24121

120 MINUTES

1.	function $f(x) = x^2$ from the set of positive real numbers to positive real nbers is: Injective but not surjective Surjective but not injective Both injective and surjective Neither injective nor surjective				
2.	Maximum value of $2 \sin\theta + 3 \cos\theta$ is: A) $\sqrt{13}$ B) 2 C) 3 D) 5				
3.	If G is a group $a, b \in G$ and n is any integer, then $(a^{-1}ba)^n$ is equal to: A) aba^{-1} B) ab^na^{-1} C) $a^{-1}b^na$ D) $a^{-1}ba$				
4.	Let ϕ be a group of homomorphism from Z_{24} on to Z_8 . Then the kernel of the homomorphism ϕ is the group. A) {0, 4, 8, 12, 16, 20} B) {0, 6, 12, 18} C) {0, 8, 16} D) {0}				
5.	If <i>m</i> is the number of abelian groups (up to isomorphism) of order 24 and <i>n</i> is the number of abelian groups (up to isomorphism) of order 25, then A) $m = 1, n = 2$ B) $m = 3, n = 2$ C) $m = 2, n = 1$ D) $m = 2, n = 3$				
6.	The differential equation of all straight lines touching the circle $x^2 + y^2 = a^2$ is: A) $\left(x - y\frac{dy}{dx}\right)^2 = a^2 \left(1 - \left(\frac{dy}{dx}\right)^2\right)$ B) $\left(x + y\frac{dy}{dx}\right)^2 = a^2 \left(1 + \left(\frac{dy}{dx}\right)^2\right)$ C) $\left(y - x\frac{dy}{dx}\right)^2 = a^2 \left(1 + \left(\frac{dy}{dx}\right)^2\right)$ D) $\left(y + x\frac{dy}{dx}\right)^2 = a^2 \left(1 - \left(\frac{dy}{dx}\right)^2\right)$				
7.	Particular integral of the differential equation $\frac{d^2y}{dx^2} + y = \sin x$ is: A) $-\frac{x}{2}\cos x$ B) $\frac{x}{2}\sin x$ C) $-\frac{x}{2}\sin x$ D) $\frac{x}{2}\cos x$				

Primitive of the differential equation $(y^2 + yz)dx + (z^2 + xz)dy + (y^2 - xy)dz = 0$ 8. is:

y(x - z) = c(y - z) B) y(x + z) = c(y + z)A) С

C)
$$y(x-z) = c(y+z)$$
 D) None of these

9. In a colony, there are 55 families. Each family posts a greeting card to each other family. How many greeting cards will be posted by them?
A) 2970 B) 109 C) 2790 D) 2079

10. A survey determined that in a locality 33% go to work by car, 42% by bus and 12% use both. Probability that a person selected at random uses neither car nor bus is:
A) 0.67 B) 0.37 C) 0.77 D) 0.53

11. The value of $\lim_{x\to\infty} \frac{2 \sin x - \sin 2x}{x - \sin x}$ is equal to: A) 5 B) 6 C) 3 D) 0

12. Area enclosed by the curve $y^2 = 2 - x^2$ between $x = -\sqrt{2}$ and $x = \sqrt{2}$ is equal to: A) 2π B) $\sqrt{2}\pi$ C) 3π D) $\sqrt{3}\pi$

- 13. $\int x \log x dx \text{ is equal to:}$ A) $\frac{x^{2} \log x}{4} - \frac{x^{2}}{2} + C$ B) $\frac{x^{2} \log x}{4} + \frac{x^{2}}{2} + C$ C) $\frac{x^{2} \log x}{2} + \frac{x^{2}}{4} + C$ D) $\frac{x^{2} \log x}{2} - \frac{x^{2}}{4} + C$
- 14. If the series $\sum a_{n,} \sum b_{n,} \sum c_{n}$ converges to *A*, *B*, *C* respectively where $c_{n} = a_{0}b_{n} + \dots + a_{n}b_{0}$, then *C* is equal to: A) A + B B) A - B C) AB D) $\frac{A}{B}, B \neq 0$

15. The sequence $\{S_n\}$ defined by $S_{n+1} = \sqrt{7 + S_n}$ and $S_1 = \sqrt{7}$ converges to: A) positive root of $x^2 - x - 7 = 0$

