24124

A)

1

1. If the function F(t)=1, its Laplace transform f(s) is given by: $\frac{n!}{S^{n+1}}$ $\frac{1}{s}$ A) $\frac{1}{s^2}$ B) C) S^2 D) The degree of differential equation $\left(\frac{d^2y}{dx^2}\right)^2 = \left(1 + \frac{dy}{dx}\right)^{\frac{1}{2}}$ is: 2. C) $\frac{1}{2}$ A) 2 B) 4 D) 1 3. The diagonal elements of a diagonal matrix are 5, 1 and 3. The eigen values of the matrix are: B) $\frac{1}{5}$, 1, $\frac{1}{3}$ C) 5, 1, 3 D) $\frac{5}{2}, \frac{1}{2}, \frac{3}{2}$ A) 7, 3, 4 The path of extremum distance between any two points in Riemannian space is: 4. Straight line B) Elliptical Cycloid Geodesic A) C) D) 5. If λ is the trace of the matrix A and the matrix A undergoes similarity transformation to generate matrix B. The trace of B is: A) $\frac{1}{\lambda}$ D) $\frac{1}{\lambda^2}$ C) λ^2 B) λ For a complex function f(z) = U(x, y) + iV(x, y), Cauchy-Riemann equation 6. in cartesian form is: A) $\frac{\partial U}{\partial x} = \frac{\partial V}{\partial y}, \frac{\partial V}{\partial x} = -\frac{\partial U}{\partial y}$ B) $\frac{\partial U}{\partial x} = -\frac{\partial V}{\partial y}, \frac{\partial V}{\partial x} = \frac{\partial U}{\partial y}$ C) $\frac{\partial U}{\partial x} = \frac{\partial V}{\partial y}, \frac{\partial V}{\partial x} = \frac{\partial U}{\partial y}$ D) $\frac{\partial U}{\partial x} = -\frac{\partial V}{\partial y}, \frac{\partial V}{\partial x} = -\frac{\partial U}{\partial y}$ 7. The minimum drain-source voltage at which drain current becomes constant is called: A) Knee voltage Breakdown voltage B) C) Pinch off voltage D) None of these 8. The Boolean expression A+AB is equal to:

9. The residue of complex function $\frac{z^3-z^2+1}{z^3}$ at infinity is: A) 0 B) 1 C) ∞ D) 2

C)

А

0

B)

A 120 MINUTES

D)

В

10. If $J_n(x)$ is the Bessel's function of first kind, its generating function is given by:

A)	$\exp\frac{x}{2}\left(t-\frac{1}{t}\right)$	B)	$\exp\frac{x}{2}\left(1-\frac{1}{t}\right)$
C)	$\exp\frac{x}{2}(1-t)^{-1}$	D)	$\exp \frac{x}{2} \left(1 - \frac{1}{t}\right)^{-1}$

11. For Dirac delta function,
$$\int_{-\infty}^{+\infty} x \delta(x-a) dx$$
 is:
A) $\frac{1}{a}$ B) $\frac{1}{a^2}$ C) a D) a^2

12. The expression for generalized force is:

A)
$$Q_j = \sum_j \vec{F}_j \cdot \frac{\partial \vec{r}_j}{\partial q_k}$$

B) $Q_k = \sum_j \vec{F}_j \cdot \frac{\partial \vec{r}_j}{\partial q_k}$
C) $Q_k = \sum_j \vec{F}_k \cdot \delta \vec{r}_k$
D) $Q_k = \sum_j \vec{F}_k \cdot \delta \vec{r}_k$

13. The quantity which remains invariant under Galilean transformation is:

A)	Velocity	B)	Displacement
\sim	A a a alla mati a m	D)	Manager

C) Acceleration D) Momentum

14. A particle is moving with a speed comparable to speed of light (c). At what speed the mass of the body becomes 25% greater than its rest mass.
A) 0.6c B) 0.553c C) 0.25 c D) 1.25c

A cylinder rolls without slipping along an inclined plane. The number of degrees of freedom is:
A) 4 B) 3 C) 2 D) 1

