांतरण है।

- (A) तब T परिबद्ध होगा केवल और केवल यदि X में परिबद्ध समुच्चयें Y में परिबद्ध समुच्चयों पर आच्छादित होता हो।
- (B) माना कि T उपरोक्त A जैसा परिभाषित है तो T संतत होगा केवल और केवल यदि T परिबद्ध है।
- (C) एक परिमितविमीय मानिकत समिष्टि पर परिभाषित रैखिक प्रचालक सदैव परिबद्ध रहता है।
- (D) उपरोक्त सभी

25. निम्न समुच्चयों पर विचार कीजिये :

$$A_1 = \{(1, 1, 0), (0, 1, 1), (1, -1, -2)\}$$

$$A_2 = \{(0, 1, 0), (1, 1, 0), (0, 1, 1)\}$$

$$A_3 = \{(1, 1, 0), (2, 1, 0), (1, 1, 0)\}$$

उपरोक्त में से कौन सा समुच्चय रैखिकतः परतंत्र है ?

- (A) A₁ तथा A₂
- (B) A_1 तथा A_3
- (C) A_2 तथा A_3
- (D) A_1, A_2 तथा A_3

- 26. Two statements are given below:
 - (a) Every continuous function is the derivative of its indefinite integral.
 - (b) Integral $\int_{1}^{\infty} \frac{1}{\sqrt{1+x^3}} dx$ is divergent.

Choose the correct answer.

- (A) (b) is correct, (a) is incorrect.
- (B) (a) is correct, (b) is incorrect.
- (C) Both (a) and (b) are incorrect.
- (D) Both (a) and (b) are correct.
- 27. (A): Sequence $\{x_n\}$, where

$$x_n = \frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{n+n}, \forall n \in \mathbb{N}$$
 is convergent.

(R): A bounded monotonic sequence is convergent.

Choose the correct answer.

- (A) (A) is correct, and (R) is incorrect.
- (B) (A) is incorrect, but (R) is correct.
- (C) (A) and (R) both are correct and (R) implies (A).
- (D) (A) and (R) both are correct, but (R) does not imply (A).

- 26. नीचे दो कथन दिए हैं:
- (a) प्रत्येक सतत फलन अपने अनिश्चित समाकल का अवकलज होता है।
 - (b) समाकल $\int_1^\infty \frac{1}{\sqrt{1+x^3}} dx$ अपसारी है।

सही उत्तर चुनें।

- (A) (b) सही है, (a) गलत है।
 - (B) (a) सही है, (b) गलत है।
 - (C) (a) तथा (b) दोनों गलत हैं।
 - (D) (a) तथा (b) दोनों सही हैं।
- 27. (A): अनुक्रम {x_n}, जहाँ

$$x_{\mathbf{n}} = \frac{1}{\mathbf{n}+1} + \frac{1}{\mathbf{n}+2} + \dots + \frac{1}{\mathbf{n}+\mathbf{n}}, \ \forall \mathbf{n} \in \mathbf{N}$$
 अभिसारी है।

(R): एक परिबद्ध एकदिष्ट अनुक्रम अभिसारी होता है।

सही उत्तर चुनें।

- (A) (A) सही है, तथा (R) गलत है।
- (B) (A) गलत है, परन्तु (R) सही है।
- (C) (A) तथा (R) दोनों सही हैं और (R),(A) का कारण है।
- (D) (A) तथा (R) दोनों सही हैं, परन्तु (R),(A) का कारण नहीं है।

- 28. Suppose $B = \{\overline{b}_1, \overline{b}_2\}$ and $C = \{\overline{c}_1, \overline{c}_2\}$ are two bases for a vector space V. Suppose $\overline{x} \in V$ is such that $\overline{x} = -3\overline{b}_1 + 2\overline{b}_2$. Then the coordinates of \overline{x} w.r.t. the base C are :
 - (A) $\begin{bmatrix} 2 \\ -2 \end{bmatrix}$
 - (B) $\begin{bmatrix} 3 \\ -2 \end{bmatrix}$
 - (C) $\begin{bmatrix} 0 \\ -2 \end{bmatrix}$
 - (D) None
- 29. For each positive integer n, let $f_n(x) = x^n$ for $x \in [0, 1]$. Then which one of the following is false?
 - (A) The sequence (f_n) is pointwise convergent on [0, 1].
 - (B) $\lim_{n \to \infty} f_n(x)$ defines a continuous function on [0, 1].
 - (C) The sequence (f_n) is uniformly convergent on $\left[0, \frac{1}{2}\right]$.
 - (D) None of these.

- 28. माना कि $B = \{\overline{b}_1, \overline{b}_2\}$ और $C = \{\overline{c}_1, \overline{c}_2\}$ एक सिंदश समिष्ट V के लिए दो आधार हैं। तथा $\overline{x} \in V$, इस प्रकार है कि $\overline{x} = -3\overline{b}_1 + 2\overline{b}_2$ है। आधार C के सापेक्ष \overline{x} का कोऑर्डिनेट है:
 - (A) $\begin{bmatrix} 2 \\ -2 \end{bmatrix}$
 - (B) $\begin{bmatrix} 3 \\ -2 \end{bmatrix}$
 - (C) $\begin{bmatrix} 0 \\ -2 \end{bmatrix}$
 - (D) कोई भी नहीं
- **29.** माना कि प्रत्येक धन पूर्णांक n के लिए $f_n(x) = x^n$, क्योंकि $x \in [0, 1]$ तब निम्नांकित में कौन सा असत्य है?
 - (A) [0, 1] पर, अनुक्रम (f_n) बिन्दुवार अभिसरित होगा।
 - (B) [0, 1] पर, $\lim_{n\to\infty} f_n(x)$ एक संतत फलन को परिभाषित करता है।
 - (C) $\left[0, \frac{1}{2}\right]$ पर अनुक्रम $(f_{\mathbf{n}})$ एकसमान रूप से अभिसरित होगा।
 - (D) उपरोक्त में कोई भी नहीं।

- **30.** Let V be a finite-dimensional vector space over a field F and let L(V) be the set of all linear operators of V.
 - (A): If F is algebraically closed, then all operators are upper triangularizable.
 - (R): If the characteristic polynomial of $f \in L(V)$ splits over F, then f is upper triangularizable.

Choose the correct answer.

- (A) (A) is correct, and (R) is incorrect.
- (B) (A) is incorrect, but (R) is correct.
- (C) (A) and (R) both are correct, but (A) does not follow from (R).
- (D) (A) and (R) both are correct and (A) follows from (R).
- **31.** Which of the following represents Schwarz inequality?

If $x = (x_1, x_2, ..., x_n)$ and $y = (y_1, y_2, ..., y_n)$ are two vectors of the inner product space C^n then:

- (A) $|\langle x, y \rangle| \le ||x||^{\frac{1}{2}} ||y||^{\frac{1}{2}}$
- (B) $||x+y|| \le ||x|| + ||y||$
- (C) $||x+y||^2 = ||x||^2 + 2||x||||y|| + ||y||^2$
- (D) $|\langle x, y \rangle| \le ||x|| + ||y||$

- 30. माना कि V किसी क्षेत्र F पर परिमित विमीय सिंदश समिष्टि है तथा V पर समस्त रैखिक संकारकों का समुच्चय L(V) है।
 - (A) : यदि F बीजतः संवृत हो, तो सभी संकारक ऊपरी त्रिभुजीय होंगे।
 - (R) : यदि $f \in L(V)$ का अभिलक्षणिक बहुपद F पर विभाजित हो, तो f ऊपरी त्रिभुजीय होगा।

सही उत्तर चुनें।

- (A) (A) सही है, और (R) गलत है।
- (B) (A) गलत है, परन्तु (R) सही है।
- (C) (A) तथा (R) दोनों सही हैं, परन्तु (R) से
 (A) अनुसरित नहीं होता है।
- (D) (A) तथा (R) दोनों सही हैं और (R) से (A) अनुसरित होता है।
- 31. निम्न में से कौन-सा श्वार्ज असमानता दर्शाता है?

यदि $x=(x_1, x_2, ..., x_n)$ और $y=(y_1, y_2, ..., y_n)$ आंतरिक गुणनफल समष्टि C^n के दो सदिश हैं, तब :

- (A) $|\langle x, y \rangle| \le ||x||^{\frac{1}{2}} ||y||^{\frac{1}{2}}$
- (B) $||x+y|| \le ||x|| + ||y||$
 - (C) $||x+y||^2 = ||x||^2 + 2||x||||y|| + ||y||^2$
 - (D) $|\langle x, y \rangle| \le ||x|| + ||y||$

- 32. The directional derivative of the function $f(x, y, z) = \sqrt{xyz}$ at the point (2, 4, 2) in the direction (-4, -2, 4) is:
 - (A) $-\frac{1}{6}$
 - (B) $-\frac{1}{2}$
 - (C) $\frac{1}{4}$
 - (D) $\frac{1}{6}$
- 33. $\int_{a}^{b} f(x) dx$ is said to be an improper integral if:
 - (A) f is unbounded
 - (B) a or b is infinite but not both
 - (C) either a or b is infinite
 - (D) none of above
- 34. Let (X, d) be a metric space and Y a subset 34. of X.

A: Y is a compact subset of (X, d).

C: Y is closed and bounded.

Choose the correct answer.

- (A) $A \Rightarrow C$ but $C \not \bowtie A$
- (B) $C \Rightarrow A \text{ but } A \not \preceq C$
- (C) Neither $A \Rightarrow C$ nor $C \Rightarrow A$
- (D) $A \Leftrightarrow C$

- 32. (-4, -2, 4) की दिशा में, बिंदु (2, 4, 2) पर फलन $f(x, y, z) = \sqrt{xyz}$ के लिए दिशिक व्युत्पन्न है:
 - (A) $-\frac{1}{6}$
 - (B) $-\frac{1}{2}$
 - (C) $\frac{1}{4}$
 - (D) $\frac{1}{6}$
- 33. $\int_{a}^{b} f(x) dx$ माना जाता है कि एक विषम पूर्णांक होगा यदि :
 - (A) f अपरिबद्ध हो
 - (B) a या b अपरिमित हों परन्तु दोनों नहीं
 - (C) या तो a या b अपरिमित हो
 - (D) उपरोक्त में से कोई भी नहीं
- 34. माना कि (X, d) एक दूरिक समस्टि है तथा Y, X का उपसमुच्चय है।

A: Y, (X, d) का संहत उपसमुच्चय है।

C: Y संवृत तथा परिबद्ध है।

सही उत्तर चुनें।

- (A) $A \Rightarrow C$ परन्तु $C \not \simeq A$
- (B) $C \Rightarrow A$ परन्तु $A \not \Rightarrow C$
- (C) ना तो $A \Rightarrow C$ और ना ही $C \Rightarrow A$
- (D) $A \Leftrightarrow C$

Suppose $T_1: \mathbb{R}^2 \to \mathbb{R}^2$ is a linear transformation defined by $T_1(x_1, x_2) =$ $(x_1 + x_2, 4x_1 + 5x_2)$ and $T_2 : V \to W$ is a linear transformation defined by $T_2(\overline{c}_1)=2\overline{b}_1-3\overline{b}_2,\ T_2(\overline{c}_2)=-4\overline{b}_1+5\overline{b}_2$ where $C = (\overline{c}_1, \overline{c}_2)$ and $B = (\overline{b}_1, \overline{b}_2)$ are bases of V and W respectively.

Match the following:

- (a) Matrix of T₁ with respect to standard basis
- (b) Matrix of T₂ with respect to the bases C and B
- Rank of T₁ (iii) 2 (c)
- (d) Rank of T2
- (a) (b) (c) (d)
- (A) (i) (ii) (iii) (iv)
- (B) (ii) (iv) (iii)
- (ii) (i) (iv) (iii)
- (D) None

माना कि $T_1: \mathbb{R}^2 \to \mathbb{R}^2$, $T_1(x_1, x_2) =$ 35. $(x_1 + x_2, 4x_1 + 5x_2)$ द्वारा परिभाषित एक रैखिक रूपांतरण है तथा $T_2:V\to W$ भी एक रैखिक रूपांतरण $T_2(\overline{c}_1) = 2\overline{b}_1 - 3\overline{b}_2, T_2(\overline{c}_2) = -4\overline{b}_1 + 5\overline{b}_2$ द्वारा परिभाषित किया गया है। जहाँ $C = (\overline{c}_1, \overline{c}_2)$ तथा $B = (\overline{b}_1, \overline{b}_2)$ क्रमशः V तथा W के आधार हैं।

निम्न को सुमेलित कीजिए:

- (a)
- C तथा B के आधार पर, (b) T_2 का आव्यूह
- T_1 की कोटि (c)
- (iii)
- (d) T2 की कोटि
- (iv)
- (a) (b) (d) (c)
- (A) (i) (ii) (iii) (iv)
- (B) (i) (ii) (iv) (iii)
- (C) (ii) (i) (iv) (iii)
- कोई भी नहीं (D)

- **36.** Which one of the following is true?
 - (A) If $f: (-1, 1) \to \mathbb{R}$ is continuous and bounded, then f is uniformly continuous.
- (B) If $f:(0, 1) \to \mathbb{R}$ is uniformly continuous, then f is bounded.
 - (C) If $f: (0, 1) \to \mathbf{R}$ is differentiable, then f is uniformly continuous.
 - (D) If $f: (-1, 1) \rightarrow \mathbb{R}$ is uniformly continuous, then f is differentiable.
- **37.** A square matrix A is said to be diagonalizable if:
 - (A) A = PDP⁻¹ for some diagonal matrix D and some invertible matrix P
 - (B) $A = PDP^{-1}$ for some diagonal matrix P and any matrix D
 - (C) A is similar to a diagonal matrix
 - (D) None of above
- 38. The value(s) of λ such that the following system of equations in unknown x, y and z.

$$x + y + \lambda z = 2$$
, $3x + 4y + 2z = \lambda$,
 $2x + 3y - z = 1$

has more than one solution is:

- (A) $\lambda \neq 3$
- (B) $\lambda \neq 2$ and $\lambda \neq -5$
- (C) $\lambda = 3$
- (D) always has a solution

- 36. निम्नांकित में कौन सा सत्य है?
 - (A) यदि $f:(-1,1)\to \mathbf{R}$ संतत तथा परिबद्ध हो, तो f एकसमान रूप से संतत होगा।
 - (B) यदि $f:(0,1)\to \mathbf{R}$ एकसमान रूप से संतत हो, तो f परिबद्ध होगा।
 - (C) यदि $f:(0,1)\to \mathbf{R}$, अवकलनीय हो, तो f एकसमान रूप से संतत होगा।
 - (D) यदि $f: (-1, 1) \rightarrow \mathbf{R}$ एकसमान रूप से संतत हो, तो f अवकलनीय होगा।
- 37. एक वर्ग आव्यूह A को विकर्णित कहा जायेगा यदि:
 - (A) कुछ विकर्ण आव्यूह D और कुछ व्युक्रमणीय आव्यूह P के लिए A=PDP⁻¹ होगा
 - (B) कुछ विकर्ण आव्यूह P और किसी आव्यूह D के लिए A=PDP⁻¹ होगा
 - (C) A एक विकर्ण आव्यूह के सादृश है
 - (D) उपरोक्त कोई भी नहीं
- 38. अज्ञात x, y तथा z में निम्न समीकरण निकाय में λ का मान इस प्रकार है कि इस निकाय के एक से अधिक हैं तो λ का मान है :

$$x + y + \lambda z = 2$$
, $3x + 4y + 2z = \lambda$,
 $2x + 3y - z = 1$

- (A) λ ≠ 3
- (B) $\lambda \neq 2$ और $\lambda \neq -5$
- (C) $\lambda = 3$
- (D) सदैव हल पाता है

39. Suppose f is a bounded real valued function on [a, b] and P_1 and P_2 are two partitions of [a, b]

Assertion (A): $L(P_1, f) \le U(P_2, f)$

Reason (R): Riemann lower sums increases and upper Riemann sums decreases for refinements.

- (A) Both (A), (R) are correct and (R) is the correct explanation for (A).
- (B) Both (A), (R) are correct but (R) is not the correct explanation for (A).
- (C) (A) correct but (R) is false.
- (D) (A) false but (R) is correct.
- 40. For a nonempty set of vectors S in a space V, consider the following statements:
 - (A): If S is linearly independent, then every subset of S is also linearly independent.
 - (R): If S contains a linearly dependent subset, then S itself must be linearly dependent.

Choose the correct answer.

- (A) Both (A) and (R) are correct, (R) implies (A).
- (B) (R) is correct but does not imply (A).
- (C) (A) is correct, (R) is incorrect.
- (D) (A) is incorrect, (R) is correct.