- B) negative root of $x^2 x 7 = 0$
- C) positive root of $x^2 + x 7 = 0$
- D) negative root of $x^2 + x 7 = 0$
- 16. Which among the following statements is **false**?
 - A) Topological product of spaces is T_2 if and only if each coordinate space is T_2 .
 - B) Topological product of spaces is regular if and only if each coordinate space is regular.
 - C) Topological product of spaces is completely regular if and only if each coordinate space is completely regular.
 - D) None of these
- 17. Which among the following statement is true for a Cantor set?
 - A) The set is finite B) The set is countable
 - C) The set is uncountable D) None of these

- 18. If E_1 and E_2 are any two measurable sets, then $m(E_1 \cup E_2) + m(E_1 \cap E_2)$ is equal to:
 - A) 0 C) $m(E_1) - m(E_2)$ B) $m(E_1) + m(E_2)$ D) $m(E_1) \times m(E_2)$

19. Singularities of the function
$$f(z) = \frac{1}{\cos(\frac{1}{z})}$$
 are at the points:

A)
$$z = \frac{1}{(2n+1)\pi}$$
 for $n = 0, \pm 1, \pm 2, ...$
B) $z = \frac{2}{(2n+1)\pi}$ for $n = 0, \pm 1, \pm 2, ...$
C) $z = \frac{2}{(2n-1)\pi}$ for $n = 0, \pm 1, \pm 2, ...$

D) None of these

20. If
$$x + iy = \frac{a+ib}{a-ib}$$
, then x and y satisfies the equation:

A)
$$x^{2} + y^{2} = 0$$

C) $x^{2} - y^{2} = 0$
B) $x^{2} + y^{2} = 1$
D) $x^{2} - y^{2} = 1$

C) $\dim V \times \dim W$ D) None of these

26.	In the are de the set A) C)	vector space fined by $x(t)$ t $\mathcal{B} = \{x, y, z\}$ \mathcal{B} is linearly \mathcal{B} is a basis f	of poly = $1 - \frac{1}{2}$, which depend for \mathcal{P}	nomials \mathcal{P} in t, y(t) = t(ch of the follo dent	the var 1 - t) owing s B) 2 D)	Table t, the po and $z(t) = 1$ tatements is tr $B = \mathcal{P}$ None of these	lynomia — t ² . ue?	als <i>x, y, z</i> Then for
27.	If A is A)	an invertible $-\alpha A^{-1}$	linear (B)	transformatio $\alpha^{-1}A$	n and a	$\alpha \neq 0$, then ($\alpha = \frac{1}{2}A^{-1}$	A) ⁻¹ is D)	equal to: None of these
28.	If A is value (A)	a square mat of the determ	rix of o inant of B)	order 3 and va f the adjoint or -8	lue of t of A is e	α^{-1} the determinant equal to:	D	s -4 , then
29.	The va	alue of the det	b) termina	$\begin{array}{c c} 1 & a & b \\ 1 & b & c \end{array}$	$\begin{vmatrix} + c \\ + a \end{vmatrix}$ i	s equal to:	D)	10
	A)	a + b + c	B)	1 с а abc	+ <i>b</i> C)	zero	D)	None of these
30.	Eigen	values of the	matrix	$ \begin{pmatrix} 1 & 2 & 3 \\ 0 & -4 & 2 \\ 0 & 0 & 7 \end{pmatrix} $) are:			
	A)	1, 4, 7	B)	-1, 4, 7	Ć C)	1, -4, 7	D)	1, 4, -7
31.	Equat A) B) C) D)	ion to the para $16x^2 - 9y^2$ $16x^2 + 9y^2$ $16x^2 + 9y^2$ $16x^2 - 9y^2$	abola w -24x -24x -24x -24x	whose focus is y - 144x + 3 $y - 144x + 3$ $y - 144x + 3$ $y - 144x - 3$	s (3,0) = 8y + 228y + 228y - 228y - 228y + 22	and directrix 3 24 = 0 24 = 0 24 = 0 24 = 0	x + 4y	v = 1 is:
32.	If the value	lines $\frac{x-2}{2k} = \frac{y}{2k}$ of k is equal t	$\frac{z^{-3}}{3} = \frac{z^{-3}}{z^{-3}}$	$\frac{+2}{-1}$ and $\frac{x-2}{8} =$	$\frac{y-3}{6} =$	$\frac{z+2}{-2}$ are paralle	el, then	the
	A)	-2	В)	2	C)	4	D)	-4
33.	If gcd A)	$l(a,b) = d$, the $\frac{ab}{d}$	hen <i>gco</i> B)	$d\left(\frac{a}{d},\frac{b}{d}\right)$ is equal to d	ual to: C)	d^2	D)	1
34.	The la A)	st digit of 6 ⁵⁰ 0	⁰⁰ is : B)	5	C)	6	D)	None of these
35.	If φ is A)	s the Euler's to 144	otient f B)	unction, then 192	φ (φ (1 C)	1001)) is equa 298	l to: D)	96