- 16. If 'm' is the mass of electron, the reduced mass of positronium is:
 - A) $\frac{m}{4}$ B) $\frac{m}{2}$ C) $\frac{m}{3}$ D) m
- 17. If l is the length of the simple pendulum, θ is the angle of suspension and m is the mass of the bob, the Lagrangian of simple pendulum is:

A)
$$\frac{1}{2}ml\dot{\theta}^2 - mgl(1 - \cos\theta)$$
 B) $ml\dot{\theta}^2 - mgl(1 - \cos\theta)$
C) $\frac{1}{2}ml\dot{\theta}^2 - mgl(1 - \sin\theta)$ D) $\frac{1}{2}ml^2\dot{\theta}^2 - mgl(1 - \cos\theta)$

18. If q_i is the generalized coordinate and L is the Lagrangian, the generalized momentum is given by:

A)
$$\frac{\partial L}{\partial q_i}$$
 B) $\frac{\partial L}{\partial \dot{q}_i}$ C) $\frac{\partial L}{\partial p_i}$ D) $\frac{\partial L}{\partial \dot{p}_i}$

19. Hamilton's canonical equations of motion are given by:

A)
$$\dot{q}_k = \frac{\partial H}{\partial p_k}; \ \dot{p}_k = \frac{\partial H}{\partial q_k}$$
 B) $\dot{q}_k = \frac{\partial H}{\partial \dot{p}_k}; \ p_k = \frac{\partial H}{\partial \dot{q}_k}$
C) $\dot{q}_k = -\frac{\partial H}{\partial p_k}; \ \dot{p}_k = \frac{\partial H}{\partial q_k}$ D) $\dot{q}_k = \frac{\partial H}{\partial p_k}; \ \dot{p}_k = -\frac{\partial H}{\partial q_k}$
20. Conservation of linear momentum is the consequence of:

21. If the generalized coordinate
$$q_k$$
 is cyclic, then:

A)
$$\frac{\partial L}{\partial \dot{p}_k} = 0$$
 and $\frac{\partial L}{\partial \dot{q}_k} = 0$
B) $\frac{\partial L}{\partial q_k} = 0$ and $p_k = a$ constant
C) $\frac{\partial L}{\partial \dot{p}_k} = 0$ and $p_k = a$ constant
D) $\frac{\partial L}{\partial \dot{q}_k} = 0$ and $p_k \neq a$ constant

22. The Hamiltonian for charged particle in electromagnetic field:

A)
$$H = \frac{1}{2m} \left(\stackrel{\mathbf{r}}{p} - q\stackrel{\mathbf{r}}{A} \right)^2 + q\phi$$
$$H = \frac{1}{2m} \left(\stackrel{\mathbf{r}}{p} + q\stackrel{\mathbf{r}}{A} \right)^2 + q\phi$$
B)
$$H = \frac{1}{2m} \left(\stackrel{\mathbf{r}}{p} + q\stackrel{\mathbf{r}}{A} \right)^2 - q\phi$$
$$H = \frac{1}{2m} \left(\stackrel{\mathbf{r}}{p} - q\stackrel{\mathbf{r}}{A} \right)^2 - q\phi$$
D)

23. If F_k , k=1,2,3,...,2n are two independent functions such that F_k is a function of 2n coordinates $q_1,q_2,q_3,...,q_n$, $p_1,p_2,p_3,...,p_n$. Then, relation between Lagrange and Poisson brackets are:

A)
$$\sum_{k=1}^{2n} \left(\{F_k, F_i\} - [F_k, F_j] \right) = \delta_{ij}$$

B)
$$\{F_k, F_i\} = -[F_k, F_j]$$

C)
$$\sum_{k=1}^{2n} \{F_k, F_i\} [F_k, F_j] = \delta_{ij}$$

D)
$$\sum_{k=1}^{2n} \{F_k, F_i\} = \sum_{k=1}^{2n} [F_k, F_j]$$

24. For the wavefunctions ψ_i and ψ_i , the orthonormality condition is given by:

A)
$$\int_{-\infty}^{+\infty} \psi_i * \psi_j dx = 1$$
B)
$$\int_{-\infty}^{+\infty} \psi_i * \psi_j dx = 0$$
C)
$$\int_{-\infty}^{+\infty} \psi_i * \psi_j dx = \delta_{ij}$$
D) None of these