39. माना कि f, [a,b] पर परिबद्ध वास्तविक मान अंकित फलन हैं तथा P_1 एवं P_2 [a,b] के दो विभाजन हैं।

अभिकथन (A) : $L(P_1, f) \le U(P_2, f)$

कारण (R): अधिशोधन के लिए रीमान लोअर योगफल बढ़ता है तथा उपरी रीमान योगफल घटता है।

- (A) (A) तथा (R) दोनों सही हैं और (R), (A) की सही व्याख्या है।
- (B) (A) तथा (R) दोनों सही हैं परन्तु (R), (A) की सही व्याख्या नहीं है।
- (C) (A) सही परन्तु (R) गलत है।
- (D) (A) गलत परन्तु (R) सही है।
- 40. समष्टि V में सिदशों के किसी अरिक्त समुच्चय S के लिए निम्न कथनों पर विचार कीजिये :
 - (A): यदि S रैखिकतः स्वतंत्र है, तो S का प्रत्येक उपसमुच्चय भी रैखिकतः स्वतंत्र होगा।
 - (R) : यदि S रैखिकतः परतंत्र उपसमुच्चय अंतर्विष्ट करेगा, तो S स्वयं रैखिकतः परतंत्र होगा।

सही उत्तर चुनें।

- (A) (A) तथा (R) दोनों सही हैं, (R), (A) का कारण है।
- (B) (R) सही है, परन्तु (A) का कारण नहीं है।
- (C) (A) सही है, (R) गलत है।
- (D) (A) गलत है, (R) सही है।

- **41.** A set which spans the subspace $\{(a, b, 0) : a, b \in R\}$ of $R^3(R)$ but not a basis for the subspace :
 - (A) {(1, 1, 0), (1, 0, 1), (0, 1, 0)}
 - (B) {(1, 0, 0), (0, 0, 1), (1, 1, 0)}
 - (C) {(1, 0, 0), (0, 1, 0), (1, 1, 1)}
 - (D) {(1, 0, 0), (0, 1, 0)}
- **42.** Which one of the following statements is false?
 - (A) The Lebesgue measure of any straight line (finite as well as infinite) in R² is zero.
 - (B) The Lebesgue measure of any continuous curve in \mathbb{R}^2 is zero.
 - (C) The Lebesgue measure of any circle in R² is its area.
 - (D) The Lebesgue measure of the Cantor set is zero.

- एक समुच्चय जो R³(R) के उपसमिष्ट {(a, b, 0) : a, b ∈ R} विस्तृत करता है, परन्तु सबस्पेस का बेसिस नहीं है :
 - (A) {(1, 1, 0), (1, 0, 1), (0, 1, 0)}
 - (B) {(1, 0, 0), (0, 0, 1), (1, 1, 0)}
 - (C) {(1, 0, 0), (0, 1, 0), (1, 1, 1)}
 - (D) {(1, 0, 0), (0, 1, 0)}
- 42. निम्न में से कौन-सा एक कथन गलत है?
 - (A) **R**² में किसी सरल रेखा का (परिमित के साथ अपरिमित) लेबेग माप शून्य है।
 - (B) **R**² में किसी संतत वक्र का लेबेग माप शून्य है।
 - (C) **R**² में किसी वृत्त का लेबेग माप उसका क्षेत्रफल है।
 - (D) कैन्टर समुच्चय का लेबेग माप शून्य है।

43. Rank of the matrix
$$A = \begin{bmatrix} 1 & 4 & 9 & 16 \\ 4 & 9 & 16 & 25 \\ 9 & 16 & 25 & 36 \\ 16 & 25 & 36 & 49 \end{bmatrix}$$

is:

- (A) 1
- (B) 2
- (C) 3
- (D) None

- **43.** आव्यूह $A = \begin{bmatrix} 1 & 4 & 9 & 16 \\ 4 & 9 & 16 & 25 \\ 9 & 16 & 25 & 36 \\ 16 & 25 & 36 & 49 \end{bmatrix}$ की कोटि है :
 - (A) 1
 - (B) 2
 - (C) 3
 - (D) कोई भी नहीं

- Characteristics of elements of an 44. orthonormal basis of an inner product space V are:
 - (A) linearly independent, orthogonal to each other distance of each element from zero is 1.
 - linearly independent, orthogonal to each other spans V and distance of each element from zero is 1.
 - linearly independent, orthogonal to (C) each other and norm of each is 1.
 - (D) None of above
- Three statements are given below:
 - (a) $\exists x \in \mathbb{R} \ \forall y \in \mathbb{R}, \ x + y > 0$
 - (b) $\forall x \in \mathbb{R} \exists y \in \mathbb{R}, x + y < 0$
 - (c) $\forall x \in \mathbf{R} \ \forall y \in \mathbf{R}, \ x + y > 0$

Choose the correct answer.

- (a) (b) (c) (A) True False True (B) False True False (C) False False True
- Suppose f is continuous and differentiable on the interval [-7, 0]. If f(-7) = -3and $f'(x) \le 2$ for all $x \in [-7, 0]$, then what

is the largest possible value for f(0)?

False

False

(A) 9

(D)

46.

True

- (B) 11
- (C) 15
- (D) 21

- आंतरिक गुणनफल समष्टि V के प्रसामान्य लांबिक आधार की अवयवों की विशेषताएँ हैं :
 - रैखिकतः स्वतंत्र, परस्पर लांबिक, शून्य से प्रति अवयव की दूरी 1 है।
 - रैखिकतः स्वतंत्र, परस्पर लांबिक, एवं प्रत्येक अवयव की दूरी तथा विस्तृति V का शून्य से दूरी 1 है।
 - रैखिकतः स्वतंत्र, परस्पर लांबिक और प्रति एक का मानक 1 है।
 - उपरोक्त कोई भी नहीं (D)
- नीचे तीन कथन दिए गए हैं: 45.
 - $\exists x \in \mathbb{R} \ \forall y \in \mathbb{R}, \ x + y > 0$
 - (b) $\forall x \in \mathbf{R} \exists y \in \mathbf{R}, x + y < 0$
 - $\forall x \in \mathbf{R} \ \forall y \in \mathbf{R}, \ x + y > 0$ (c) सही उत्तर चुनें।

(a) (b) सत्य असत्य सत्य

(c)

(B) असत्य सत्य असत्य

(C) असत्य असत्य सत्य

(D) सत्य असत्य असत्य

- माना कि अंतराल [-7,0] पर f संतत एवं 46. अवकलनीय है। यदि f(-7) = -3 तथा $f'(x) \le 2$ सभी $x \in [-7, 0]$ के लिए है, तो f(0) का संभावित सबसे बड़ा मान होगा :
 - 9 (A)

(A)

- (B) 11
- (C) 15
- (D) 21

47. Which of the following maps

 $d: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ defined by

(a)
$$d(x, y) = \sqrt{|x - y|}$$

(b)
$$d(x, y) = |x^2 - y^2|$$

(c)
$$d(x, y) = \frac{|x - y|}{1 + |x - y|}$$

For $x, y \in \mathbf{R}$ is/are a metric on \mathbf{R} ?

- (A) (b) only
- (B) (c) only
- (C) (a) and (c) only
- (D) (a), (b) and (c)

47. निम्न में से कौन-सा

 $d: \mathbf{R} \times \mathbf{R} \to \mathbf{R}$ को चिन्हित करता है जिसे परिभाषित किया गया है तथा $x, y \in \mathbf{R}$, \mathbf{R} पर एक दूरीक (मेट्रिक) है/हैं?

(a)
$$d(x, y) = \sqrt{|x - y|}$$

(b)
$$d(x, y) = |x^2 - y^2|$$

(c)
$$d(x, y) = \frac{|x - y|}{1 + |x - y|}$$

- (A) केवल (b) के लिए
- (B) केवल (c) के लिए
- (C) केवल (a) और (c) के लिए
- (D) (a), (b) और (c) के लिए
- 48. Suppose A is a skew symmetric matrix of odd order then det A =
- (A) 0
 - (B) Product of all diagonal elements
 - (C) 1
 - (D) None of above

- 48. माना कि A, अयुग्म क्रम का एक विषम समित आव्यूह है, तब det A =
 - (A) 0
 - (B) सभी विकर्ण अवयवों का गुणनफल
 - (C) 1
 - (D) उपरोक्त में कोई भी नहीं

49. Consider the set:

$$B = \left\{ \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} -1 \\ -1 \\ 2 \end{pmatrix} \right\}$$

Which of the following statement is/are true?

- (a) B is a set of mutually orthogonal vectors.
- (b) B is not an orthonormal set.
- (c) It is easy to convert B into an orthonormal set.

Choose the correct answer.

- (A) (a), (b)
- (B) (b), (c)
- (C) (a), (c)
- (D) (a), (b), (c)
- 50. Suppose A, B are two matrices confirmed for multiplication and addition.

Assertion (A): $AB = [0] \Rightarrow \text{ either } A = [0]$ or B = [0]

Reason (R): Matrix multiplication allows zero divisors.

- (A) Both (A), (R) are correct and (R) is the correct explanation for (A).
- (B) Both (A), (R) are correct and (R) is not the correct explanation for (A).
- (C) (A) is correct, but (R) is false.
- (D) (A) is false, but (R) is correct.

49. निम्न समुच्चय पर विचार करें :

$$B = \left\{ \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} -1 \\ -1 \\ 2 \end{pmatrix} \right\}$$

निम्न में से कौन सा/से कथन सत्य है/हैं?

- (a) B पारस्परिक लम्बकोणीय सदिशों का समुच्चय है।
- (b) B प्रसामान्य लाम्बिक समुच्चय नहीं है।
- (c) B को सरलता से प्रसामान्य लाम्बिक समुच्चय में बदल सकते हैं।

सही उत्तर चुनें।

- (A) (a), (b)
- (B) (b), (c)
- (C) (a), (c)
- (D) (a), (b), (c)
- 50. माना कि A, B दो आव्यूह हैं जिसकी रचना गुणन एवं योजन के लिए की गयी है।

अभिकथन (A) : AB = [0] ⇒ तो A = [0] या B = [0]

- कारण (R): आव्यूह गुणन शून्य विभाजकों की अनुमती देता है।
- (A) (A) तथा (R) दोनों सही हैं तथा (R), (A) की सही व्याख्या है।
- (B) (A) तथा (R) दोनों सही हैं परन्तु (R), (A) की सही व्याख्या नहीं है।
- (C) (A) सही है, परन्तु (R) गलत है।
- (D) (A) गलत है, परन्तु (R) सही है।

51. Let
$$f(x, y) = \begin{cases} \frac{xy}{x^2 + y^2}, & (x, y) \neq (0, 0); \\ 0, & (x, y) = (0, 0). \end{cases}$$

Then at (0, 0) which of the following statement is true?

- (A) f is continuous
- (B) Partial derivatives of f do not exist
- (C) Both the partial derivatives exist and f is continuous
- (D) Both the partial derivatives exist but f is not continuous

52. Two statements are given below:

- (a) Every infinite bounded set has a limit point.
- (b) Boundedness is not necessary in order for an infinite set to have a limit point.

Choose the correct answer.

- (A) Both (a) and (b) are correct.
- (B) Both (a) and (b) are incorrect.
- (C) (a) is correct, though (b) is incorrect.
- (D) (a) is incorrect, but (b) is correct.
- 53. Let A_{ij} denote the minors of an $n \times n$ matrix A. What is the relationship between $\det(A_{ij})$ and $\det(A_{ji})$?
 - (A) They are always equal.
 - (B) $det(A_{ij}) = -det(A_{ji})$ if $i \neq j$.
 - (C) Their product is equal to 1.
 - (D) They are equal, if A is a symmetric matrix.

51. यदि $f(x, y) = \begin{cases} \frac{xy}{x^2 + y^2}, & (x, y) \neq (0, 0); \\ 0, & (x, y) = (0, 0). \end{cases}$

तो (0, 0) पर निम्न में से कौन सा कथन सत्य है?

- (A) f सतत है
- (B) f के आंशिक अवकलजों का अस्तित्व नहीं है
- (C) दोनों आंशिक अवकलजों का अस्तित्व है तथा f सतत है
- (D) दोनों आंशिक अवकलजों का अस्तित्व है परन्तु f सतत नहीं है

52. नीचे दो कथन दिए गए हैं:

- (a) प्रत्येक अनंत परिबद्ध समुच्चय में एक सीमा बिंदु होता है।
- (b) किसी अनंत समुच्चय में सीमा बिंदु होने के लिए परिबद्धता आवश्यक नहीं है।

सही उत्तर चुनें।

- (A) (a) तथा (b) दोनों सही हैं।
- (B) (a) तथा (b) दोनों गलत हैं।
- (C) (a) सही है, यद्यपि (b) गलत है।
- (D) (a) गलत है, परन्तु (b) सही है।
- 53. माना कि, A_{ij} आव्यूह A के $n \times n$ के माइनर को दर्शाता है। $\det(A_{ij})$ और $\det(A_{ji})$ के बीच में क्या संबंध है?
 - (A) वे सदैव समान रहते हैं।
 - (B) यदि $i \neq j$ है, तो $\det(A_{ij}) = -\det(A_{ij})$ है।
 - (C) उनका गुणनफल 1 के बराबर है।
 - (D) यदि A सममित आव्यूह है, तो वे बराबर होंगे।

54. Suppose $\{f_n\}$ is a sequence of complex valued functions defined on set $E \subseteq R$ Suppose $\lim_{n \to \infty} f_n(x) = f(x)$, for each

$$x \in E$$
 and $M_n = \sup_{x \in E} |f_n(x) - f(x)| \forall n$.

Then:

- (A) f is the limit function of $\{f_n\}$
- (B) f is the uniform limit of $\{f_n\}$ if $M_n = 0 \ \forall n$
- (C) f is the uniform limit of $\{f_n\}$ if and only if $M_n \to 0$ as $n \to \infty$
- (D) None of above
- 55. Consider the following sentences:
 - (a) If $A = [a_{ij}]$ is skew symmetric, then $a_{jj} = 0$ for each j.
 - (b) If $A = [a_{ij}]$ is skew hermitian, then each a_{jj} is a pure imaginary number.

Choose the correct answer.

- (A) (a) is correct, (b) is incorrect.
- (B) (b) is correct, (a) is incorrect.
- (C) both (a) and (b) are incorrect.
- (D) both (a) and (b) are correct.
- 56. If A and B are measurable sets of [a, b] and denoted by $\mu(A)$ and $\mu(B)$ respectively, then the most appropriate answer describes is :
 - (A) $A \cup B$ is measurable
 - (B) $A \cap B$ is measurable
 - (C) $\mu(A) + \mu(B) = \mu(A \cup B) + \mu(A \cap B)$
 - (D) All the above are correct

54. मान लीजिए कि $\{f_{\mathbf{n}}\}$, सेट $\mathbf{E} \subseteq \mathbf{R}$ पर परिभाषित संम्मिश्र मान अंकित फलन का एक अनुक्रम है माना कि $\lim_{\mathbf{n} \to \infty} f_{\mathbf{n}}(x) = f(x)$, प्रत्येक $x \in \mathbf{E}$ के लिए

तथा
$$M_n = \sup_{x \in E} |f_n(x) - f(x)| \forall n \ है। तब :$$

- (A) $f_{n} \{f_{n}\}$ का एक सीमा फलन है।
- (B) यदि $M_n = 0 \, \forall n \, \bar{\rm gl}, \, \bar{\rm dl} \, f, \, \{f_n\}$ का एकसमान सीमा है।
- (C) यदि और केवल यदि $M_n \to 0$ जैसा कि $n \to \infty$ की तरह हो, तो f, $\{f_n\}$ का एकसमान सीमा है।
- (D) उपरोक्त में कोई नहीं
- 55. निम्न कथनों पर विचार करें :
 - (a) यदि $A = [a_{ij}]$ विषम समिमत हो, तो प्रत्येक j के लिए $a_{jj} = 0$ होगा।
 - (b) यदि $A = [a_{ij}]$ विषम हिर्मिटीय हो, तो प्रत्येक a_{jj} शुद्ध काल्पिनक संख्या होगी।

सही उत्तर चुनें।

- (A) (a) सही है, (b) गलत है।
- (B) (b) सही है, (a) गलत है।
- (C) (a) तथा (b) दोनों गलत हैं।
- (D) (a) तथा (b) दोनों सही हैं।
- 56. यदि A तथा B, [a, b] के मापयोग्य समुच्चय हों और क्रमश: μ(A) तथा μ(B) द्वारा सूचित होते हों, तब सबसे उपयुक्त उत्तर होगा:
 - (A) A∪B मापयोग्य है
 - (B) A ∩ B मापयोग्य है
 - (C) $\mu(A) + \mu(B) = \mu(A \cup B) + \mu(A \cap B)$
 - (D) उपर्युक्त सभी सही हैं

57. Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be the linear transformation of multiplication by the matrix $\begin{pmatrix} 2 & 0 \\ 0 & 3 \end{pmatrix}$. With respect to the basis $\{(1, 1), (1, -1)\}$ of \mathbb{R}^2 , the matrix representation of T is :