- 36. In the metric space (\mathcal{R}^2, d_1) , where $d_1(x, y) = |x_1 y_1| + |x_2 y_2|$ for $x = (x_1, x_2)$ and $y = (y_1, y_2)$, the sequence $\{(\frac{1}{n}, \frac{2n+1}{n+1})\}$ converges to: A) (1, 0) B) (0, 1) C) (0, 2) D) (2, 0)
- 37. Let X and Y be Banach spaces and B(X, Y) denotes the set of bounded linear maps from X to Y. Then which of the following statements is **not** true?
 - A) Every closed linear map $A: X \to Y$ is continuous
 - B) If $A \in B(X, Y)$ is surjective, then A is an open map
 - C) If $A \in B(X, Y)$ is bijective, then $A^{-1} \in B(Y, X)$
 - D) None of these
- 38. Let $\{u_1, u_2, ..., u_m\}$ be an orthonormal set in an inner product space X. Then for $x \in X, \sum_{n=1}^{m} |\langle x, u_n \rangle|^2 = ||x||^2$ if and only if :
 - A) $x \in \{u_1, u_2, ..., u_m\}$ B) $x \notin \{u_1, u_2, ..., u_m\}$
 - C) $x \in span\{u_1, u_2, \dots, u_m\}$ D) $x \notin span\{u_1, u_2, \dots, u_m\}$
- 39. If θ is the angle between the vectors (2,3,5) and (1,-4, 3) in the real inner product space \mathcal{R}^3 over \mathcal{R} , then which of the following is correct?
 - A) $sin^2\theta = 0$ B) $sin^2\theta = \frac{25}{988}$ C) $sin^2\theta = \frac{963}{988}$ D) $sin^2\theta = 1$
- 40. Let X be a normed linear space over the field K and $F(\neq 0) : X \rightarrow K$ is a linear map such that F is bounded on some closed ball about 0 of positive radius. Then which among the following is **not** true?
 - A) The hyperspace Z(F) is open in X
 - B) *F* is continuous at 0
 - C) *F* is continuous on *X*
 - D) *F* is uniformly continuous on *X*
- 41. If V is the vector space of all 2×2 matrices over the field of complex numbers, then the dimension of V is: A) 1 B) 2 C) 3 D) 4
- 42. If α and β are the roots of the equation $2x^2 \alpha x + b = 0$ then the equation whose roots are 2α and 2β is:
 - A) $x^{2} ax + 2b = 0$ B) $x^{2} - 2ax + 4b = 0$ C) $2x^{2} - ax + 2b = 0$ D) $x^{2} - ax + b = 0$

43.
$$\lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n$$
 is:
A) 1 B) 0 C) e D) ∞

- 44. A box contains 2 white balls, 3 black balls and 3 red balls. The number of ways in which we can select three balls from the box if at least one red ball included is : A) 10 B) 46 C) 56 D) 66 The number of common tangents to the circles $x^2 + y^2 = 16$ and $x^2 - 4x + y^2 = 0$ 45. is: A) 0 B) 1 C) 2 D) 4 If the plane 2x + 3y - 5z = 0 contains the straight line $\frac{x}{l} = \frac{y}{4} = \frac{z}{2}$ then the A) 0 B) 1 C) 2 46. value of *l* is: B) -1C) 2 D) -2A) 1 47. Total number of subsets of a finite set A has 56 more elements of total number of subsets of *B* then the number of elements in *A* is: 9 D) A) 3 B) 6 C) 8 $f(x) = \begin{cases} x \sin \frac{\pi}{x} & \text{when } 0 < x \le 1\\ 0 & \text{when } x = 0 \end{cases} \text{ then in } [0,1]:$ 48. f(x) is continuous on [0,1] and f is not bounded variation on [0,1] A) f(x) is continuous on [0,1] and f is bounded variation on [0,1] B) f(x) is not continuous on [0,1] and f is not bounded variation on [0,1] C) f(x) is not continuous on [0,1] and f is bounded variation on [0,1] D) 49. If the derivative f exists and is bounded on [a, b] then: The function f is of bounded variation on [a, b]A) B) The function f is not of bounded variation on [a, b]C) The function f is not continuous None of these D) If $\left|\frac{z-2}{z-1}\right| = 2$ then Re(z) is: 50. A) $\frac{3}{4}|z|^2$ B) $\frac{4}{3}|z|^2$ C) $\frac{3}{4}|z|$ D) $\frac{3}{4}|z-1|^2$ An example of a function with a non isolated essential singularity at z = 2 is: 51. A) $tan \frac{1}{z-2}$ B) $sin \frac{1}{z-2}$ C) $e^{-(z-2)}$ D) $tan \frac{z-2}{z}$ Let C denote the unit circle centred at the origin in C. Then $\frac{1}{2\pi i}\int_{C}^{1}|1+z+z^{2}|^{2}dz$ 52. where the integral is taken anticlockwise along C equals
 - A) 2 B) 3 C) 0 D) 1