25. The hydrogen is in p-state. The values of magnetic quantum number m_l for this state are:

- A) 0, 1 B) -2, -1, 0, 1, 2 C)
 - -1, 0, 1 ± 1 D)
- 26. Example of Hermitian operator is:

A)
$$\frac{d}{dx}$$
 B) $\left(\frac{d}{dx}\right)^2$ C) $\left(\frac{d}{dx}\right)^3$ D) $\frac{d^2}{dx^2}$

If a^{\dagger} and a are creation and annihilation operator and $|n\rangle$ is the state function 27. of the harmonic oscillator, the value of $<0|aa\dagger a\dagger |0>$ is: 1 C) 0 -1 A) 2 B) D)

- The WKB approximation is more valid for systems having: 28.
 - Heavy mass, high energy and slowly varying potential A)
 - Low mass, low energy and slowly varying potential B)
 - Heavy mass, low energy and slowly varying potential C)
 - D) Heavy mass, high energy and abruptly varying potential
- 29. Fermi Golden rule is related to:
 - Emission from one discrete level to another A)
 - Absorption between two discrete levels B)
 - Transition to continuum state C)
 - Not related to either absorption or emission D)
- Klein Gorden equation is given by: 30.

A)
$$\left(\nabla^2 - \frac{1}{c^2} \frac{\partial^2}{\partial t^2}\right) \psi(\mathbf{r}, t) = m^2 c^2 \psi(\mathbf{r}, t)$$

$$\mathbf{B} \qquad \left(\nabla^2 - \frac{1}{c^2} \frac{\partial^2}{\partial t^2} \right) \psi(\mathbf{r}, t) = \frac{m^2 c^2}{\mathbf{h}^2} \psi(\mathbf{r}, t)$$

C)
$$\left(\nabla^2 - \frac{1}{c^2} \frac{\partial^2}{\partial t^2} \right) \psi(\vec{r}, t) = \frac{h^2}{m^2 c^2} \psi(\vec{r}, t)$$

D)
$$\left(\nabla^2 - \frac{1}{c^2} \frac{\partial^2}{\partial t^2}\right) \psi(\vec{r}, t) = \frac{h}{mc} \psi(\vec{r}, t)$$

- 31. Pauli's spin matrices are
 - A) Commuting 2x2 matrices
 - B) Anticommuting 3x3 matrices
 - C) Anticommuting 2x2 matrices
 - D) Commuting 3x3 matrices
- 32. A bomb of mass 20kg at rest is exploded into two fragments, each of mass 12kg and 8kg. The former has velocity 4ms⁻¹. The kinetic energy of the latter is:
 A) 225 J
 B) 169 J
 C) 196 J
 D) 144 J
- 33. A uniform chain of mass m and length l is placed on a smooth table. One fourth of the length of the chain is hanging over the edge. The work needed to pull the chain onto the table is:

A)
$$\frac{mgl}{32}$$
 B) $\frac{mgl}{4}$ C) mgl D) $4mgl$

34. In a clock, the ratio of angular velocity of minute hand to the angular velocity of hour hand is:

- 35.For a body centered cubic lattice, the coordination number is:A)4B)6C)8D)12
- 36. If a is the lattice parameter, the interplanar spacing for (100) planes of cubic lattice is:

A)
$$\frac{a}{\sqrt{2}}$$
 B) $a\sqrt{2}$ C) a D) 2a

37. Crystal plane, parallel to z-axis, cuts the x and y axes creating intercepts 2 and 3 respectively. The Miller indices is: A) $(3, 2, \infty)$ B) $(\frac{1}{2}, \frac{1}{2}, \infty)$ C) (2, 3, 0) D) (3, 2, 0)