(A)
$$\begin{pmatrix} 2 & 2 \\ 3 & -3 \end{pmatrix}$$

(B)
$$\begin{pmatrix} 1 & 5 \\ 5 & 1 \end{pmatrix}$$

(C)
$$\begin{pmatrix} 1 & -2 \\ 3 & -1 \end{pmatrix}$$

(D)
$$\begin{pmatrix} \frac{5}{2} & -\frac{1}{2} \\ -\frac{1}{2} & \frac{5}{2} \end{pmatrix}$$

- 58. Suppose $f: \mathbb{R} \to \mathbb{R}$ is a uniformly continuous function and $\{x_n\}$ is a Cauchy's sequence in \mathbb{R} . Which of the following is true?
 - (A) $\{f(x_n)\}\$ is a Cauchy's sequence in R
 - (B) $\{f(x_n)\}\$ need not be a Cauchy's sequence in R
 - (C) $\{f(x_n)\}\$ is not a convergent sequence
 - (D) None of above

57. माना कि आव्यूह $\binom{2}{0} \binom{3}{3}$ द्वारा $T: \mathbb{R}^2 \to \mathbb{R}^2$ गुणन का एक रैखिक रूपांतरण है \mathbb{R}^2 के आधार $\{(1,1), (1,-1)\}$ के सापेक्ष T का आव्यूह प्रस्तुतिकरण है :

(A)
$$\begin{pmatrix} 2 & 2 \\ 3 & -3 \end{pmatrix}$$

(B)
$$\begin{pmatrix} 1 & 5 \\ 5 & 1 \end{pmatrix}$$

(C)
$$\begin{pmatrix} 1 & -2 \\ 3 & -1 \end{pmatrix}$$

(D)
$$\begin{pmatrix} \frac{5}{2} & -\frac{1}{2} \\ -\frac{1}{2} & \frac{5}{2} \end{pmatrix}$$

- 58. माना कि $f: R \to R$ एकसमान संतत फलन है तथा $\{x_n\}$, R में कौशी अनुक्रम है। निम्न में कौन सा **सत्य** है?
 - (A) $\{f(x_n)\}$, R में एक कौशी अनुक्रम है।
 - (B) $\{f(x_n)\}$ को R में कौशी अनुक्रम होना आवश्यक नहीं।
 - (C) $\{f(x_n)\}$, अभिसारी अनुक्रम नहीं है।
 - (D) उपरोक्त कोई नहीं।

- 59. Which one of the following statement is false?
 - (A) Every Cauchy sequence in R converges to a limit.
 - (B) A bounded sequence in **R** has a convergent subsequence.
 - (C) A monotonic increasing sequence in R which is bounded above converges to its least upper bound.
 - (D) None of the above.
- 60. If U and W are two subspaces of a finite dimensional vector space V, then:
 - (A) $\dim(U+W) = \dim(U) + \dim(W)$
 - (B) $\dim(U+W) = \dim(U\cap W)$
 - (C) $\dim(U+W) = \dim U \dim W$
 - (D) $\dim(U+W) =$ $\dim(U) + \dim(W) - \dim(U \cap W)$

- 59. निम्नांकित कौन-सा कथन असत्य है?
- (A) **R में प्रत्येक कौशी अनुक्रम एक लिमिट तक** अभिसरीत होता है।
 - (B) R में एक परिबद्ध अनुक्रम अभिसारी उपानुक्रम में होता है।
 - (C) R में एक एकदिष्ट वर्धमान अनुक्रम जो ऊपर से परिबद्ध होता है अपनी अल्पतम उपरी सीमा में अभिसरित होता है।
 - (D) उपरोक्त में कोई नहीं।
- 60. यदि U तथा W एक परिमित विमीय सदिश समिष्टि V के दो उपसमिष्टियाँ हों, तब :
 - (A) $\dim(U+W) = \dim(U) + \dim(W)$
 - (B) $\dim(U+W) = \dim(U\cap W)$
 - (C) $\dim(U+W) = \dim U \dim W$
 - (D) $\dim(U+W) = \dim(U) + \dim(W) \dim(U \cap W)$

PART - II (A)/भाग - II (A) MATHEMATICS GROUP गणित समूह

Consider the following table

x	0	0.1	0.2	0.3	0.4	0.5	0.6
y	0.135	?	0.111	0.100	?	0.082	0.074

Then:

- (A) $y_{0.1} = 0.123$ and $y_{0.4} = 0.90$
- $y_{0.1} = 0.139$ and $y_{0.4} = 0.90$ (B)
- (C) $y_{0.1} = 0.123$ and $y_{0.4} = 0.079$
- (D) $y_{0.1} = 0.139$ and $y_{0.4} = 0.079$

61. निम्नलिखित सारणी को ध्यानपूर्वक देखिए और '?' चिन्ह के स्थान पर सही उत्तर चुनिए।

x	0	0.1	0.2	0.3	0.4	0.5	0.6
y	0.135	?	0.111	0.100	?	0.082	0.074

- $y_{0.1} = 0.123$ और $y_{0.4} = 0.90$ (A)
- $y_{0.1} = 0.139$ और $y_{0.4} = 0.90$
- $y_{0.1} = 0.123$ और $y_{0.4} = 0.079$ (C)
- $y_{0.1} = 0.139$ और $y_{0.4} = 0.079$ (D)

62. Match for right and choose correct answer:

Related With Theorem (a) Lagrange's Isomorphism

- theorem and permutation group
- Cayley's (ii) Order of an element theorem and prime number
- Cauchy's (iii) Order of the (c) theorem subgroup
- (d) Fundamental (iv) Normal subgroup theorem of homomorphism

of groups (a) (b) (c) (d) (i) (A) (iv) (iii) (ii) (B) (i) (ii) (iii) (iv) (C) (iii) (i) (iv) (ii)

(D) (iii) (i) (ii) (iv)

सही संबंध हेतु मिलान करते हुए सही उत्तर चुनिये : 62.

प्रमय	स सबाधत
(a) लैग्रांज का प्रमेय	(i) तुल्याकारिता एवं क्रमचय समूह
(b) कैले का प्रमेय	(ii) अवयव की कोटि एवं

- (c) कॉशी का प्रमेय (iii) उपसमूह की कोटि
- (d) समूहों की समाकारिता (iv) प्रसामान्य उपसमूह का मूलभूत प्रमेय

(a) (b) (c) (d)

(A) (iv) (iii) (ii) (i)

(B) (i) (ii) (iii) (iv)

(C) (iii) (i) (iv) (ii)

(D) (iii) (i) (ii) (iv)

- 63. Match the following and choose correct answer. If $n \in \mathbb{N}$, then
 - (a) $n^5 + 4n$ is divisible by
- (i) 9
- (b) $n^3 + 2$ is not divisible by
- (ii) 5
- (c) $n^3 n$ is divisible by
- (iii) 24
- (a) (b) (c)
- (A) (iii) (ii) (i)
- (B) (ii) (i) (iii)
- (C) (i) (ii) (iii)
- (D) (ii) (iii) (i)
- **64.** In proving fundamental theorem of homomorphism of groups, there are some steps as follows:
 - (a) Kernel K is a normal subgroup of G.
 - (b) Consider a homomorphism function*f*: G→G', *f* is homomorphism so there is the Kernel of *f* say K.
 - (c) G_K is a quotient group show it.
 - (d) Define $\phi: G_K \to G'$ so that it is an isomorphism.

Then the **correct** sequence of the above steps is:

- (A) (b), (a), (c), (d)
- (B) (b), (d), (c), (a)
- (C) (c), (d), (a), (b)
- (D) (d), (a), (b), (c)

- 63. निम्न की तुलना कीजिए और सही उत्तर चुनिए। यदि $n \in N$, तब
 - (a) n⁵ + 4n विभाज्य है
- (i) 9 से
- (b) $n^3 + 2$ विभाज्य नहीं है
- (ii) 5 से
- (c) n³−n विभाज्य है
- (iii) 24 से
- (a) (b) (c)
- (A) (iii) (ii) (i)
- (B) (ii) (i) (iii)
- (C) (i) (ii) (iii)
- (D) (ii) (iii) (i)
- 64. समूहों की समाकारिता का मूलभूत प्रमेय सिद्ध करने में, कुछ चरण निम्नानुसार हैं:
- (a) समाकारिता की अष्टि K, G का प्रसामान्य उपसमूह है।
 - (b) एक समाकारी फलन f: G →G' पर विचार करें। f समाकारी है, अत: f की अध्टि होगी माना K।
 - (c) G_K' विभाग समूह दर्शायें।
 - (d) एक फलन $\phi: G_K \to G'$ इस प्रकार लें कि यह तुल्याकारी हो।

तब उपरोक्त चरणों का सही क्रम है:

- (A) (b), (a), (c), (d)
- (B) (b), (d), (c), (a)
- (C) (c), (d), (a), (b)
- (D) (d), (a), (b), (c)

- 65. The complete integral of the PDE $p^2+q^2=x+y$ is given by:
 - (A) $3z = (x+a)^{3/2} + (y-a)^{3/2} + b$
 - (B) $3z=2(x+a)^{3/2}+2(y-a)^{3/2}+b$
 - (C) $3z=2(x-a)^{3/2}+2(y+a)^{3/2}+b$
 - (D) $3z=(x-a)^{3/2}+(y-a)^{3/2}+b$, where a and b are arbitrary constants.
- 66. The stationary function of the integral:

$$I = \int_{0}^{4} \left[xy' - (y')^{2} \right] dx, \text{ which satisfies the}$$

boundary conditions y(0) = 0, y(4) = 3, is:

$$(A) \quad \frac{x^2 + x}{4}$$

- (B) $x^2 + x$
- (C) $\frac{x^2 x}{4}$
- (D) $\frac{x^2}{4} \frac{x}{2} = \sqrt{1} = (x) \sqrt{1}$

65. PDE $p^2 + q^2 = x + y$ का पूर्ण समाकलन दिया गया है:

(A)
$$3z=(x+a)^{3/2}+(y-a)^{3/2}+b$$

(B)
$$3z=2(x+a)^{3/2}+2(y-a)^{3/2}+b$$

(C)
$$3z=2(x-a)^{3/2}+2(y+a)^{3/2}+b$$

- (D) $3z = (x-a)^{3/2} + (y-a)^{3/2} + b$, जहाँ a और b स्वेच्छ अचर हैं।
- **66.** समाकल $I = \int_{0}^{4} \left[xy' (y')^{2} \right] dx$, का स्तब्ध फलन

जो परिसीमन प्रतिबंध y(0) = 0, y(4) = 3 को संतुष्ट करता है, है :

$$(A) \quad \frac{x^2 + x}{4}$$

- (B) $x^2 + x$
- (C) $\frac{x^2 x}{4}$
- (D) $\frac{x^2}{4} \frac{x}{2}$

- 67. Consider the equation x"+λx=0, 0≤t≤π. Match the boundary conditions and their corresponding eigen values and eigen functions.
- (a) $x'(0) = 0 = x'(\pi)$ (i) $(n^2, c_n \sin nt)$
- (b) $x(0) = 0 = x'(\pi)$ (ii) $(n^2, c_n \cos \frac{n+1}{2}t)$
- (c) $x(0) = 0 = x(\pi)$ (iii) $(n^2, c_n \cos nt)$
- (d) $x'(0) = 0 = x(\pi)$ (iv) $\left(\left(\frac{n+1}{2} \right)^2, c_n \sin \frac{n+1}{2} t \right)$

for n = 0, 1, 2, 3

- (a) (b) (c)
 - (c) (d)
- (A) (i) (ii) (iii) (iv)
- (B) (iii) (iv) (i) (ii)
- (C) (iv) (iii) (ii) (i)
- (D) (ii) (i) (iv) (iii)
- 68. The initial value problem: y''(x)+y(x)=0, y(0)=y'(0)=0 is equivalent to the:
 - (A) $y(x) = -\int_{0}^{x} (x-t)y(t)dt$
 - (B) $y(x) = \int_{0}^{x} (x-t)y(t)dt$
 - (C) $y(x) = -\int_{0}^{x} (x+t)y(t)dt$
 - (D) $y(x) = \int_{0}^{x} (x+t)y(t) dt$

- 67. समीकरण x"+λx=0, 0≤t≤π पर विचार करें। परिसीमा प्रतिबंध और उनके संगत आइगेन मान और आइगेन फलन को सुमेलित कीजिए।
 - (a) $x'(0) = 0 = x'(\pi)$ (i) $(n^2, c_n \sin nt)$
 - (b) $x(0) = 0 = x'(\pi)$ (ii) $(n^2, c_n \cos \frac{n+1}{2}t)$
 - (c) $x(0) = 0 = x(\pi)$ (iii) $(n^2, c_n \cos nt)$
 - (d) $x'(0) = 0 = x(\pi)$ (iv) $\left(\left(\frac{n+1}{2} \right)^2, c_n \sin \frac{n+1}{2} t \right)$

 $n = 0, 1, 2, 3 \dots$

- (a) (b) (c) (d)
- (A) (i) (ii) (iii) (iv)
- (B) (iii) (iv) (i) (ii)
- (C) (iv) (iii) (ii) (i)
- (D) (ii) (i) (iv) (iii)
- 68. प्रारंभिक मान समस्या
 y"(x)+y(x)=0,y(0)=y'(0)=0 कि सके

समतुल्य है?

- (A) $y(x) = -\int_{0}^{x} (x-t)y(t)dt$
- (B) $y(x) = \int_{0}^{x} (x-t)y(t) dt$
- (C) $y(x) = -\int_{0}^{x} (x+t)y(t)dt$
- (D) $y(x) = \int_{0}^{x} (x+t)y(t)dt$

- 69. Which of the following is/are correct?
 - (a) If a space (X, τ) has a base B of cardinality α , then the cardinality of τ cannot exceed 2^{α} .
 - (b) A space is second countable if it has a countable sub-base but not conversely.
 - (c) A discrete space is second countable iff the underlying set is countable.
 - (A) (a), (b)
 - (B) (b), (c)
 - (C) (a), (c)
 - (D) (a), (b), (c)
- 70. Let the Hamiltonian of a particle be given

by $H = \frac{p^2}{2m} + pq$, where q is a generalized coordinate and p is the corresponding momentum. Then the Lagrangian of the particle is:

(A)
$$\frac{m}{2}(\dot{q}+q)^2$$

- (B) $\frac{m}{2}(\dot{q}-q)^2$
- (C) $\frac{m}{2} [\dot{q}^2 + q\dot{q} q^2]$
- (D) $\frac{m}{2} [\dot{q}^2 q\dot{q} + q^2]$

69. निम्न में से कौन सही हैं?

- (a) यदि एक समष्टि (X, τ) को गणनीयता α का एक आधार B है, तब τ की गणनीयता 2^{α} से नहीं बढ सकती है।
- (b) एक समष्टि द्वितीय गणनीय है यदि इसे एक गणनीय उप-आधार हो परन्तु विलोमतः नहीं।
- (c) एक विविक्त समष्टि द्वितीय गणनीय होता है यदि और केवल यदि संबंधित समुच्चय गणनीय है।
- (A) (a), (b)
- (B) (b), (c)
- (C) (a), (c)
- (D) (a), (b), (c)
- **70.** माना कि कण का हैमिल्टोनियन $H = \frac{p^2}{2m} + pq$,

द्वारा दिया गया है जहाँ q एक सामान्यीकृत कोऑर्डीनेट तथा p संगत संवेग है, तब कण का लग्नांजी है :

(A)
$$\frac{m}{2}(\dot{q}+q)^2$$

- (B) $\frac{m}{2}(\dot{q}-q)^2$
- (C) $\frac{m}{2} [\dot{q}^2 + q\dot{q} q^2]$
- (D) $\frac{m}{2} \left[\dot{q}^2 q\dot{q} + q^2 \right]$

- 71. Consider the following statements:
 - (a) $Q(\sqrt{2})$ and Q(i) are isomorphic as fields.
 - (b) $Q(\sqrt{2})$ and Q(i) are both Galois extension of Q.
 - (c) $Q(\sqrt{2})$ and Q(i) are isomorphic as Q vector spaces.