- 53. Consider the Power series $\sum_{n=0}^{\infty} a_n z^n$ where $a_n = \begin{cases} \frac{1}{3^n} & \text{if } n \text{ is even} \\ \frac{1}{5^n} & \text{if } n \text{ is odd} \end{cases}$. The radius of convergence of the series is equal to :
 - A) 1 B) 2 C) 3 D) 5
- 54. The harmonic conjugate of the function $e^x cosy + e^y cosx + xy$ is:
 - A) $e^x siny + e^y sinx \frac{1}{2}(x^2 + y^2)$
 - B) $e^x siny e^y sinx + \frac{1}{2}(x^2 + y^2)$
 - C) $e^x siny + e^y sinx + \frac{1}{2}(x^2 + y^2)$
 - D) None of these

55. Which statement is **not** true?

- A) Two cyclic groups of same order are isomorphic
- B) Two groups of same dimensions are isomorphic
- C) Isomorphic copy of a cyclic group is cyclic
- D) None of these
- 56. Let *H* and *K* are the subgroups of order 9 and 4 respectively. If O(G) = 36 then possible order of $H \cap K$ is: A) 1 B) 2 C) 3 D) 36
 - A) 1 B) 2 C) 5 D) 50
- 57. The order of the element(2,2) in the group $Z_4 \bigoplus Z_6$ is:A) 2B) 4C) 6D) 8
- 58.The number of mutually non-isomorphic abelian groups of order 72 is:A)1B)2C)4D)6
- 59. If \mathbb{R} is a commutative ring with unit element then M is maximal ideal of \mathbb{R} if and only if:

A)	$^{\rm M}/_{\mathbb{R}}$ is a field	B)	$\mathbb{R}/_{M}$ is a field

- C) \mathbb{R} M is a field D) None of these
- 60.Let G be a cyclic group of order 16. The number of subgroups of G will be:A)2B)3C)4D)5

61. The number of disjoint cycles of length ≥ 2 in the permutation

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 3 & 4 & 7 & 2 & 6 & 5 & 8 & 1 \end{pmatrix}$$
 will be:
A) 4 B) 5 C) 2 D) 3

- 62. If H and K are normal subgroups of a group G then which one of the following is true?
 - A) HK and $H \cup K$ are normal in G
 - B) $H \cap K$ is normal but HK is not normal in G
 - C) $H \cup K$ is normal but HK is not normal in G
 - D) $H \cap K$ and HK are normal in G
- 63. Let *A* be a non zero upper triangular matrix all of whose eigen values are0. Then I + A is :
 - A) Singular B) Invertible C) Nilpotent D) Idempotent
- 64. If T be the linear operator of R^2 defined by T(x, y) = (4x 2y, 2x + y) then the matrix of T in the basis $\{f_1 = (1,1), f_2 = (-1,0)\}$ is:

A)
$$[T]_f = \begin{bmatrix} 3 & -2 \\ 1 & 2 \end{bmatrix}$$
 B) $[T]_f = \begin{bmatrix} 3 & -1 \\ -2 & 2 \end{bmatrix}$
C) $[T]_f = \begin{bmatrix} 3 & 2 \\ 1 & 2 \end{bmatrix}$ D) $[T]_f = \begin{bmatrix} 3 & -2 \\ 1 & -2 \end{bmatrix}$

- 65. Let T be a linear operator on an n-dimensional vector space having n distinct eigen values then :
 - A) *T* is diagonalizable
 - B) *T* is not diagonalizable
 - C) *T* is invertible but not diagonalizable
 - D) None of these

66. The dimension of the vector space $M = \{ [a_{ij}]_{m \times n} | a_{ij} \in \mathbb{C} \}$ over the field \mathbb{R} is: A) m + n B) mn C) 2mn D) 2(m + n)