38. For the first Brillouin zone of linear lattice with lattice parameter a, the range of k is given by:

A)
$$-\frac{\pi}{a} \le k \le \frac{\pi}{a}$$
 B) $-\frac{2\pi}{a} \le k \le \frac{2\pi}{a}$
C) $0 \le k \le 2\pi a$ D) $0 \le k \le \frac{2\pi}{a}$

- 39. If \vec{a} is the primitive translation vector of the direct lattice and \vec{a}^* is the reciprocal lattice vector, $\vec{a} \cdot \vec{a}^*$ is:
 - A) $\frac{\pi}{2}$ B) π C) 2π D) 0

40. The reciprocal lattice of BCC Bravais lattice is:

A)	BCC lattice	B)	FCC lattice
C)	Simple Cubic	D)	Hexagonal

41. The variation of Fermi energy with temperature is:

A)
$$E_F = E_{F0} \left(1 + \frac{\pi}{12} \left(\frac{kT}{E_{F0}} \right)^2 \right)$$
 B) $E_F = E_{F0} \left(1 + \frac{\pi^2}{12} \left(\frac{kT}{E_{F0}} \right)^2 \right)$
C) $E_F = E_{F0} \left(1 - \frac{\pi^2}{12} \left(\frac{kT}{E_{F0}} \right)^2 \right)$ D) $E_F = E_{F0} \left(1 - \frac{\pi}{12} \left(\frac{kT}{E_{F0}} \right)^2 \right)$

- 42. $U_k(\mathbf{r})$ is a function which possesses the periodicity of the lattice. The wave function of electron moving in periodic potential is given by:
 - A) $\psi_k(\vec{r}) = u_k(\vec{r})$ B) $\psi_k(\vec{r}) = u_k(\vec{r}+\lambda)$ C) $\psi_k(\vec{r}) = u_k(\vec{r}) \exp((\vec{k}\cdot\vec{r}))$ D) $\psi_k(\vec{r}) = u_k(\vec{r}) \exp((\vec{k}\cdot\vec{r}))$
- 43. Langevin function is given by:

A)
$$L(x) = \coth x - \frac{1}{x}$$

B) $L(x) = \frac{1}{\coth x} - \frac{1}{x}$
C) $L(x) = \coth x + \frac{1}{x}$
D) $L(x) = \tanh x - \frac{1}{x}$

44. The effective mass of Bloch electron as a function of k is given by:

A)
$$\frac{h^2}{\left(\frac{d^2 E}{dk^2}\right)}$$
 B) $\frac{h^2}{4\pi^2 \left(\frac{d^2 E}{dk^2}\right)}$ C) $\frac{h^2}{4\pi^2} \left(\frac{d^2 E}{dk^2}\right)$ D) Δmc

- 45. For spherically symmetric charge distribution, nuclear quadrupole moment is
 A) Infinity
 B) Less than zero
 C) Greater than zero
 D) Zero
- 46. The radius of ⁶⁴Cu nucleus is 4.8 fermi. The radius of ²⁷Al is:
 A) 3.6 fermi
 B) 2.7 fermi
 C) 4.8 fermi
 D) 6.4 fermi
- 47. The total nuclear angular momentum quantum number *i* (nuclear spin) for ${}_{6}^{13}C$ is: A) Half integer B) Integer C) Zero D) Negative
- 48. Half-life of a radioactive material is 10 days. After 50 days, the fraction remaining undecayed:

A)
$$\frac{1}{32}$$
 B) $\frac{1}{16}$ C) $\frac{1}{8}$ D) $\frac{1}{4}$

49.	Baryo	on number of a	antineu	itrino is:				
	A)	-1	B)	0	C)	+1	D)	<u>+</u> 1
50.	For a	n electron rev	olving	round the nu	cleus, g	yromagneti	c ratio is:	
	A)	$\frac{e}{mc}$	B)	$\frac{e}{2mc}$	C)	$\frac{2e}{mc}$	D)	$\eta = \frac{T_1}{T_2}$
51.	A vit A) B) C) D)	Dipole mom Dipole mom Polarizabilit Magnetic mo None of thes	an acti ent of y of me oment se	ve, if it is acc molecule olecule of the materia	compan al	ied by chan	ge in:	
52.	In rot	ation vibration	n spect	ra of diatomi	c molec	ule, the line	es corresp	onding to $\Delta J = -1$
	A) C)	P branch R branch		B) D)	Q bra None	anch e of these		
53.	The n A)	nucleus which ${}^{15}_{7}N$	gives l B)	NMR spectru ¹⁶ 80	m is: C)	¹² ₆ C	D)	⁴ ₂ He
54.	Whic A)	ch of the follo HBr	wing n B)	nolecules doe N ₂	es not ex C)	thibit rotation HCl	onal spect D)	rum? CO
55.	The h	ydrogen atom	ı is in p	o-state. The v	alues of	j are:		
	A)	$\frac{3}{2}, \frac{1}{2}$	B)	$-\frac{1}{2},\frac{1}{2}$	C)	$-\frac{1}{2}, 0, \frac{1}{2}$	D)	$0, \frac{1}{2}$
56.	Micro A) B) C) D)	Energy, volu Energy, volu Energy, volu Temperature Temperature	semble ime and ime and e, volur e, volur	is the collect d temperature d number of j ne and numb ne and chemi	tion of l e particles er of pa ical pote	arge numbe s rticles ential	r of syster	ns having same:
57.	For g	as molecules, $\sqrt{2kT}$	the ave	erage speed is $\frac{1}{8kT}$	s given	by: $\sqrt{3kT}$		
	A)	\sqrt{m}	B)	$\sqrt{\frac{m}{\pi m}}$	C)	$\sqrt{\frac{m}{m}}$	D)	None of these
58.	For prop	a good cond	luctor,	skin depth	δ is re	lated to fro	equency (ω. That is, δ is
	A)	$\omega^{1/2}$	B)	$\omega^{-1/2}$	C)	ω	D)	ω^2

- 59. Energy of electromagnetic wave in vacuum is:
 - A) $\frac{1}{2}\varepsilon_0 E^2 + \frac{B^2}{2\mu_0}$ B) $\frac{E^2}{2\varepsilon_0} + \frac{B^2}{2\mu_0}$ C) $\frac{1}{2}\varepsilon_0 E^2 + \frac{1}{2}\mu_0 B^2$ D) $E^2 + B^2$
- 60.The maximum current flowing through 10k resistor with power rating 1W:A)1mAB)10mAC)100mAD)1
- 61. If all the eigen values of a matrix are real, then the matrix must be:
 - A) Symmetric B) Skew-symmetric
 - C) Diagonalizable D) Invertible
- 62. The Dirichlet conditions are requirements that a function must satisfy to ensure the convergence of its Fourier series. Which of the following is one of the Dirichlet conditions?
 - A) The function must be bounded on the entire real line.
 - B) The function must be differentiable everywhere.
 - C) The function must have only odd-order derivatives.
 - D) The function must have a finite number of discontinuities in any given period.

63. Evaluate the expression
$$\frac{2+3i}{1-2i}$$
:

- A) (-4-7i)/5 B) (-4+7i)/5 C) (4+7i)/5 D) (4-7i)/5
- 64. Which of the following is a Taylor series centered at x = 0?
 - A) Maclaurin series B) Power series
 - C) Polynomial series D) Exponential series
- 65. According to the Residue Theorem in complex analysis, what is the value of the integral of a function around a closed contour enclosing all its poles?
 - A) Zero
 - B) Equal to the sum of the residues inside the contour
 - C) Undefined
 - D) Equal to the value of the function at the origin
- 66. In a three-dimensional space, the moment of inertia tensor typically have ---- component/s.
 - A) 1 B) 2 C) 3 D) 6
- 67. The Hamiltonian of a closed system is conserved over time. This statement is a consequence of the fundamental principle of conservation of -----.
 - A) Energy B) Momentum
 - C) Angular momentum D) Charge