(d)
$$\operatorname{Gal}_{Q} \left(Q \sqrt{2} / Q \right) \equiv \operatorname{Gal}_{Q} \left(Q(i) / Q \right)$$

Then correct statements are:

- (A) All the statements (a), (b), (c) and (d)
- (B) Statements (b), (c) and (d)
- (C) Statements (a), (c) and (d)
- (D) Statements (a), (b) and (d)
- 72. Let the function f(x, y, y') does not depend on x explicitly. Then

(A)
$$\frac{\partial f}{\partial y} = 0$$

(B)
$$\frac{\partial f}{\partial y'} = 0$$

(C)
$$f-y'\frac{\partial f}{\partial y'} = \text{constant}$$

(D)
$$f - y' \frac{\partial f}{\partial y'} \neq \text{constant}$$

- 71. निम्नलिखित कथनों पर विचार करें :
- ्रि $Q(\sqrt{2})$ एवं Q(i) क्षेत्रों की तरह तुल्याकारी
 - (b) $Q(\sqrt{2})$ एवं Q(i) दोंनों Q के गैलाइस विस्तार हैं।
 - (c) $Q(\sqrt{2})$ एवं Q(i), Q सदिश समिष्टियों की तरह तुल्याकारी हैं।

(d)
$$\operatorname{Gal}_{Q} \left(\frac{Q\sqrt{2}}{Q} \right) \cong \operatorname{Gal}_{Q} \left(\frac{Q(i)}{Q} \right)$$

तब सत्य कथन हैं:

- (A) समस्त कथन (a), (b), (c) एवं (d)
- (B) कथन (b), (c) एवं (d)
- (C) कथन (a), (c) एवं (d)
- (D) कथन (a), (b) एवं (d)
- 72. माना फलन f(x, y, y') स्पष्टतः x पर निर्भर नहीं है। तब :

(A)
$$\frac{\partial f}{\partial y} = 0$$

(B)
$$\frac{\partial f}{\partial y'} = 0$$

(C)
$$f-y'\frac{\partial f}{\partial y'}$$
= स्थिरांक

(D)
$$f-y'\frac{\partial f}{\partial y'} \neq \text{Reating}$$

73. For the PDE $u_{xx} - x^2 u_{yy} = 0$, the possible characteristic curves are :

(A)
$$x^2 + 2y = \alpha$$
, $3x^2 - 2y = \beta$

(B)
$$3x^2 + 2y = \alpha$$
, $3x^2 - 2y = \beta$

(C)
$$x^2 + 2y = \alpha, x^2 - 2y = \beta$$

(D) None of these

73. PDE : $u_{xx} - x^2 u_{yy} = 0$ के लिए संभव अभिलक्षणिक वक्र हैं :

(A)
$$x^2 + 2y = \alpha$$
, $3x^2 - 2y = \beta$

(B)
$$3x^2 + 2y = \alpha$$
, $3x^2 - 2y = \beta$

(C)
$$x^2 + 2y = \alpha, x^2 - 2y = \beta$$

(D) उपरोक्त में से कोई नहीं

- 74. A continuous map of a compact Hausdorff space is:
 - (A) open
 - (B) not necessarily open
 - (C) homeomorphism
 - (D) necessarily closed

- 74. एक संहत हाऊसडार्फ समष्टि का एक संतत प्रतिचित्रण है:
 - (A) विवृत्त
 - (B) आवश्यकतः विवृत नहीं
 - (C) होमियोमॉर्फिज्म
 - (D) आवश्यकतः संवृत्त

75. A system is called:

- (a) holonomic (i) if only stationary constraints are imposed
- (b) non-holonomic (ii) if non-stationary constraints are imposed
- (c) scheronomic (iii) if the particles of the system are not subjected to differential non-integrable constraints
- (d) rheonomic (iv) if there are differential non-integrable constraints

Find the correct answer:

- (A) (a) and (iii), (b) and (iv), (c) and (i), (d) and (ii)
- (B) (a) and (iv), (b) and (iii), (c) and (i), (d) and (ii)
- (C) (a) and (iii), (b) and (iv), (c) and (ii), (d) and (i)
- (D) (a) and (iv), (b) and (i), (c) and (ii), (d) and (iii)

75. एक निकाय को कहते हैं:

- (a) होलोनोमी (i) यदि केवल स्थिर व्यवरोध को अरोपित किया जाता हो।
- (b) नॉन-होलोनोमी (ii) यदि अस्थिर व्यवरोध को आरोपित किया जाता हो।
- (c) शेरोनोमी (iii) यदि निकाय का कण अवकलनीय असमाकलन प्रतिबंध के प्रभाव में न हो।
- (d) रिओनोमी (iv) यदि निकाय में अवकलनीय असमाकलन प्रतिबंध हो।

सही उत्तर चुनिए:

- (A) (a) और (iii), (b) और (iv), (c) और (i), (d) और (ii)
- (B) (a) और (iv), (b) और (iii), (c) और (i), (d) और (ii)
- (C) (a) और (iii), (b) और (iv), (c) और (ii), (d) और (i)
- (D) (a) और (iv), (b) और (i), (c) और (ii), (d) और (iii)

- 76. Consider the boundary value problem : y''(x)=1, y(0)=y(1)=0. Then
 - (A) $I[y(x)] = \int_{0}^{1} (y'^{2} + 2y) dx$ and the exact solution of the problem $y(x) = \frac{x^{3} x}{2}$
 - (B) $I[y(x)] = \int_{0}^{1} (y'^{2} y) dx$ and the exact solution of the problem is $y(x) = \frac{x^{2} x}{2}$
 - (C) $I[y(x)] = \int_{0}^{1} (y'^{2} + y) dx$ and assuming $y = c_{1}(x x^{2})$, the approximate solution of the problem is $\frac{x^{2} x}{2}$
- (D) $I[y(x)] = \int_{0}^{1} (y'^{2} + 2y) dx$ and the exact solution of the problem is $y(x) = \frac{x^{2} x}{2}$

76. परिसीमा मान समस्या :

y''(x)=1, y(0)=y(1)=0 पर विचार करे । तब :

- (A) $I[y(x)] = \int_{0}^{1} ({y'}^{2} + 2y) dx$ और समस्या का यथार्थ हल $y(x) = \frac{x^{3} - x}{2}$ है ।
- (B) $I[y(x)] = \int_{0}^{1} (y'^{2} y) dx$ और समस्या का यथार्थ हल $y(x) = \frac{x^{2} - x}{2}$ है।
- (C) $I[y(x)] = \int_{0}^{1} (y'^{2} + y) dx$ और माना कि $y = c_{1}(x x^{2})$ है तब समस्या का लगभग हल $\frac{x^{2} x}{2}$ है।
- (D) $I[y(x)] = \int_{0}^{1} (y'^{2} + 2y) dx$ और समस्या का सही हल $y(x) = \frac{x^{2} - x}{2}$ है।

	Match	the	nearest	related	from	the
	following mathematical terms:					

- (a) Integral domain (i) Subring
- (b) Ideal
- (ii) Additive

cosets

- Isomorphism (c) (iii) Field
- (d) Quotient ring (iv) Homomorphism Select the correct answer:
 - (a) (b)
 - (c)
 - (d) (iv)
 - (A) (iii) (i) (B) (iii) (i)
- (ii)
- (ii) (iv) (i)
- (C) (iv) (D) (ii)
- (iii) (ii)
- (iii)
 - (i) (iv)
- For the kernel $K(x, t) = e^{x-t}$ with $\lambda = -1$, the resolvent kernel $R(x, t; \lambda)$ is:
 - (A) e^{x-t}
 - (B) $e^{2(x-t)}$
 - (C) 1
 - (D) $e^{-2(x-t)}$

- 77. निम्नलिखित गाणितीय पदों का समीपतम संबंधित के अनुसार मिलान कीजिये :
- पूर्णांकीय प्रांत (a)
- (i) उपवलय
- गुणजावली (b)
- (ii) योज्य सहसमुच्चय
- तुल्यकारिता (c)
- (iii) क्षेत्र
- (d) विभाग वलय
- (iv) समाकारिता

सही उत्तर का चयन कीजिये:

- (a) (b) (c) (d)
- (A) (iii) (i) (iv) (ii)
- (B) (iii) (i) (ii) (iv)
- (C) (iv) (iii) (ii) (i)
- (D) (ii) (iii) (i) (iv)
- अष्टि $K(x,t) = e^{x-t}$ जहाँ $\lambda = -1$ के लिए साधक 78. अष्टि R(x, t; \lambda) होगा:
 - (A) e^{x-t}
 - (B) $e^{2(x-t)}$
 - (C) 1
 - (D) $e^{-2(x-t)}$
- 79. Solution of the integral equation
 - $sinh x = \int e^{x-t} y(t) dt$ is:
 - (A) e^x
 - (B) $\sinh x$
 - (C) e^{-x}
 - (D) $\cosh x$

समाकल समीकरण $\sinh x = \int e^{x-t} y(t) dt$ का हल

है:

79.

- (A) e^{x}
- (B) sinhx
- e^{-x} (C)
- (D) coshx

- For the transformation $\omega = \frac{z}{2-z}$, fixed 80. रूपांतरण $\omega = \frac{z}{2-z}$ के लिए स्थिर बिंदु हैं : points are:
 - (A) 0 and 1
 - (B) 0 and 2
 - (C) 0 and 3
 - (D) 0 and 4
- The function $f(z)=\frac{z+1}{z(z^2+2)}$ has the 81. फलन $f(z)=\frac{z+1}{z(z^2+2)}$ में निम्न विचित्रताएँ हैं : following singularities:
 - (A) Essential singularities
 - Removable singularities (B)
 - Isolated singularities
 - (D) None of the above

- - (A) 0 और 1
 - (B) 0 और 2
 - (C) 0 और 3
 - (D) 0 और 4
- - (A) अनिवार्य विचित्रताएँ
 - निराकरण विचित्रताएँ
 - (C) विलग विचित्रताएँ
 - (D) उपरोक्त कोई नहीं
- Consider the transformation $\omega = \frac{1}{2}$. मान लीजिए कि रूपांतरण $\omega = \frac{1}{z}$ है। तब $y = \frac{1}{4}$ Then $y = \frac{1}{4}$ gives the circle: का वृत्त होगा:
 - (A) $u^2 + v^2 = 4$
 - (B) $u^2 + (v+2)^2 = 4$
 - (C) $u^2 + (v+1)^2 = 4$
 - (D) $(u+2)^2+v^2=4$

- (A) $u^2 + v^2 = 4$
- (B) $u^2 + (v+2)^2 = 4$
- (C) $u^2 + (v+1)^2 = 4$
- (D) $(u+2)^2+v^2=4$

- 83. If z = x + iy, then which one is **not** correct?
 - (A) $\sqrt{2}|z| \ge |\operatorname{Re} z| + |\operatorname{Im} z|$
 - (B) $\overline{z} + 3i = z 3i$
 - (C) $|\operatorname{Re}\left(2+\overline{z}+z^3\right)| \le 4$

when $|z| \le 1$

- (D) None of the above is correct
- 84. Determine sequence in proving that if G is a finite group, then $c_a = O(G)/O(N(a))$.
 - (a) x, y belong to same conjugate of a.
 - (b) deduce $y^{-1}ay = x^{-1}ax$.
 - (c) $x, y \in G$ are in the same right coset of N(a) in G.
 - (A) (a), (b), (c)
 - (B) (c), (b), (a)
 - (C) (a), (c), (b)
 - (D) (b), (c), (a)

- 83. यदि z = x + iy, तो कौन-सा **सही नहीं** है?
 - (A) $\sqrt{2}|z| \ge |\operatorname{Re} z| + |\operatorname{Im} z|$
 - (B) $\overline{z} + 3i = z 3i$
 - (C) $|\operatorname{Re}\left(2+\overline{z}+z^3\right)| \le 4$
 - SIG |2|51
- 84. यह सिद्ध करने के लिए क्रम का निर्धारण कीजिए कि यदि G एक परिमित समूह है,

(D) उपरोक्त से कोई भी सही नहीं हैं

तब $c_a = O(G)/O(N(a))$

- (a) x, y एक ही a के संयुग्मी में है।
- (b) $y^{-1}ay = x^{-1}ax$ विकलित कीजिए।
- (c) x, y ∈ G, N(a) के G में एक ही दक्षिण सहसमुच्चय में है।
- (A) (a), (b), (c)
- (B) (c), (b), (a)
- (C) (a), (c), (b)
- (D) (b), (c), (a)

- **85.** Let (X, τ_X) and (Y, τ_Y) be two topological spaces and $f: X \rightarrow Y$ be a function. Then
 - (a) $f^{-1}(V)\epsilon\tau_X \forall V\epsilon\tau_Y$
 - (b) $F \text{ is } \tau_{Y} \text{-closed} \Rightarrow f^{-1}(F) \text{ is } \tau_{X} \text{-closed}$
 - (c) $f(\overline{F}) \subset \overline{f(F)} \forall F \subset X$
 - (d) f is $\tau_X \tau_Y$ continuous

Which of the following is/are true?

(i) separable

(ii) connected

- (i) $(a) \Rightarrow (b) \Rightarrow (c) \Rightarrow (d)$
- (ii) (b) \Rightarrow (c) \Rightarrow (d)
- (iii) $(c) \Rightarrow (d) \Rightarrow (b) \Rightarrow (a)$
- (iv) $(d) \Rightarrow (c) \Rightarrow (a) \Rightarrow (b)$
- (A) (i), (ii)
- (B) (ii), (iii)
- (C) (iii), (iv)
- (D) (i), (ii), (iii), (iv)
- 86. Match the following:
- (a) A subspace Y of a topological space X is compact if Y is
- (b) Every second countable space is
- (c) If I is any interval (iii) closed and in R, then I is bounded
 - (a) (b) (c)
 - (A) (ii) (iii) (i)
 - (B) (iii) (i) (ii)
 - (C) (i) (ii) (iii)
 - (D) (iii) (ii) (i)

- 85. माना (X, τ_X) तथा (Y, τ_Y) दो टोपोलोजिकल समष्टियाँ हैं तथा $f: X \rightarrow Y$ में एक फलन है। तब :
 - (a) $f^{-1}(V)\epsilon\tau_X \forall V\epsilon\tau_Y$
 - (b) F, τ_Y संवृत्त है $\Rightarrow f^{-1}(F)$, τ_X संवृत्त है
 - (c) $f(\overline{F}) \subset \overline{f(F)} \forall F \subset X$
 - (d) $f, \tau_X \tau_Y$ $\overrightarrow{\text{tida}}$ $\overrightarrow{\text{R}}$

निम्न में से कौन सा सत्य हैं?

- (i) $(a) \Rightarrow (b) \Rightarrow (c) \Rightarrow (d)$
- (ii) $(b) \Rightarrow (c) \Rightarrow (a) \Rightarrow (d)$
- (iii) $(c) \Rightarrow (d) \Rightarrow (b) \Rightarrow (a)$
- (iv) $(d) \Rightarrow (c) \Rightarrow (a) \Rightarrow (b)$
- (A) (i), (ii)
- (B) (ii), (iii)
- (C) (iii), (iv)
- (D) (i), (ii), (iii), (iv)
- 86. निम्न को सुमेलित कीजिए:
- (a) किसी टोपोलोजिकल समष्टि (i) सेपारेबल X का उपसमष्टि Y संहत होता है यदि Y है
- (b) प्रत्येक द्वितीय गणनीय (ii) संबद्ध समष्टि है
- (c) यदि I, R में कोई अन्तराल (iii) संवृत और परिबद्ध है, तब I है
 - (a) (b) (c)
 - (A) (ii) (iii) (i)
 - (B) (iii) (i) (ii)
 - (C) (i) (ii) (iii)
 - (D) (iii) (ii) (i)

- (A): The center Z(R) of a ring R is a 87. subring of R.
 - (R): $a, b \in Z(R) \Rightarrow ab, a-b \in Z(R)$

Now which of the following is most appropriate answer?

- (A) is true but (R) is not the correct reason.
- (A) is true but (R) is false. (B)
- (A) is false but (R) is true.
- (D) (A) is true and (R) is correct reason.
- Match the following PDEs along with their classifications.
- (a) $u_{xx} x^2 u_{yy} = 0$
- (i) Hyperbolic
- (a) $u_{xx} x^2 u_{yy} = 0$
- (i) अतिपरवलयिक

- (b) $e^{2x}u_{xx} + 2e^{x+y}u_{xy} + e^{2y}u_{yy} = 0$
- (ii) Elliptic
- $(c)(\sin^2 x)u_{xx} + 2(\cos x)u_{xy} u_{yy} = 0$ (iii) Hyperbolic
- $(c)(\sin^2 x)u_{xx} + 2(\cos x)u_{xy} u_{yy} = 0$ (iii) अतिपरवलियक

- (d) $4u_{xx} 4u_{xy} + 5u_{yy} = 0$
- (iv) Parabolic
- (d) $4u_{xx} 4u_{xy} + 5u_{yy} = 0$
- (iv) परवलयी

- (a) (b)
- (c)
- (d)
- (A) (iv) (i) (ii) (iii)
- (B) (iii) (iv) (i) (ii)
- (C) (i) (ii) (iii) (iv)
- (D) (ii) (iii) (iv)

- - (R): $a, b \in Z(R) \Rightarrow ab, a-b \in Z(R)$ अब निम्न में से सबसे उपयुक्त उत्तर कौन सा है?