- 67. Let *M* be a real symmetric positive definite $n \times n$ matrix. Then which of the following statements is **false**?
 - A) *M* is diagonalizable
 - B) *M* is unitary
 - C) The determinant of *M* is positive
 - D) There is an invertible matrix P such that $M = P^T P$

68. If A is non-scalar, non-identity idempotent matrix of order $n \ge 2$ then the minimal polynomial $m_A(x)$ is: A) x(x-1) B) x(x+1) C) x(1-x) D) $x^2(1+x)$

69. If four eigen values of a 4 × 4 matrix $B = \begin{bmatrix} A & I \\ I & A \end{bmatrix}$ are -1, 1, 0, 4 where are *I* and *A* are 2 × 2 matrices then trace of the matrix *A* will be: A) 1 B) 2 C) 3 D) 4

70. The solution of the differential equation $y = e^{x-y} + x^2 e^{-y}$ is:

A)
$$e^{-y} = e^x + \left(\frac{x^2}{2}\right) + C$$
 B) $e^y = e^x + \left(\frac{x^3}{3}\right) + C$
C) $y = e^x + \left(\frac{x^3}{3}\right) + C$ D) $y = e^{-x} + \left(\frac{x^2}{2}\right) + C$

71. The orthogonal trajectories of the family of curves $2xy + y^2 - x^2 = a_0a$ is a parameter are given by: (A) $x^2 + y^2 + 2xy = 0$ (B) $x^2 - y^2 - 2xy = 0$

A)
$$x^2 - y^2 + 2xy = c$$

B) $x^2 - y^2 - 2xy = c$
C) $x^2 - y^2 + xy = c$
D) $x^2 + y^2 + 2xy = c$

72. The solution of the differential equation $\frac{d^2y}{dx^2} + 4y = sin^2x$ is:

A) $y(x) = C_1 \cos 2x + C_2 \sin 2x + \frac{1}{8} - \frac{x \sin 2x}{8}$

B)
$$y(x) = C_1 e^{2x} + C_2 e^{-2x} + \frac{1 - x \sin 2x}{8}$$

- C) $y(x) = C_1 \cos 2x + C_2 \sin 2x + 1 x \sin 2x$
- D) $y(x) = C_1 e^{2x} + C_2 e^{-2x} + 1 x \sin 2x$

73. The Partial Differential Equation $y^2 u_{xx} - 2xyu_{xy} + x^2 u_{yy} = \frac{y^2}{x}u_x + \frac{x^2}{y}u_y$ A) Parabolic B) Elliptic C) Hyperbolic D) None of these

74. The particular integral of
$$(D^2 - 2DD + D^2)z = \cos(x - 3y)$$
:

A)
$$\frac{1}{16}\cos(x-3y)$$
 B) $\frac{-1}{16}\cos(x+3y)$

C)
$$\frac{-1}{16}\cos(x-3y)$$
 D) $-\cos(x-3y)$

75.	The Partial Differential Equation of $f(z - xy, x^2 + y^2) = 0$ formed by the elimination of arbitrary function is: A) $py - qx = x^2 - y^2$ B) $px + qy = x^2 - y^2$ C) $my - qx = y^2 - x^2$ D) $mx - qy = y^2 - x^2$
	$(c) py - qx - y - x \qquad (b) px - qy - y - x$
76.	Let A and B be two non empty disjoint subsets of \mathbb{R} and $d(A, B) = \inf \{ a - b , a \in A, b \in B\}$ Then $d(A, B) > 0$ if : A) A and B are open B) A and B are closed C) A is closed and B is open D) None of these
77.	Let $X = \mathbb{R}$ with discrete topology and $Y = \mathbb{R}$ with standard topology. Define a function from X to Y by $f(x) = x$ then : A) f is not continuous B) f is an open map C) f is a closed map D) None of these
78.	Let X be the real line and $K = \{\frac{1}{n} : n = 1, 2, 3,\}$. Then K is: A) Open in X B) Closed in X C) Both open and closed in X D) Neither open nor closed in X
79.	If X and Y are normed spaces and if $A : X \to Y$ is a bijective bounded linear map then: A) A is always an open map B) A is an open map if X is a Banach space C) A is an open map if Y is a Banach space D) A is an open map if both X and Y are Banach spaces
80.	If P is a projection on Hilbert space H Then: (A) $P^2 = P$ (B) P is not a positive operator on H

A) $P^2 = P$ B) P is not a positive operator onC) $P^* = P$ D) $P^2 = P$ and $P^* = P$