- 68. In a system with two generalized coordinates q_1 and q_2 , if q_1 is cyclic, what is the implication for the corresponding conjugate momentum p_1 ?
 - A) p_1 must be constant throughout the motion
 - B) p_1 must be a periodic function of time.
 - C) p₁must be zero
 - D) p_1 must be equal to q_1
- 69. Which of the following conditions must be satisfied for a transformation to be canonical?
 - A) It preserves the Hamiltonian.
 - B) It changes the total energy of the system.
 - C) It modifies the angular momentum.
 - D) It alters the total momentum.
- 70. ----- transformation is commonly used in the Hamilton-Jacobi theory to simplify the Hamiltonian equations.
 - A) Canonical B) Legendre C) Fourier D) Unitary
- 71. A particle is constrained in a one-dimensional box of length 2a with potential $V(x) = \infty$; $x \le -a$, x > a and V(x) = 0; $-a \le x \le a$ Energy difference between level n = 3 and n = 2 is:
 - A) $\frac{5h^2}{8ma^2}$ B) $\frac{9h^2}{8ma^2}$ C) $\frac{9h^2}{32ma^2}$ D) $\frac{5h^2}{32ma^2}$
- 72. Which of the following expressions represents the Hermitian conjugate (adjoint) of a bra vector $\langle \psi |$?
 - A) $|\psi\rangle$ B) $\langle\psi|$ [†] C) $\langle\psi|$ D) $|\psi\rangle$ [†]
- 73. In time-dependent perturbation theory, the unperturbed Hamiltonian represents:
 - A) The full quantum mechanical system
 - B) The perturbed system without any external influences
 - C) The perturbed system including all external influences
 - D) The perturbed system with minimal external influences
- 74. In the WKB Approximation, the turning points of the wave function correspond to locations where the kinetic energy is equal to:
 - A) Zero B) The potential energy
 - C) The total energy D) The angular momentum
- 75. The Born Approximation becomes more accurate when the energy of the incident particle is:
 - A) High B) Low C) Constant D) Relativistic

- 76. Which thermodynamic potential is minimized at equilibrium for a closed system at constant temperature and volume?
 - A) Internal energy (U)
 - B) Enthalpy (H)
 - C) Helmholtz free energy (A)
 - D) Gibbs free energy (G)
- 77. -----ensemble allows for the exchange of both energy and particles with a reservoir.
 - A) Canonical B) Grand Canonical
 - C) Microcanonical D) Isothermal-Isobaric
- 78. In statistical mechanics, what is the relationship between the partition function and the Helmholtz free energy (F)?

A)	$F = -kT \ln(Z)$	B)	$F = -kT \ln(g)$
C)	F = E - TS	D)	F = - N

- 79. What happens to the size of a Bose-Einstein condensate as the temperature decreases below the critical temperature?
 - A) It shrinks B) It remains the same
 - C) It expands D) It disappears

80. In statistical mechanics, how many coordinates are typically used to specify a point in phase space for a system with N particles in three dimensions?
A) N B) 3N C) 5N D) 6N

81.	Which	of the fo	ollowing is	not a Maxwell	a Maxwell equation?		
	A)	$(\partial T/\partial V)$	$= -(\partial p/\partial S)$	B)	$(\partial p/\partial T)$	$= (\partial S / \partial V)$	

A)	(01/0V) = -(0p/03)	D)	(0p/01) - (0s/0v)
C)	$(\partial V/\partial T) = -(\partial S/\partial p)$	D)	$(\partial T/\partial p) = -(\partial V/\partial S)$

- 82. When solving Laplace's equation in spherical coordinates for a spherically symmetric charge distribution, the general solution for the electric potential V(r) is:
 - A) V(r) = k/r B) V(r) = kr C) $V(r) = k/r^2$ D) $V(r) = kr^2$
- 83. In a Young's double-slit experiment the fringe width is 0.2 mm. If the wavelength of light used is increased by 10% and the separation between the slits is also increased by 10%, the fringe width will be:
 - A) 0.20 mm B) 0.401 mm
 - C) 0.242 mm D) None of these
- 84. What is the speed of light in glycerin (n = 1.5) expressed in terms of the speed of light in a vacuum?
 - A) 0.75c B) 1.5c C) 0.667c D) 0.333c