(A): वलय R का केन्द्र Z(R), R का एक उपवलय

- (A) (A) सत्य है परन्तु (R) सही कारण नहीं है।
 - (A) सत्य है परन्तु (R) असत्य है।
 - (A) असत्य है परन्तु (R) सत्य है।
- (A) सत्य है तथा (R) सही कारण है।
- निम्नलिखित PDEs को उनके वर्गीकरण के साथ 88. सुमेलित कीजिए।

- (b) $e^{2x}u_{xx} + 2e^{x+y}u_{xy} + e^{2y}u_{yy} = 0$ (ii) दीर्घवृत्तीय

- (a) (b) (c) (d)
- (A) (iv) (i) (ii) (iii)
- (B) (iii) (iv) (i) (ii)
- (C) (i) (ii) (iii) (iv)
- (D) (ii) (iii) (iv) (i)

89. In the following choose the correct one/ ones:

The d'Alembert's solution is applicable to

- (a) the vibration of an infinite string
- (b) the vibration of semi-infinite string
- (c) the vibration of a string of finite length
- (A) (b), (c) but not (a)
- (B) (a), (b) but not (c)
- (C) (a), (c) but not (b)
- (D) All (a), (b) and (c)
- 90. Using Fredholm's first fundamental theorem, $D(\lambda)$ of $y(x)=f(x)+\lambda\int_0^1 y(t)dt$ is given by:
 - (A) 1
 - (B) λ
 - (C) $1-\lambda$
 - (D) $1+\lambda$

89. निम्नलिखित में से कौन-सा/से सही है/हैं?

डीलंबर्ट हल लागू होता है :

- (a) एक अनंत डोरी के कंपन पर
- (b) अर्द्ध-अनंत डोरी के कंपन पर
- (c) परिमित लंबाई की एक डोरी के कंपन पर
- (A) (b), (c) सही हैं परन्तु (a) सही नहीं है
- (B) (a), (b) सही हैं परन्तु (c) सही नहीं है
- (C) (a), (c) सही हैं परन्तु (b) सही नहीं है
- (D) सभी (a), (b) और (c) सही हैं
- 90. फ्रेडहोम का पहला मूल प्रमेय का उपयोग करके $y(x) = f(x) + \lambda \int_0^1 y(t) dt$ का $D(\lambda)$ दिया गया

है:

- (A) 1
- (B) λ
- (C) 1-λ
- (D) $1 + \lambda$

- 91. The particular solution of $x^2y''-2xy'+2y=xe^{-x}$ is:
 - (A) $-xe^{-x} (x+x^2) \int_{-x}^{e^{-x}} dx$
 - (B) $-(x+x^2)\int \frac{e^{-x}}{x} dx$
 - (C) $-xe^{-x} x^2 \int \frac{e^{-x}}{x} dx$
 - (D) $-x^2 \int \frac{e^{-x}}{x} dx$
- 92. Match the following:
- (a) Every regular second (i) Compact countable space is
- (b) Every compact Hausdorff (ii) Normal space is

(iii) Ta

- (c) Closure of a compact subset of a regular space is
 - (a) (b) (c)
 - (A) (i) (ii) (iii)
 - (B) (ii) (iii) (i)
 - (C) (iii) (i) (ii)
 - (D) (ii) (i) (iii)

- 91. $x^2y''-2xy'+2y=xe^{-x}$ का विशिष्ट हल है :
 - (A) $-xe^{-x} (x+x^2) \int_{-x}^{e^{-x}} dx$
 - (B) $-(x+x^2)\int \frac{e^{-x}}{x} dx$
 - (C) $-xe^{-x} x^2 \int \frac{e^{-x}}{x} dx$
 - (D) $-x^2 \int \frac{e^{-x}}{x} dx$
- 92. निम्न को सुमेलित कीजिए :
- (a) प्रत्येक रेगुलर द्वितीय (i) संहत गणनीय समध्टि है
- (b) प्रत्येक संहत हाऊसडॉर्फ (ii) नॉर्मल समध्यि है
- (c) एक रेगुलर समध्य का एक (iii) T_4 संहत उपसमुच्चय का संवरक होता है
 - (a) (b) (c)
 - (A) (i) (ii) (iii)
 - (B) (ii) (iii) (i)
 - (C) (iii) (i) (ii)
 - (D) (ii) (i) (iii)

93. The values of α and β for which the quadrature formula

 $\int_{-1}^{1} f(x)dx = \alpha f(-1) + f(\beta)$ is exact for all polynomial of degree less than or equal to one are:

- (A) $\alpha = -1$, $\beta = 1$
- (B) $\alpha = 1$, $\beta = -1$
- (C) $\alpha = 1$, $\beta = 1$
- (D) $\alpha = -1, \beta = -1$

93. α एवं β के मान जिसके लिए क्षेत्रकलन सूत्र $\int\limits_{-1}^{1} f(x) dx = \alpha f(-1) + f(\beta)$ एक से कम अथवा

एक के बराबर घात के सभी बहुपदों के लिए सही

- (A) $\alpha = -1$, $\beta = 1$
- (B) $\alpha = 1$, $\beta = -1$
- (C) $\alpha = 1, \beta = 1$
- (D) $\alpha = -1, \beta = -1$
- 94. Let the real part of an analytic function is $e^x \cos y$. Then the analytic function is given by:
 - (A) $e^z + C$
 - (B) $e^z \cos z + C$
 - (C) $e^z \sin z + C$
 - (D) $e^{iz}+C$

94. माना कि किसी विश्लेषिक फलन का वास्तविक भाग $e^x \cos y$ है तब विश्लेषिक फलन दिया जाएगा :

- (B) $e^z \cos z + C$
- (C) $e^z \sin z + C$
- (D) $e^{iz} + C$

- 95. For a free particle (moving):
 - (A) K.E. is always constant.
 - (B) Lagrangian is always constant.
 - (C) P.E. is always constant.
 - (D) Hamiltonian is always constant.
- 96. A bacteria culture grows at a rate proportional to the number of bacteria present. Then the growth rate of the bacteria is:
 - (A) linear
 - (B) exponential
 - (C) logarithmic
 - (D) sinusoidal
- 97. (a) X is a metric space
 - (b) X is compact
 - (c) X is second countable
 - (d) X is countably compact

Which of the following is true?

- (A) $(a) \Rightarrow (d) \Rightarrow (c) \Rightarrow (b)$
- (B) (a) and (b) \Rightarrow (d) \Rightarrow (c)
- (C) (b) \Rightarrow (c) \Rightarrow (a) and (b)
- (D) (b) and (c)⇒(d) and (a)

- 95. एक मुक्त कण (मूविंग) के लिए:
 - (A) K.E. सदैव स्थिर है।
 - (B) लग्रांजी सदैव स्थिर है।
 - (C) P.E. सदैव स्थिर है।
 - (D) हैमिल्टनी सदैव स्थिर है।
- 96. कोई जीवाणु संवर्धन, उपस्थित जीवाणु की संख्या की समानुपातिक दर से विकसित होता है। तब जीवाणु की विकसित दर है:
 - (A) रैखिक
 - (B) चरघातांकी
 - (C) लॉगरिथ्मीक
 - (D) सिनुसॉयडल
- 97. (a) X एक दूरिक समष्टि है
 - (b) X संहत है
 - (c) X द्वितीय गणनीय है
 - (d) X गणनीय संहत है

निम्न में से कौन सा सत्य है?

- (A) $(a) \Rightarrow (d) \Rightarrow (c) \Rightarrow (b)$
- (B) (a) और (b)⇒(d)⇒(c)
- (C) (b)⇒(c)⇒(a) और (b)
- (D) (b) और (c)⇒(d) और (a)

- 98. The value of the integral $\oint_C \frac{e^{2z}}{(z+1)^4} dz$, where C is the circle |z| = 3 is:
- (A) $\frac{4}{3} \pi i e^{-2}$
 - (B) $\frac{4}{3} \pi i e^2$
 - (C) $\frac{8}{3} \pi i e^2$
 - (D) $\frac{8}{3} \pi i e^{-2}$
- 99. In the usual metric space R, which of the following is/are correct?
 - (a) the set Q of rationals is an F_{σ} .
 - (b) the set Q of rationals is a G_{δ} .
 - (c) $\{r\} \subset Q$ is a closed set.
 - (d) $\underset{r \in Q}{U(R-\{r\})}$ is an open set.
 - (A) (a), (b), (c)
 - (B) (b), (c), (d)
 - (C) (c), (d), (a)
 - (D) (a), (b), (c), (d)

- 98. समाकल $\oint_C \frac{e^{2z}}{(z+1)^4} dz$, जहाँ C वृत्त |z|=3 है, का मान होगा :
 - (A) $\frac{4}{3} \pi i e^{-2}$
 - (B) $\frac{4}{3}\pi i e^2$
 - (C) $\frac{8}{3} \pi i e^2$
 - (D) $\frac{8}{3} \pi i e^{-2}$
- 99. सामान्य दूरिक समष्टि R में निम्न में से कौन सही है?
 - (a) परिमेय संख्याओं का समुच्चय Q, F है।
 - (b) परिमेय संख्याओं का समुच्चय Q, G_8 है ।
 - (c) $\{r\}$ ⊂ Q एक संवृत समुच्चय है।
 - (d) $U_{r \in Q}(R-\{r\})$ एक विवृत समुच्चय है।
 - (A) (a), (b), (c)
 - (B) (b), (c), (d)
 - (C) (c), (d), (a)
 - (D) (a), (b), (c), (d)

100. The differential equation $\ddot{x} - 6\dot{x} + 9x = t$, where $\dot{x} = \frac{dx}{dt}$ and $\ddot{x} = \frac{d^2x}{dt^2}$, can be written as a system of equations:

$$\begin{pmatrix} \dot{x}_1 \\ \dot{x}_2 \end{pmatrix} = A \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \begin{pmatrix} f_1 \\ f_2 \end{pmatrix}$$
, where

(A)
$$A = \begin{pmatrix} 0 & 1 \\ 9 & -6 \end{pmatrix}, f_1(t) = 0, f_2(t) = t$$

(B)
$$A = \begin{pmatrix} 0 & 1 \\ -9 & 6 \end{pmatrix}, f_1(t) = t, f_2(t) = 0$$

(C)
$$A = \begin{pmatrix} 0 & -9 \\ 1 & 6 \end{pmatrix}, f_1(t) = t, f_2(t) = 0$$

(D)
$$A = \begin{pmatrix} 0 & 1 \\ -9 & 6 \end{pmatrix}, f_1(t) = 0, f_2(t) = t$$

100. अवकल समीकरण $\ddot{x}-6\dot{x}+9x=t$ है, जहाँ $\dot{x}=\frac{\mathrm{d}x}{\mathrm{d}t}$ और $\ddot{x}=\frac{\mathrm{d}^2x}{\mathrm{d}t^2}$ है, को समीकरण निकाय $\begin{pmatrix} \dot{x}_1 \\ \dot{x}_2 \end{pmatrix} = A \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \begin{pmatrix} f_1 \\ f_2 \end{pmatrix}$ की तरह भी लिखा जाता है। जहाँ :

(A)
$$A = \begin{pmatrix} 0 & 1 \\ 9 & -6 \end{pmatrix}, f_1(t) = 0, f_2(t) = t$$

(B)
$$A = \begin{pmatrix} 0 & 1 \\ -9 & 6 \end{pmatrix}, f_1(t) = t, f_2(t) = 0$$

(C)
$$A = \begin{pmatrix} 0 & -9 \\ 1 & 6 \end{pmatrix}, f_1(t) = t, f_2(t) = 0$$

(D)
$$A = \begin{pmatrix} 0 & 1 \\ -9 & 6 \end{pmatrix}, f_1(t) = 0, f_2(t) = t$$

SPACE FOR ROUGH WORK / रफ कार्य के लिये जगह

48

PART - II (B)/भाग - II (B) STATISTICS GROUP सांख्यिकी समूह

61. Consider a series system of two

61.
$$X \sim \exp\left(\text{माध्य} = \frac{1}{\lambda_1}\right)$$
 तथा

independent components with respective lifetime distributions

$$X \sim \exp\left(\text{mean} = \frac{1}{\lambda_1}\right)$$
 and

 $Y \sim \exp\left(\text{mean} = \frac{1}{\lambda_2}\right)$. Then the probability that system fails due to failure of component 2 is:

$$Y \sim \exp\left(\frac{\Pi^2 \times \Pi^2}{\Pi^2}\right)$$
 के उनके जीवन काल बंटन के साथ दो स्वतंत्र घटकों की एक श्रेणी तंत्र पर विचार कीजिए। तंत्र घटक 2 की विफलता के कारण

तंत्र विफल होता है, की प्रायिकता होगी:

(A)
$$\frac{1}{\lambda_1 + \lambda_2}$$

(A)
$$\frac{1}{\lambda_1 + \lambda_2}$$

(B)
$$\frac{\lambda_2}{\lambda_2}$$

(B)
$$\frac{1}{\lambda_2}$$

(C)
$$\frac{\lambda_1}{\lambda_1 + \lambda_2}$$

(C)
$$\frac{\lambda_1}{\lambda_1 + \lambda_2}$$

(D)
$$\frac{\lambda_2}{\lambda_1 + \lambda_2}$$

(D)
$$\frac{\lambda_2}{\lambda_1 + \lambda_2}$$

- **62.** Let $\{X_n, n \ge 0\}$ be a Markov chain. If C is a communicating class of states of Markov chain then all the states of C are:
 - (A) recurrent states
 - (B) transient states
 - (C) either transient or recurrent states
 - (D) aperiodic states
- 63. A certain mathematician always carries two match-boxes (initially containing N match-sticks). Each time when he wants a match-stick he selects a box at random. Inevitably a moment comes when he finds a box empty. Then the probability that there are exactly r match-sticks in one box when the other box is found empty is calculated by the formula

$$\binom{2N-r}{N} \times \left(\frac{1}{2}\right)^{2N-r}.$$

Then this calculation is based on which probability distribution?

Choose the correct distribution.

- (A) Binomial Distribution
- (B) Poisson Distribution
- (C) Hyper-geometric Distribution
- (D) Negative Binomial Distribution

- माना कि {X_n, n ≥ 0} एक मार्कोव शृंखला है। यदि
 С मार्कोव शृंखला की अवस्था का एक संचरण क्लास है तो C की सभी अवस्थाएँ होंगी :
 - (A) पुनरावर्ती अवस्थाएँ
 - (B) संक्रमणीय अवस्थाएँ
 - (C) या तो संक्रमणीय या पुनरावर्ती अवस्थाएँ
 - (D) अनावर्ति अवस्थाएँ
- 63. एक विशिष्ट गणितज्ञ हमेशा दो माचिस की डिब्बी साथ में रखते हैं। (मूलत: उसमें N माचिस की तिलीयाँ हैं) जब कभी उनको तिलीयों की आवश्यकता होती है, तो प्रत्येक बार वे यादृच्छिक रूप से एक डिब्बी निकालते हैं। एक ऐसा समय आया जब उनको एक खाली डिब्बा मिला। जब एक डिब्बी खाली हो, तो किसी एक डिब्बी में निश्चित रूप से r तिलियों की होने की प्रायिकता को निम्न सूत्र से गणना की गई

$$\binom{2N-r}{N} \times \left(\frac{1}{2}\right)^{2N-r}$$

तो यह गणना किस प्रायिकता बंटन के आधार पर किया गया ?