- 85. The property of electrons described by the term "spin" in quantum mechanics:
 - A) Physical rotation
 - B) Orbital motion
 - C) Intrinsic angular momentum
 - D) Vibrational energy
- 86. Which type of coupling, LS or JJ, is more commonly used to describe the electronic structure of atoms?
 - A) LS coupling B) JJ coupling
 - C) Both A and B D) Neither A nor B
- 87. The parameter used to describe the position of a signal in an NMR spectrum:
 - A) Spin number B) Magnetic field strength
 - C) Chemical shift D) Relaxation time
- 88. The selection rule for rotational transitions in diatomic molecules is $\Delta J=$? A) 0 B) ± 1 C) ± 2 D) ± 3
- 89. The Zeeman Effect is often used to study and characterize which of the following properties of atoms or molecules?
 - A) Electrical charge B) Mass
 - C) Chemical reactivity D) Spin and magnetic moment
- 90. Parity is a property that describes the:
 - A) Charge of a particle
 - B) Mass of a particle
 - C) Spatial symmetry of a nuclear state
 - D) Spin of a particle

A)

Mass

- 91. According to the liquid drop model, which type of nuclei tend to be more stable?
 - A) Those with a large number of protons
 - B) Those with an odd number of neutrons
 - C) Those with a high binding energy per nucleon
 - D) Those with a high surface area
- 92. The exchange of which particles mediates the strong nuclear force responsible for the nucleon-nucleon potential?
 - A) Electrons B) Photons C) Neutrinos D) Mesons
- 93. The Higgs boson is associated with which fundamental physical property?
 - B) Electric charge
 - C) Spin D) Color charge

- 94. Which of the following is an example of a strange baryon, consisting of three quarks with at least one strange quark?
 - A) Pion B) Kaon
 - C) Lambda (Λ-baryon) D) Electron
- 95. The semi-empirical mass formula predicts that the binding energy per nucleon is highest for nuclei with:
 - A) Even numbers of protons and neutrons
 - B) Odd numbers of protons and even numbers of neutrons
 - C) Odd numbers of protons and odd numbers of neutrons
 - D) Even numbers of protons and odd numbers of neutrons
- 96. Which of the following lattices has the highest void fraction?
 - A) Hexagonal close packed B) Body centered cubic
 - C) Face centered cubic D) Primitive cubic
- 97. What is the Debye frequency?
 - A) The frequency at which phonons become inaudible
 - B) The highest frequency of phonons in a crystal
 - C) A measure of phonon scattering
 - D) The frequency of the fastest-moving phonons
- 98. Which type of phase transition in solids typically exhibits hysteresis?
 - A) First-order
 - B) Second-order
 - C) Both first-order and second-order
 - D) Neither first-order nor second-order
- 99. Which of the following is a characteristic feature of Type I superconductors?
 - A) Zero electrical resistance
 - B) Perfect diamagnetism below Tc
 - C) Ability to carry both electric and magnetic fields
 - D) High critical magnetic field (Hc)
- 100. The type of defect which is responsible for the coloration of some gemstones:
 - A) Vacancy defect B) Interstitial defect
 - C) Frenkel defect D) Schottky defect
- 101. The type of dislocation which results from the shearing of atomic planes within a crystal lattice:
 - A) Edge dislocation B) Screw dislocation
 - C) Mixed dislocation D) Vacancy dislocation
- 102. Which of the following materials is known to exhibit quasi-crystal structures?A) Diamond B) Silicon C) Aluminium D) Graphite