सही बंटन का चयन कीजिए।

- (A) द्विपद बंटन
- (B) प्वासों बंटन
- (C) हाइपरज्योमेट्रिक बंटन
- (D) ऋणात्मक द्विपदीय बंटन

- **64.** Match the following pairs related to states of Markov chain.
 - (a) State i is persistent (i) its mean iff recurrence time $\mu_i < \infty$
- (b) State *i* is transient (ii) $\sum_{n=0}^{\infty} P_{ii}^{(n)} = \infty$

iff

- (c) State *i* is persistent (iii) $\sum_{n=0}^{\infty} P_{ii}^{(n)} = \infty$ null iff and $p_{ii}^{(n)} \rightarrow 0$ as $n \rightarrow \infty$
- (d) Aperiodic (iv) $\sum_{n=0}^{\infty} P_{ii}^{(n)} < \infty$

persistent state

i is ergodic iff

Code:

- (a) (b) (c) (d)
- (A) (ii) (iv) (i) (iii)
- (B) (iv) (ii) (i) (iii)
- (C) (ii) (iv) (iii) (i)
- (D) (iii) (iv) (ii) (i)

- 64. मार्कोव शृंखला अवस्था से सम्बंधित निम्न युग्मों को सुमेलित कीजिए।
- (a) अवस्था i बनी रहेगी (i) इसका माध्य आवर्त केवल और केवल यदि काल $\mu_i < \infty$
- (b) अवस्था i संक्रमणीय (ii) $\sum_{n=0}^{\infty} P_{ii}^{(n)} = \infty$ होगी केवल और केवल यदि
- (c) अवस्था i प्रभावहीन होगी (iii) $\sum_{n=0}^{\infty} P_{ii}{}^{(n)} = \infty$ केवल और केवल यदि $n \to \infty$ $p_{ii}{}^{(n)} \to 0$
- (d) अनावर्ती अवस्था i (iv) $\sum_{n=0}^{\infty} P_{ii}^{(n)} < \infty$ एगींडिक होगा

कृट :

- (a) (b) (c) (d)
- (A) (ii) (iv) (i) (iii)
- (B) (iv) (ii) (i) (iii)
- (C) (ii) (iv) (iii) (i)
- (D) (iii) (iv) (ii) (i)

- 65. Which of the following statements are correct?
 - (a) The bias in the ratio estimator becomes zero if the line of regression passes through origin.
 - (b) Sample mean is always unbiased estimator under pps design.
 - Sampling error decreases as sample size increases.
 - (A) (a) and (b) only
 - (B) (b) and (c) only
 - (C) (a) and (c) only
 - (D) All (a), (b) and (c)
- 66. The basic assumptions of M/M/1 queue are :
 - (a) Arrivals are independent of preceeding arrival but the arrival rate is constant with respect to time.
 - (b) Arrivals are served on FIFO basis.
 - (c) Arrivals follow Poisson distribution.
 - (A) (a) \rightarrow (c) \rightarrow (b)
 - (B) (b) \rightarrow (a) \rightarrow (c)
 - (C) $(c) \rightarrow (b) \rightarrow (a)$
 - (D) (b) \rightarrow (c) \rightarrow (a)

- 65. निम्नलिखित में से कौन-सा कथन सही है?
 - (a) यदि समाश्रयण की रेखा, उत्पत्ति से होकर गुजरती हो, तो अनुपात आकलक में बायस शून्य हो जाता है।
 - (b) pps डिज़ाइन के अधीन प्रतिदर्श ाध्य सदैव अनिभनत आकलक रहता है।
 - (c) प्रतिदर्श आकार बढ़ने के साथ-साथ, प्रतिचयन दोष घट जाता है।
 - (A) केवल (a) और (b)
 - (B) केवल (b) और (c)
 - (C) केवल (a) और (c)
 - (D) (a), (b) और (c) सभी
- 66. M/M/1 क्यू की मूल मान्यताएँ हैं :
 - (a) आगमन, पूर्व आगमन से स्वतंत्र होते हैं, परन्तु समय के साथ आगमन दर स्थिर रहता है।
 - (b) FIFO के आधार पर आगमन सेवाएँ दी जाती हैं।
 - (c) आगमन प्वासों वितरण का अनुसरण करते हैं।
 - (A) (a) \rightarrow (c) \rightarrow (b)
 - (B) (b) \rightarrow (a) \rightarrow (c)
 - (C) $(c) \rightarrow (b) \rightarrow (a)$
 - (D) (b) \rightarrow (c) \rightarrow (a)

67. Let the data matrix for random sample of size n=3 from bivariate normal

distribution be
$$\stackrel{\times}{=} \begin{bmatrix} 6 & 10 & 8 \\ 9 & 6 & 3 \end{bmatrix}$$
.

Then unbiased estimate of Σ is:

$$\begin{bmatrix} 4 & -3 \\ -3 & 9 \end{bmatrix}$$

$$-(B) + \begin{bmatrix} 4 & -6 \\ -6 & 9 \end{bmatrix}$$

(C)
$$\begin{bmatrix} 8 & -6 \\ -6 & 18 \end{bmatrix}$$

(D)
$$\begin{bmatrix} 4 & 3 \\ 3 & 9 \end{bmatrix}$$

- 68. In BIBD, the number of treatments is equal to the number of plots in a block, then BIBD:
 - (A) reduces to CRD
 - (B) reduces to RBD
 - (C) reduces to LSD
 - (D) reduces to Graeco LSD
- If other things remaining the same and the sample size increases then the width of the confidence interval of the population mean:
 - (A) decreases
 - decreases by exactly the square root of the increase in the sample size
 - decreases by exactly the increase in the sample size
 - (D) increases

67. मान लीजिए की द्विचर प्रसामान्य बंटन से प्राप्त n=3 आकार के यादृच्छिक

> प्रतिदर्श के लिए दत्त आव्यूह $X = \begin{bmatrix} 6 & 10 & 8 \\ 9 & 6 & 3 \end{bmatrix}$ है तब Σ के अनिभनत आकलन है :

(A)
$$\begin{bmatrix} 4 & -3 \\ -3 & 9 \end{bmatrix}$$

(B)
$$\begin{bmatrix} 4 & -6 \\ -6 & 9 \end{bmatrix}$$

(C)
$$\begin{bmatrix} 8 & -6 \\ -6 & 18 \end{bmatrix}$$

(D)
$$\begin{bmatrix} 4 & 3 \\ 3 & 9 \end{bmatrix}$$

- 68. BIBD में, उपचारों की संख्या ब्लॉक की प्लॉट की संख्या के बराबर होती है। तब BIBD :
 - (A) CRD में बदल जाता है।
 - (B) RBD में बदल जाता है।
 - (C) LSD में बदल जाता है।
 - (D) ग्रेको LSD में बदल जाता है।
- यदि अन्य वस्तुएँ वैसे ही हो और प्रतिदर्श आकार बढ़ 69. जाय, तब समष्टि माध्य के विश्वास्यता अंतराल की चौडाई:
 - (A) घट जाती है
 - (B) प्रतिदर्श आकार में वृद्धि के ठीक वर्ग मूल से घट जाता है
 - (C) प्रतिदर्श आकार में वृद्धि के बराबर घट जाता
 - (D) बढ जाती है

- 70. A linear programming will have feasible and optimal solution, if it has following properties:
 - (a) The objective function is a convex function.
 - (b) The constraints must satisfy the boundedness for feasible region.
 - (c) All the decision variables must be non-negative.
 - (d) Constraints must be of {≤} type only.Choose the correct reasons-combinations.
 - (A) (a), (b) and (c) are true
 - (B) (b), (c) and (d) are true
 - (C) (a), (c) and (d) are true
 - (D) All (a), (b), (c), and (d) are true
- 71. Which of the following statements is/are true?
 - (a) Let X be a random variable which follows truncated Poisson distribution truncated at x = 0 with parameter λ . Then pmf of X is

$$P(X = x) = \frac{e^{-\lambda} \lambda^{x}}{(1 - e^{-\lambda}) x!}, x = 1, 2, 3, ...$$

- (b) Suppose X_1 and X_2 are two i.i.d. standard normal random variables, then the correlation coefficient between $Z = X_1 X_2$ and $W = X_1 + X_2$ is zero.
- (A) Both (a) and (b)
- (B) (a) only
- (C) (b) only
- (D) Neither (a) nor (b)

- 70. एक रैखिक प्रोग्रामन, सुसंगत और इष्टतम हल वाला होता है, यदि इसमें निम्न विशेषताएँ पायी जाय :
 - (a) उद्देश्य फलन, अवनमुख फलन हो।
 - (b) सुसंगत क्षेत्र के लिए व्यवरोध परिबद्धता को संतुष्ट करता हो।
 - (c) सभी निर्णायक चर ऋणेतर होने चाहिए।
 - (d) केवल {≤} प्रकार के व्यवरोध होने चाहिए। कारण के **सही** संयोजन का चयन कीजिए।
 - (A) (a), (b) और (c) सही हैं।
 - (B) (b), (c) और (d) सही हैं।
 - (C) (a), (c) और (d) सही हैं।
 - (D) सभी (a), (b), (c) और (d) सही हैं।
- 71. निम्न में से कौन-सा/से कथन सही है/हैं?
 - (a) माना कि X एक यादृच्छिक चर है जो प्राचल λ के साथ x=0 पर ट्रन्केटेड प्वासों बंटन का अनुसरण करता है। तब X का pmf

$$P(X = x) = \frac{e^{-\lambda} \lambda^{x}}{(1 - e^{-\lambda}) x!}, x = 1, 2, 3, ...$$

है।

- (b) उदाहरणार्थ X_1 और X_2 दो i.i.d. स्टैंडर्ड सामान्य यादृच्छिक चर हैं। तब $Z=X_1-X_2$ और $W=X_1+X_2$ के मध्य सहसम्बन्ध गुणांक शून्य है।
- (A) (a) और (b) दोनों
- (B) केवल (a)
- (C) केवल (b)
- (D) न तो (a) और न ही (b)

- 72. To solve the Linear Programming Problem (LPP), we have to check one-by-one in which of the following sequence?
 - (a) The objective function must be a convex function
 - (b) It must be Feasible under given constraints
 - (c) All the decision variables must be non-negative
 - (A) (a) \rightarrow (c) \rightarrow (b)
 - (B) (a) \rightarrow (b) \rightarrow (c)
 - (C) $(c) \rightarrow (a) \rightarrow (b)$
 - (D) (b) \rightarrow (a) \rightarrow (c)
- 73. In a design, if we have 'V' = number of treatments, 'b' = number of blocks, 'k' = block size, 'r' = number of replicates for each treatment and 'λ' = number of blocks in which any pair of treatments occurs together, then this design is said to be 'Balanced Incomplete Block Design (BIBD), if and only if the following relations get satisfied:
 - (a) $V \cdot r = b \cdot k$
 - (b) $\lambda(\nu-1) = r(k+1)$ and
 - (c) b≥ν (Fisher's Inequality)

Which of the following answer is correct?

- (A) (a) and (c) are correct
- (B) (a) and (b) are correct
- (C) (a), (b) and (c) are correct
- (D) only (b) and (c) are correct

- 72. रैखिक प्रोग्रामन समस्या (LPP) को हल करने के लिए हमें एक के बाद एक चैक की प्रक्रिया किस क्रम में करने होंगे?
 - (a) उद्देश्य फलन आवश्यक रूप से कन्वेक्स फलन होने चाहिए।
 - (b) दिए गए व्यवरोध के अधिन में इसे अवश्य ही सुसंगत होना चाहिए।
 - (c) सभी निर्णयन चर आवश्यक रूप से ऋणेतर होने चाहिए।
 - (A) (a) \rightarrow (c) \rightarrow (b)
 - (B) $(a) \rightarrow (b) \rightarrow (c)$
 - (C) $(c) \rightarrow (a) \rightarrow (b)$
 - (D) (b) \rightarrow (a) \rightarrow (c)
- 73. एक अभिकल्पना में, यदि 'V' = उपचारों की संख्या, 'b' = ब्लॉकों की संख्या, 'k' = ब्लॉक आकार, 'r' = प्रत्येक उपचार के लिए प्रतिकृतियों की संख्या, और 'λ' = ब्लॉक की संख्या जिसमें किसी भी युग्म के उपचार एक साथ पाये जाते हैं तब इस अभिकल्पना को संतुलित अपूर्ण ब्लॉक अभिकल्पना (BIBD) कहा जा सकता है, यदि और केवल यदि निम्न संबंध संतुष्ट होते हैं:
 - (a) $V \cdot \mathbf{r} = \mathbf{b} \cdot \mathbf{k}$

 - (c) b≥ν (फिशर का असमानता) निम्न में से कौन-सा उत्तर **सही** है?
 - (A) (a) और (c) सही हैं
 - (B) (a) और (b) सही हैं
 - (C) (a), (b) और (c) सही हैं
 - (D) केवल (b) और (c) सही हैं

- 74. Match the following distributions under given conditions on the basis of their Mean and Variance.
 - (a) Negative (i) Mean = Variance Binomial distribution
 - (b) Normal (ii) Mean < Variance distribution
 - (c) Poisson (iii) Mean > Variance distribution
 - (d) Binomial (iv) Mean = Median distribution = Mode

Code:

- (a) (b) (c) (d)
- (A) (iii) (iv) (i) (ii)
- (B) (iv) (iii) (i) (ii)
- (C) (iv) (ii) (i) (iii)
- (D) (ii) (iv) (i) (iii)
- 75. In simplex method of solution of Linear Programming Problem (LPP), we have to follow the following steps in sequence to prepare a SIMPLEX Table:
 - (a) See the objective function given is of minimization type or not? If not, then convert into minimization type.
 - (b) By introducing slack or surplus variable into constraints, convert inequality into equality.
 - (c) See, whether all decision variables satisfies the non-negativity condition or not.
 - (d) Obtain the Initial Basic Feasible solution before simplex method is applied.

Choose the correct sequence.

- (A) (a) \rightarrow (b) \rightarrow (c) \rightarrow (d)
- (B) (a) \rightarrow (b) \rightarrow (d) \rightarrow (c)
- (C) (a) \rightarrow (d) \rightarrow (c) \rightarrow (b)
- (D) (a) \rightarrow (c) \rightarrow (d) \rightarrow (b)

- 74. माध्य और प्रसरण के आधार पर दिए गए निम्नलिखित बंटन को सुमेलित कीजिए।
 - (a) ऋणात्मक (i) माध्य = प्रसरण द्विपद बंटन
 - (b) सामान्य (ii) माध्य < प्रसरण बंटन
 - (c) प्वासों बंटन (iii) माध्य > प्रसरण
 - (d) द्विपद बंटन (iv) माध्य = माध्यिका = बहुलक

कूट:

- (a) (b) (c) (d)
- (A) (iii) (iv) (i) (ii)
- (B) (iv) (iii) (i) (ii)
- (C) (iv) (ii) (i) (iii)
- (D) (ii) (iv) (i) (iii)
- 75. रैखिक प्रोग्रामन समस्या (LPP) के हल का एकधा विधि में एकधा तालिका तैयार करने के लिए हमें निम्न क्रमानुसार चरणों का अनुसरण करना होगा :
 - (a) दिया गया उद्देश्य फलन निम्नतर प्रकार का है या नहीं, यदि नहीं, तो उसे निम्नतर प्रकार में बदलना चाहिए।
 - (b) प्रतिबंधों को न्यूनता या अधिकता वाले चरों में समाविष्ट करते हुए, असमानता को समानता में बदलना।
 - (c) ध्यान रखना कि सभी निर्णय चर ऋणेतर प्रतिबंध को संतुष्ट करते हैं या नहीं।
 - (d) एकधा विधि के अनुप्रयोग से पहले प्रारंभिक सुसंगत आधारित हल को प्राप्त करना।

सही क्रम को चुनिए।

- (A) (a) \rightarrow (b) \rightarrow (c) \rightarrow (d)
- (B) $(a) \rightarrow (b) \rightarrow (d) \rightarrow (c)$
- (C) (a) \rightarrow (d) \rightarrow (c) \rightarrow (b)
- (D) (a) \rightarrow (c) \rightarrow (d) \rightarrow (b)

- 76. Linear Programming Problem is a:
 - (A) Mathematical Technique
 - (B) Technique for economic allocation of limited resources
 - (C) Constrained optimization technique
 - (D) Unconstrained optimization technique
- 77. Which of the following represents the Moment Generating Function (MGF) of two parameter exponential distribution having density function?

$$f_{X}(x) = \begin{cases} \lambda e^{-\lambda(x-a)} & \text{if } x \ge a \\ 0 & \text{otherwise} \end{cases}$$

(A)
$$M_x(t) = \lambda e^{at}$$

(B)
$$M_x(t) = \frac{\lambda}{\lambda - t} e^{at}$$

(C)
$$M_x(t) = \frac{1}{\lambda} e^{at}$$

(D)
$$M_x(t) = \frac{\lambda}{\lambda - t} e^{\lambda t}$$

- 76. रैखिक प्रोग्रामन समस्या है:
 - (A) गणितीय तंत्र
 - (B) सीमित संसाधनों के आर्थिक नियतन का तंत्र
- (C) बाधित इष्टतम तंत्र
 - (D) अबाधित इष्टतम तंत्र
- 77. घनत्व फलन वाले दो प्राचलों के चरघातांकी बंटन के आघूर्णजनक फलन (MGF) को निम्न में से कौन-सा निरूपित करता है?

$$f_{X}(x) = \begin{cases} \lambda e^{-\lambda(x-a)} & \text{यदि } x \ge a \\ 0 & \text{अन्यथा} \end{cases}$$

(A)
$$M_x(t) = \lambda e^{at}$$

(B)
$$M_x(t) = \frac{\lambda}{\lambda - t} e^{at}$$

(C)
$$M_x(t) = \frac{1}{\lambda} e^{at}$$

(D)
$$M_x(t) = \frac{\lambda}{\lambda - t} e^{\lambda t}$$

78. A 2³-factorial experiment is conducted in 2 blocks of size 4 each, in 3 replicates. The arrangement of treatment combinations in key-blocks of the three replicates are:

	Replicate 1	Replicate 2	Replicate 3
Key Block	(1), c, ab, abc	(1), a, bc, abc	(1), b, ac, abc

A careful examination of the key-blocks are given below:

- (a) Interaction **AB** is confounded in Replicate 1
- (b) Interaction BC is confounded in Replicate 2
- (c) Interaction AC is confounded in Replicate 3

Choose the correct combination of confounding in sequence for Replicate 1, 2 and 3 respectively.