103.	In a ti A)	cansistor, $I_C = 100$	100 mA B)	A and $I_E = 1$ 50	00.5 mA. C)	The value of (about 1	β is: D)	200
104.	The p	hase differenc gement is:	e betwe	een the inp	out and out	put voltages in	n a com	nmon base
	A)	180°	B)	90°	C)	270°	D)	0°
105.	If the respectively the respectively of the respectively the respectively of the respectively of the respective terms of te	power and cu ctively, then v	rrent ga oltage g	ins of a tra	ansistor an	nplifier are 16	500 and	d 100
	A)	165	B)	165 × 104	4 C)	100	D)	None of these
106.	RC co A) B) C) D)	There is not There is cons There is hum Electrical siz None of thes	used to siderables in the se of co se	amplify e le power lo output upling cap	xtremely 1 oss acitor beco	ow frequencie omes very larg	es becau ge	ise:
107.	The o	pen-loop gain	of an i	deal op-an	np is:		_ `	
	A)	0 dB	B)	1 dB	C)	Infinite	D)	20 dB
108.	The A)	decimal equiv 10	alent of B)	the hexad 26	ecimal nu C)	mber "1A" is: 16	D)	28
109.	In a (A) B) C) D)	clocked SR fli It sets the Q It resets the Q It enables or It toggles the	p-flop, output Q outpu disable e flip-flo	the role of it s the flip-f op	`the clock lop	signal:		
110.	The A)	digital integrat Flip-flop	ted circ B)	uit which i Counter	is commor C)	nly used for bi Multiplexer	nary ad D)	ldition: Full adder
111.	How A)	many general 2	l-purpos B)	se registers 4	s are there C)	in the 8085 m 6	nicropro D)	ocessor? 8
112.	Calcu A) C)	late the energy 3.31 x 10 ⁻¹⁹ 1.24 x 10 ⁻⁶ J	y of a p J	hoton with B) D)	a wavelet 2.48 x 6.63 x	ngth of 600 nr x 10 ⁻¹⁹ J x 10 ⁻³⁴ J	n.	
113.	The an ax A) C)	moment of ine this touching the $I = (3/2)MR^2$ $I = (1/3)MR^2$	ertia of a e disc a	a uniform at its diame B) D)	circular di eter and no I = (1) I = M	sc of radius R ormal to the di /2)MR ² R ²	and masc is :	ass M about
114.	Two p electr A)	point charges, ic potential en 3mJ	+5 C a ergy of B)	and -2 C, the system 0.3mJ	are placed n? C)	d 3 meters apa -3mJ	rt. Wha D)	nt is the -0.3mJ

115.	Calc	ulate $\int_{0}^{2\pi} \sin($	2x) dx						
	A)	0	B)	π		C)	-π	D)	2π
116.	A ste Wha A) C)	eel beam with t is the stress 0.42 MPa 2.1 MPa	a Youn applied	g's Mo to the	dulus o beam? B) D)	f 210 C 420 N 0.000	GPa experienc 1Pa 021GPa	es a stra	ain of 0.002.
117.	If a (ohm	6 V battery is s, and 6 ohms	connec , the tot	ted to the tal current	hree res ent in th	istors i ne circu	in parallel with	h value	s of 2 ohms, 3
	A)	1 A	B)	6 A		C)	3 A	D)	4 A
118.	Find	the limit as x	approa	ches 3	for the	functio	$f(x) = (x^2 - x^2)$	$(x^2)/(x^2)$	- 3x):
	A)	0	B)	1		C)	2	D)	Undefined
119.	A ca is the	pacitor has a c e energy store	capacita d in the	ance of capaci	20 Fa	and is c	charged to a vo	oltage c	of 100 V. What
	A)	10 J	B)	20 J		C)	50 J	D)	100 J
120.	Whie A) B) C)	ch of the follo n = 3, 1 = 2, n = 4, 1 = 2, n = 1, 1 = 1,	wing is $m_l = 3$, $m_l = 2$, $m_l = -$	$m_s = +$ $m_s = -$ $m_s = -$ $1, m_s =$	l quantu 1/2 -1/2 0	ım nun	nber for an ele	ectron i	n an atom?
	D)	n = 2, 1 = 3,	$m_l = 0,$	$m_s = -$	-1/2				