(A)
$$(a) \rightarrow (b) \rightarrow (c)$$

(B)
$$(c) \rightarrow (a) \rightarrow (b)$$

(C) (a)
$$\rightarrow$$
 (c) \rightarrow (b)

(D) (c)
$$\rightarrow$$
 (b) \rightarrow (a)

78. 3-प्रितकृतियों में, प्रत्येक 4 आमाप के 2 ब्लॉकों में एक 2³-क्रमगुणित प्रयोग किया गया। तीन प्रितकृतियों की मुख्य ब्लॉकों में उपचार संयोजन की व्यवस्था निम्न है।

Super Span	प्रतिकृति - 1	प्रतिकृति – 2	प्रतिकृति - 3
मुख्य ब्लॉक	(1), c, ab, abc	(1), a, bc, abc	(1), b, ac, abc

मुख्य ब्लॉकों का एक ध्यानयुक्त परीक्षण निम्न दिया गया है:

- (a) प्रतिकृति-1 में अंतरक्रिया AB संकरणीय है।
- (b) प्रतिकृति-2 में अंतरक्रिया BC संकरणीय है।
- (c) प्रतिकृति-3 में अंतरक्रिया AC संकरणीय है।

क्रमशः 1, 2 और 3 प्रतिकृतियों के लिए संकरणियों का **सही** संयोजन चयन कीजिए।

(A) (a)
$$\rightarrow$$
 (b) \rightarrow (c)

(B)
$$(c) \rightarrow (a) \rightarrow (b)$$

(C)
$$(a) \rightarrow (c) \rightarrow (b)$$

(D) (c)
$$\rightarrow$$
 (b) \rightarrow (a)

79. In two-way ANOVA with one observation per-cell, there are two factors A and B i.e. Treatment (A) and Variety (B). For both the factors the levels used are considered only once, then we model this ANOVA as 'Fixed Effect Model' as: $y_{ij} = \mu_{ij} + E_{ij} \Rightarrow E(y_{ij}) = \mu_{ij}$; (i=1, 2, ..., k. j=1, 2, ..., n) where $y_{ij} \sim IN(\mu_{ij}, \sigma_e^2)$ and $E_{ij} \rightarrow i.i.d N(0, \sigma_e^2) \forall i, j$.

Then we can split y_{ij} into following parts in sequence:

- (a) The general effect (μ)
- (b) The effect α_i due to i^{th} treatment
- (c) The interaction effect r_{ij}
- (d) The effect β_j due to j^{th} variety

Choose the correct sequence of computation.

(A)
$$(a) \rightarrow (b) \rightarrow (c) \rightarrow (d)$$

(B) (a)
$$\rightarrow$$
 (b) \rightarrow (d) \rightarrow (c)

(C) (a)
$$\rightarrow$$
 (c) \rightarrow (b) \rightarrow (d)

(D) (a)
$$\rightarrow$$
 (d) \rightarrow (c) \rightarrow (b)

79. प्रति-कोश के एक प्रेक्षण के साथ द्वी-पथ ANOVA में, दो कारक हैं, A और B यानि उपचार (A) और विविधता (B)। दोनों कारकों के लिए उपयोगित स्तर केवल एक ही बार निर्धारित किया है। तब हम इस ANOVA नमूना को 'Fixed Effect Model' के रूप में अनुकरण कर सकते हैं जैसा कि $y_{ij} = \mu_{ij} + E_{ij} \Rightarrow E(y_{ij}) = \mu_{ij}$; (i=1, 2, ..., k. j=1, 2, ..., k. j=1, 2, ..., n) जहाँ $y_{ij} \sim IN(\mu_{ij}, \sigma_e^2)$ और $E_{ij} \rightarrow i.i.d N(0, \sigma_e^2) \forall i, j$ है

तब हम y_{ij} को निम्न भागों को अनुक्रम में विभक्त कर सकते हैं :

- (a) सामान्य प्रभाव (µ)
- (b) i वे उपचार के कारण α_i प्रभाव
- (c) अंतरक्रिया प्रभाव \mathbf{r}_{ii}
- (d) j वां किस्म के कारण β, प्रभाव

अभिकलन के सही अनुक्रम का चयन कीजिए।

(A) (a)
$$\rightarrow$$
 (b) \rightarrow (c) \rightarrow (d)

(B) (a)
$$\rightarrow$$
 (b) \rightarrow (d) \rightarrow (c)

(C) (a)
$$\rightarrow$$
 (c) \rightarrow (b) \rightarrow (d)

(D) (a)
$$\rightarrow$$
 (d) \rightarrow (c) \rightarrow (b)

- 80. The following measures are applied to real life problems as follows:
 - (a) Arithmetic mean
- (i) Used to analyze qualitative data.
- (b) Median (ii)
- (ii) To find an ideal characteristics of any item (size/colour etc.) in the market.
- (c) Mode
- (iii) To represent the special characteristics of any data (observation) on average.

Code:

- (a) (b) (c)
- (A) (iii) (ii) (i)
- (B) (iii) (i) (ii)
- (C) (ii) (iii) (i)
- (D) (ii) (i) (iii)
- **81.** Which of the following are valid probability density functions?
 - (a) $f_x(x) = \begin{cases} e^{-x} & \text{if } 0 \le x < \infty \\ 0 & \text{otherwise} \end{cases}$
 - (b) $f_x(x) = \begin{cases} xe^{-x^2} & \text{if } 0 \le x < \infty \\ 0 & \text{otherwise} \end{cases}$
 - (c) $f_{x}(x) = \begin{cases} \frac{1}{4}(x^{2} 1) & \text{if } |x| < 2\\ 0 & \text{otherwise} \end{cases}$
 - (d) $f_{x}(x) = \begin{cases} \frac{1}{5} & \text{if } 0 \le x \le 5 \\ 0 & \text{otherwise} \end{cases}$
 - (A) All four
 - (B) (a) and (c) only
 - (C) (b) and (c) only
 - (D) (a) and (d) only

- 80. निम्न कदमों को वास्तविक जीवन समस्याओं पर अनुप्रयोग किया जाता है, वे हैं:
 - (a) समांतर माध्य
- गुणात्मक आँकड़ों के विश्लेषण के लिए उपयोग किया जाता है
- (b) माध्यिका
- (ii) बाज़ार में किसी वस्तु के आदर्श विशेषताएँ (आकार/रंग इत्यादि) ज्ञात करने के लिए
- (c) बहुलक
- (iii) औसत के आधार पर किसी भी आँकड़े के (प्रेक्षण) विशेष अभिलक्षण को प्रस्तुत करने के लिए

कूट:

- (a) (b) (c)
- (A) (iii) (ii) (i)
- (B) (iii) (i) (ii)
- (C) (ii) (iii) (i)
- (D) (ii) (i) (iii)
- 81. निम्न में से कौन-सा वैध प्रायिकता घनत्व फलन है?
 - (a) $f_{X}(x) = \begin{cases} e^{-x} & \text{यद } 0 \le x < \infty \\ 0 & \text{अन्यथा} \end{cases}$
 - (b) $f_{x}(x) = \begin{cases} xe^{-x^{2}} & \text{if } 0 \le x < \infty \\ 0 & \text{simple} \end{cases}$
 - (c) $f_{x}(x) = \begin{cases} \frac{1}{4}(x^{2}-1) & \text{यदि } |x| < 2\\ 0 & \text{अन्यथा} \end{cases}$
 - (d) $f_{x}(x) = \begin{cases} \frac{1}{5} & \text{यद } 0 \le x \le 5 \\ 0 & \text{अन्यथा} \end{cases}$
 - (A) सभी चार
 - (B) केवल (a) और (c)
 - (C) केवल (b) और (c)
 - (D) केवल (a) और (d)

- **82.** The mean of a distribution is 23, the median is 24 and the mode is 25.5. It is most likely that this distribution is:
 - (A) Positively skewed
 - (B) Symmetrical
 - (C) Asymptotic
 - (D) Negatively skewed
- 83. When the given observation does **not** follow Normal distribution then to study the 'lack of symmetry' of curve, we have to see that in *sequence*:
 - (a) The shape of the curve i.e. the curve obtained for the given data is not symmetrical and stretched more to any one side than to the other.
 - (b) Quartiles are equidistant from median or not.
 - (c) Mean, Median and Mode do coincides or not.
 - (A) $(a) \rightarrow (b) \rightarrow (c)$
 - (B) $(c) \rightarrow (a) \rightarrow (b)$
 - (C) $(c) \rightarrow (b) \rightarrow (a)$
 - (D) (b) \rightarrow (a) \rightarrow (c)

- 82. एक बंटन का माध्य 23, माध्यिका 24 और बहुलक 25.5 है। सर्वाधिक तौर पर इस बंटन को कहा जायेगा:
 - (A) धनात्मक रूप से वैषम्य
 - (B) सममित
 - (C) अनंतस्पर्शी
 - (D) ऋणात्मक रूप से वैषम्य
- 83. जब दिया गया प्रेक्षण सामान्य बंटन का अनुसरण नहीं करता है, तो वक्र के 'समिमिति की न्यूनता' का अध्ययन करने के लिए हमें अनुक्रम में देखना होगा कि :
 - (a) दिये गये आँकड़ों के लिए वक्र का आकार सममित न हो और न किसी एक तरफ अधिक विस्तारीत होता हो।
 - (b) चतुर्थांक, माध्यिका से समान दूरी पर हैं या नहीं।
 - (c) माध्य, माध्यिका और बहुलक संपाती हैं या नहीं।
 - (A) $(a) \rightarrow (b) \rightarrow (c)$
 - (B) $(c) \rightarrow (a) \rightarrow (b)$
 - (C) $(c) \rightarrow (b) \rightarrow (a)$
 - (D) $(b)\rightarrow(a)\rightarrow(c)$

- 84. Match the following pairs of distributions and characteristic functions.
- (a) Standard Normal
- $e^{\lambda} \left[e^{(e^{it}-1)} \right]$

(b) Exponential

with mean $\frac{1}{\lambda}$

- (c) Poisson with mean \
- (iii) $[pe^{it} + (1 p)]^n$
- (d) Binomial with (iv) $e^{-t^2/2}$ parameter n

and p

Code:

- (a) (A) (ii) (i)
- (b) (c) (d)
- (B) (iv) (ii)
- (iii) (iv) (i) (iii)
- (C) (i) (ii)
- (iii) (iv)
- (D) (iv) (i)
- (ii) (iii)
- 85. Consider the testing of hypothesis $H_0: \theta \in (H)_0 \text{ Vs. } H_1: \theta \in (H)_{1'}$ Likelihood Ratio Test (LRT). Which of the following statements are true?
 - LRT statistic lies between 0 and 1.
 - (b) If the testing of hypothesis problem is of testing simple null Vs. simple alternative hypothesis, then LRT is equivalent to MP test given by NP lemma.
- (c) LRT statistic is always normally distributed.
 - (A) (a) and (b) only
 - (B) (a) and (c) only
 - (C) (b) and (c) only
 - (D) All three

- निम्न बंटन एवं अभिलाक्षणिक फलन के युग्मों को सुमेलित कीजिए।
- (a) मानक प्रसामान्य
- (i) $e^{\lambda} [e^{(e^{it}-1)}]$
- (b) माध्य $\frac{1}{\lambda}$ वाला
- (ii)
- चरघातांकी

(c) माध्य λ

- (iii) $[pe^{it} + (1-p)]^n$
- वाला प्वासों (d) प्राचल n और p
- (iv) $e^{-t^2/2}$

वाला द्विपद

क्ट:

- (a) (b) (c) (d)
- (A) (ii) (i) (iii) (iv)
- (B) (iv) (ii) (i) (iii)
- (C) (i) (ii) (iii) (iv) (D) (iv) (i) (ii) (iii)
- संभावित अनुपात परीक्षण (LRT) का उपयोग करते 85. हुए परिकल्पना, $H_0:\theta\in \bigoplus_0$ बनाम $H_1:\theta\in \bigoplus_1$ के परीक्षण पर विचार कीजिए। निम्न में कौन-सा कथन सही हैं?
 - LRT सांख्यिकी, 0 और 1 के मध्य है। (a)
 - यदि परिकल्पना समस्या का परीक्षण सामान्य (b) शून्य बनाम सामान्य वैकल्पिक परिकल्पना का परीक्षण है, तो LRT, NP लेमा द्वारा प्राप्त MP परीक्षा के तुल्य होगा।
 - LRT सांख्यिकी सदैव सामान्यत: बंटित रहता (c)
 - (A) केवल (a) और (b)
 - केवल (a) और (c)
 - (C) केवल (b) और (c)
 - सभी तीन (D)

86. Let $X_1, X_2, ..., X_n$ be random sample from Poisson distribution with parameter λ . The estimator T is defined as

$$T = \begin{cases} 1 & \text{if } X_1 = 0 \\ 0 & \text{otherwise} \end{cases}$$

Then which of the following statements are true?

- (a) T is unbiased for $e^{-\lambda}$
- (b) T is not UMVUE of $e^{-\lambda}$
- (c) Variance of T attains Crammer -Rao Lower Bound (CRLB)
- (A) (a) only
- (B) (b) and (c) only
- (C) (a) and (b) only
- (D) All three
- **87.** Which of the following statements related to Markov chains are **true**?
 - (a) State i is persistent iff

$$\sum_{n=0}^{\infty} P_{ii}^{(n)} = \infty$$

- (b) State *i* is transient iff $\sum_{n=0}^{\infty} P_{ii}^{(n)} < \infty$
- (c) All states of Markov chain cannot be transient.
- (A) (a) and (b) only
- (B) (a) and (c) only
- (C) (b) and (c) only
- (D) All (a), (b) and (c)

- 86. माना कि $X_1, X_2, ..., X_n$ प्राचल λ के साथ प्वासों बंटन से लिया गया यादृच्छिक प्रतिदर्श है और आकलक T को $T = \begin{cases} 1 & \text{यद } X_1 = 0 \\ 0 & \text{अन्यथा} \end{cases}$ परिभाषित किया गया है, तो निम्न में से कौन-सा
 - (a) $T, e^{-\lambda}$ के लिए निष्पक्ष है
 - (b) $T, e^{-\lambda}$ का UMVUE नहीं है
 - (c) T का प्रसरण क्रामर-राव लोअर बौंड (CRLB) प्राप्त करता है
 - (A) केवल (a)

कथन सही है?

- (B) केवल (b) और (c)
- (C) केवल (a) और (b)
- (D) सभी तीन
- 87. मार्कोव शृंखला से सम्बंधित निम्न में से कौन-सा कथन सही है?
 - (a) अवस्था i बनी रहेगी केवल और केवल यदि

$$\sum_{n=0}^{\infty} P_{ii}^{(n)} = \infty$$

(b) अवस्था i संक्रमणीय होगी केवल और केवल

यदि
$$\sum_{n=0}^{\infty} P_{ii}^{(n)} < \infty$$

- (c) मार्कोव शृंखला की सभी अवस्थाएँ संक्रमणीय नहीं हो सकती हैं।
- (A) केवल (a) और (b)
- (B) केवल (a) और (c)
- (C) केवल (b) और (c)
- (D) (a), (b) और (c) सभी

88. Probability of including a specified up of the population in a sample of size 1 selected out of 500 units under SRSWO design is:	.00 से 100 आकार के प्रतिदर्श में समृष्टि की एक विशिष्ट
(A) 0.002	(A) 0.002
(B) 0.02	(B) 0.02
(C) 0.2	(C) 0.2
(D) 0.5 (a) We (d) FREE (E) (b) FREE (C) (c) We (e) FREE (C)	(D) 0.5
89. Consider a population of N elements with y-values (study variable) $y_1, y_2,, y_N$ and x-values (auxiliary variable) $x_1, x_2,, x_N$. Where x and y variables are highlogorelated. If we choose n elements with replacement by giving probabilities proportional to sizes of auxiliary variables then such sampling design is known as	89. y -मूल्यों (चर अध्ययन) $y_1, y_2,, y_N$ और x -मूल्यों (सहायक चर) $x_1, x_2,, x_N$ के साथ N अवयवों के एक समध्टि पर विचार कीजिए। जहाँ x और y चर अत्यधिक सह–संबंधित हैं। यदि हम सहायक चरों के आकार को प्रायिकता अनुपातिक के द्वारा स्थलांतर के साथ n घटकों का चयन करते हैं, तो ऐसे आकार के प्रतिचयन को कहते हैं :
(A) SRSWR	(A) SRSWR
(B) SRSWOR	(B) SRSWOR

(C) PPSWR

(D) PPSWOR

(C) PPSWR

(D) PPSWOR

90. In a factorial design, the precision is adversely affected if the treatment combinations are large in number. To maintain homogeneity within the blocks, the experimenter must either cut down the number of factors or use an incomplete factorial experiment which investigates the main effect of the factors. The heterogeneity of blocks is allowed to affect only interactions which are of less importance.

The process by which unimportant comparisons are deliberately confused or mixed up with block comparisons, for the purpose of assessing more important comparisons with greater precision is called as any one of the given below:

- (A) Interaction between treatments
- (B) Partial confounding
- (C) Confounding
- (D) Orthogonality
- 91. Suppose $X \sim N_p$ (O, I) and $X' \wedge X \sim \chi_r^2$, r<P, then which of the following statements is not true?
 - (A) trace(A) = r
 - (B) A is non-singular matrix.
 - (C) I-A is idempotent matrix.
 - (D) r eigen values of matrix A are one.

90. एक क्रमगुणित अभिकल्पना में, परिशुद्धता प्रतिकूल रूप से प्रभावित होता है, यदि उपचार संयोजन बड़ी संख्या में हो। ब्लॉकों के अंतर्गत समांगता को बनाए रखने के लिए प्रयोगकर्ता कारकों की संख्या को अवश्य घटाए या एक अपूर्ण क्रमगुणित प्रयोग का उपयोग करें जो कारकों के मुख्य प्रभाव की जाँच करता है। ब्लॉकों के विषमांगता को केवल निम्न महत्व के अंत: क्रियाओं को प्रभावित करने की अनुमित है।

एक प्रक्रिया जिससे महत्वहीन तुलनाओं को जानबुझकर भ्रमित किया जाता है या फिर ब्लॉक तुलनाओं के साथ मिश्रित कर दिया जाता है ताकि अधिक सटीकता के साथ अधिक महत्वपूर्ण तुलनाओं की प्राप्ति की जा सके। जिसे कहा जाता है:

- (A) उपचारों के मध्य अंतरक्रिया
- (B) आंशिक संकरण
- (C) संकरण
- (D) लांबीकता
- 91. \overline{a} $\overline{A$
 - (A) trace(A) = r
 - (B) A एक व्युत्क्रमणीय आव्यूह है।
 - (C) I-A एक वर्गसम आव्यूह है।
 - (D) आव्यूह A का r आइगन मान एक है।

- **92.** Form the **correct** sequence of following steps related to test of significance.
 - (a) Compute the observed significance level (p value)
 - (b) Set-up the null hypothesis
 - (c) Compare p value with level of significance (α)
 - (d) Pick a test statistic
 - (A) (a), (b), (c), (d)
 - (B) (b), (a), (d), (c)
 - (C) (d), (b), (a), (c)
 - (D) (b), (d), (a), (c)
- **93.** A Balanced Incomplete Block Design (BIBD) is said to be symmetric, if
 - (a) b=v and r=k,
 - (b) The number of common treatments between any two block is λ,
 - (c) Since the determinant of the incidence matrix N is an integer, hence when v is even, then $(r-\lambda)$ must be a perfect square.

Choose the correct answer.

- (A) (a) and (c) are correct
- (B) (a), (b) and (c) all are correct
- (C) (b) and (c) are correct
- (D) None of the above
- 94. A curve obtained by plotting the given observed data have $\beta_2 = 3$, $\beta_1 = 0$ and $\gamma_2 = 0$. Then the measure of peakedness or flatness of this curve is defined as:
 - (A) Mesokurtic curve
 - (B) Platykurtic curve
 - (C) Leptokurtic curve
 - (D) Symmetric curve

- 92. सार्थकता परीक्षा से सम्बंधित निम्न चरणों को सही अनुक्रम में रचना कीजिए।
 - (a) प्रेक्षित सार्थकता स्तर (p value) का अभिकलन कीजिए
 - (b) शून्य परिकल्पना को स्थापित करना
 - (c) सार्थकता (α) स्तर के साथ p value की तुलना कीजिए
 - (d) एक सांख्यिकी परीक्षा का चयन कीजिए
 - (A) (a), (b), (c), (d)
 - (B) (b), (a), (d), (c)
 - (C) (d), (b), (a), (c)
 - (D) (b), (d), (a), (c)
- 93. एक संतुलित अपूर्ण ब्लॉक अभिकल्पना (BIBD) को सममित कहते हैं, यदि,
 - (a) b=v और r=k है,
 - (b) किसी दो ब्लॉकों के बीच सामान्य उपचारों की संख्या λ है,
 - (c) आपतन आव्यूह N के निर्धारक एक पूर्णांक \ddot{e} , इसलिए जब v सम होगा, तब $(r-\lambda)$ आवश्यक रूप से एक पूर्ण वर्ग होगा

सही उत्तर का चयन कीजिए:

- (A) (a) और (c) सही हैं
- (B) (a), (b) और (c) सभी सही हैं
- (C) (b) और (c) सही हैं
- (D) उपरोक्त में से कोई नहीं
- 94. दी गयी प्रक्षित डाटा को प्लॉट करने पर एक वक्र मिलता है जिसमें $\beta_2 = 3$, $\beta_1 = 0$ और $\gamma_2 = 0$ है। तब इस वक्र की शिखरता या समतलता की मापन को परिभाषित किया जायेगा:
 - (A) मध्यककुदी वक्र
 - (B) सपाटककुदी वक्र
 - (C) तुंगककुदी वक्र
 - (D) सममित वक्र

- of a University, students arrives on Markovian-basis either one-by-one or in bulk and they get services by themselves. Also, there is no limitations on the number of arrivals but services to the students are general. Then, in this situation, few students have to wait to get services as other students are already gotissued there for study on the table. Then, this type of Queue-system is defined as:
 - (A) (M/M/1): (∞/FCFS)
 - (B) (M/M/C) : (∞/FCFS)
 - (C) (M/M/1): (N/FCFS)
 - (D) None of the above

- 95. एक विश्वविद्यालय के पुस्तकालय के 'Reference Book Section' में विद्यार्थी मार्कोवियन आधार पर एक-एक करके या समूह में आगमन करते हैं और स्वयं सेवाएँ पाते हैं। साथ ही आगमन की कोई सीमा नहीं है, परन्तु विद्यार्थियों के लिए सेवाएँ सामान्य हैं। इस परिस्थित में कुछ एक विद्यार्थियों को सेवाएँ प्राप्त करने के लिए इंतजार करना पडता है क्योंकि अन्य विद्यार्थियों को पहले से ही अध्ययन के लिए टेबल आबंटित किए गए हैं। इस प्रकार की पंक्ति प्रणाली को कैसे परिभाषित किया जाएगा?
 - (A) (M/M/1): (∞/FCFS)
 - (B) (M/M/C) : (∞/FCFS)
 - (C) (M/M/1): (N/FCFS)
 - (D) उपरोक्त में कोई नहीं
- 96. MANOVA is simply an extension of:
 - (A) Student's t test
 - (B) Chi-square test
 - (C) 2-sample t test
 - (D) F-test based on Hotelling's T²
 Statistic

- 96. MANOVA _____ का एक सामान्य विस्तार है।
 - (A) स्टूडैन्ट t परीक्षण
 - (B) काई-वर्ग परीक्षण
 - (C) दो-नमूना t परीक्षण
 - (D) होटेलिंग के T² सांख्यिकी के आधार पर F-परीक्षण

97. In a non-parametric test "Wilcoxon -Signed Rank Test" the D=X-Y is measured by magnitude and direction both. Hence, we have to test the

Null Hypothesis $H_0: P(X<Y)=P(X>Y)=1/2$ against the Alternative Hypothesis:

(i)
$$H_A: P(X>Y) \neq P(X$$

(ii)
$$H_A: P(X>Y) > 1/2$$

(iii)
$$H_A: P(X < Y) < 1/2$$

So, calculate at first:

(a)
$$D_i = X_i - Y_i \ (i = 1, 2, ..., n)$$

- (b) then rank of $|D_i|$ is calculated out, and assign 1 rank to smallest $|D_i|$ and n to highest $|D_i|$, by assuming that no tie in i.e. $D_i \neq 0$.
- (c) If two or more D_i are same, calculate average rank of those D_i .
- (d) Calculate the critical values of T-statistics for different values of h.

Choose the **correct** sequence of testing by this method.

(A) (a)
$$\rightarrow$$
 (c) \rightarrow (b) \rightarrow (d)

(B)
$$(a) \rightarrow (b) \rightarrow (c) \rightarrow (d)$$

(C) (a)
$$\rightarrow$$
 (d) \rightarrow (b) \rightarrow (c)

(D) (a)
$$\rightarrow$$
 (d) \rightarrow (c) \rightarrow (b)

97. एक अप्राचलिक परीक्षण "Wilcoxon - Signed Rank Test" में D=X-Y को परिमाण और दिशा दोनों से मापा जाता है। अत: हमें

> शून्य परिकल्पना $H_0: P(X < Y) = P(X > Y) = 1/2$ को वैकल्पित परिकल्पना

(i)
$$H_A: P(X>Y) \neq P(X$$

(ii)
$$H_A: P(X>Y) > 1/2$$

(iii)
$$H_A: P(X < Y) < 1/2$$

के विपरीत परीक्षण करना होगा।

इसलिए पहले गणना कीजिए :

(a)
$$D_i = X_i - Y_i \ (i = 1, 2, ..., n)$$

- (b) यह मानते हुए कि $D_i \neq 0$ है अतः कोई टाई नहीं है, $|D_i|$ के कोटि को ज्ञात कीजिए और निम्नतम $|D_i|$ को 1 और उच्चतम $|D_i|$ को n कोटि से निर्धारित कीजिए।
- (c) यदि दो या अधिक D_i समान मूल्य के हैं, तो उन D_i के औसत कोटि को ज्ञात कीजिए।
- (d) h के विभिन्न मूल्यों के लिए T-सांख्यिकी का क्रांतिक मूल्यों की गणना कीजिए।

इस पद्धति से परीक्षण का सही अनुक्रमण चयन कीजिए।

(A)
$$(a) \rightarrow (c) \rightarrow (b) \rightarrow (d)$$

(B)
$$(a) \rightarrow (b) \rightarrow (c) \rightarrow (d)$$

(C) (a)
$$\rightarrow$$
 (d) \rightarrow (b) \rightarrow (c)

(D) (a)
$$\rightarrow$$
 (d) \rightarrow (c) \rightarrow (b)

- 98. The coefficients of dispersion (CD) based on different measures of dispersion are, i.e.,
 - (a) Based on range (i) $\frac{\sigma}{x}$
- (b) Based upon (ii) $\frac{A-B}{A+B}$ quartile deviation
- (c) Based upon (iii) $\frac{Q_3 Q_1}{Q_3 + Q_1}$ standard deviation
 - (a) (b) (c) (A) (iii) (i) (ii) (B) (i) (iii) (ii) (C) (ii) (iii) (i) (D) (ii) (i) (iii)
- 99. To obtain or measure the association between two factors which are qualitative type, that is, which are not measurable in any measuring scale, the 'Coefficient of Association' given by YULE is:

$$Q = \frac{(AB)(\alpha\beta) - (A\beta)(\alpha B)}{(AB)(\alpha\beta) + (A\beta)(\alpha B)} = \frac{N\delta}{(\alpha B)(\alpha\beta) + (A\beta)(\alpha B)}.$$

And we conclude that:

- (a) A and B are independent, if $\delta = 0 \Rightarrow Q = 0$
- (b) A and B are completely associated, if $(AB) = (A) \Rightarrow (A\beta) = 0$ or $(AB) = (B) \Rightarrow (\alpha B) = 0$
- (c) And in each case Q = +1Choose the **correct** answer from the following.
- (A) Only (a) and (b) are correct
- (B) Only (c) is correct
- (C) All (a), (b) and (c) are correct
- (D) Only (b) and (c) are correct

- 98. परिक्षेपण के विभिन्न मापों पर आधारित, परिक्षेपण गुणांक (CD) हैं :
 - (a) परास पर आधारित (i) $\frac{\sigma}{x}$
 - (b) चतुर्थक विचलन पर आधारित (ii) $\frac{A-B}{A+B}$
 - (c) मानक विचलन पर आधारित (iii) $\frac{Q_3 Q_1}{Q_3 + Q_1}$

कूट:

- (a) (b) (c)
- (A) (iii) (i) (ii)
 - (B) (i) (iii) (ii)
 - (C) (ii) (iii) (i)
 - (D) (ii) (i) (iii)
- 99. दो गुणात्मक प्रकार के गुणजों यानि जो किसी भी स्केल से मापे नहीं जा सकते के मध्य साहचर्य मापने अथवा प्राप्त करने के लिए, यूले के द्वारा प्रदत्त 'साहचर्य गुणांक' है:

$$Q = \frac{(AB)(\alpha\beta) - (A\beta)(\alpha B)}{(AB)(\alpha\beta) + (A\beta)(\alpha B)} = \frac{N\delta}{(\alpha B)(\alpha\beta) + (A\beta)(\alpha B)}.$$

और हम इस निर्णय पर पहुँचते हैं :

- (a) A और B स्वतंत्र हैं, यदि $\delta = 0 \Rightarrow Q = 0$
- (b) A और B पूर्णत: सिहचर्य नियम का पालन करते हैं, यदि $(AB) = (A) \Rightarrow (A\beta) = 0$ या $(AB) = (B) \Rightarrow (\alpha B) = 0$
- (c) और प्रत्येक विषय में Q = +1 निम्न में से **सही** उत्तर का चयन कीजिए।
- (A) केवल (a) और (b) सही हैं
- (B) केवल (c) सही है
- (C) सभी (a), (b) और (c) सही हैं
- (D) केवल (b) और (c) सही हैं

- 100. If λ is the likelihood ratio for testing a simple hypothesis H_0 and if $U = \phi(\lambda)$ is a monotonic (increasing) decreasing function of λ , then the test based on U is called Likelihood Ratio Test (LRT). And we get inference that :
 - (a) In Likelihood Ratio Test probability of Type I error is controlled, if λ_0 is chosen as per requirement.
 - (b) If, under certain assumptions, LR Test is consistent.
 - (c) If -2 log_eλ has an asymptotic chi-square distribution.

Choose the correct answer.

- (A) Only (a) and (b) are correct.
- (B) Only (b) and (c) are correct.
- (C) Only (a) and (c) are correct.
- (D) All (a), (b) and (c) are correct.

- 100. एक सामान्य परिकल्पना H₀ के परीक्षण के लिए यदि λ संभावित अनुपात है और यदि U = φ(λ), λ का एकदिष्टतः (बढ़ता हुआ) घटता हुं जी फलन है, का एकदिष्टतः (बढ़ता हुआ) घटता हुं जी फलन है, तब U पर आधारित परीक्षण को संभाविता अनुपात तब U पर आधारित परीक्षण को संभाविता अनुपात परीक्षण (LRT) कहते हैं, और हम निष्कर्ष पाते हैं, परीक्षण (LRT) कहते हैं, और हम निष्कर्ष पाते हैं,
 - (a) संभाविता अनुपात परीक्षण में प्रकार І त्रुटि की प्रायिकता नियंत्रित की जाती है, यदि λ₀ को आवश्यकता के अनुसार लिया जाए
 - (b) यदि किसी निश्चित मान्यता में LR परीक्षण संगत है।
 - (c) यदि $-2 \log_e \lambda$ में एक अनंतस्पर्शी काई-वर्ग वितरण है।

सही उत्तर का चयन कीजिए।

- (A) केवल (a) और (b) सही हैं।
- (B) केवल (b) और (c) सही हैं।
- (C) केवल (a) और (c) सही हैं।
- (D) सभी (a), (b) और (c) सही हैं।

2 - 0 0 o -

Adda247

SET - A

उत्तर अंकित करने का समय : 2 घंटे

Time for marking answers: 2 Hours

अधिकतम अंक : 200

Maximum Marks: 200

नोट:

निम्न विवरणों के साथ इस प्रश्न-पुस्तिका में 100 प्रश्न है - प्रत्येक प्रश्न 2 अंक का है।

भाग-1

60 प्रश्न

1 - 60

भाग-II (A) गणित समूह

40 प्रश्न

61 - 100

अथवा

भाग-II (B) सांख्यिकी समूह

40 प्रश्न

61 - 100

- भाग-I अनिवार्य है। अभ्यर्थी को भाग-II (A) अथवा भाग-II (B) का उत्तर देना आवश्यक है। 2.
- प्रश्नों के उत्तर, दी गई OMR उत्तर-शीट (आंसर-शीट) पर अंकित कीजिए। 3.
- ऋणात्मक मूल्यांकन नहीं किया जावेगा। 4.
- किसी भी तरह के कैलकुलेटर या लॉग टेबल एवं मोबाइल फोन का प्रयोग वर्जित है। 5.
- OMR उत्तर-शीट (आंसर-शीट) का प्रयोग करते समय ऐसी कोई असावधानी न करें/बरतें जिससे यह फट जाये या 6. उसमें मोड़ या सिलवट आदि पड़ जाये जिसके फलस्वरूप वह खराब हो जाये।

Note:

This Question Booklet contains 100 questions with details as follows - each question carries 1. 2 marks.

PART - I

60 Questions

1 - 60

PART - II (A) Mathematics Group

40 Questions

61 - 100

OR

PART - II (B)

Statistics Group

40 Questions

61 - 100

- Part-I is compulsory. Candidate has to attempt Part-II (A) or Part-II (B). 2.
- Indicate your answers on the OMR Answer-Sheet provided. 3.
- No negative marking will be done. 4.
- Use of any type of calculator or log table and mobile phone is prohibited. 5.
- While using OMR Answer-sheet care should be taken so that the Answer-sheet does not get 6. torn or spoiled due to folds and wrinkles.

9210/TFU-MATH/ELG-II