1.	The d	iagonal eleme	nts of v	which r	matrix				nbers or zero?
	A) C)	Symmetric Hermitian			B) D)		Symmetric Hermitian	;	
2.		and B are two $A^2 - B^2$							$-(B \times A)$
3.	The e	igen values of	`the ma	atrix (1 0 0 1 0 1	$\begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$ are			
	A)	2,2,0	B)	2,2,1		C)	0,1,2	D)	1,1,2
4.	The re	esidue of Cot Z	Z at Z =	= 0 is:					
	A)	1	B)	e ⁻¹		C)	π	D)	0
5.	The n $(-\pi, \pi)$	umber of non-) is:	-vanish	ing ter	ms in	the Fou	rier series o	f Cos³θ ii	n the interval
	A)	One	B)	Two		C)	Three	D)	Infinity
6.	To be A)	a function has Hermite's				-	_	D)	Laplace
7.	The g	eneral solution	n of dif	ferenti	al equ	ation $\frac{d^2}{dx}$	$\frac{y}{2} - y = 0 \text{ is}$		
		$y = Ce^{x}$ $y = C_{1}e^{x} + C$				y = C			
	C)	$y = C_1 e^x + C_1$	$C_2 e^{-x}$		D)	None	of these		
8.	If f	(s) is the Lapla	ace trai	nsform	of f(t)), the La	place trans	form of f((at) is
	A)	f $(^{S}/a)$		B)	$\frac{1}{a}$ f	$(^{S}/a)$	C) f(s	s)	D) $\frac{1}{a}f(s)$
9.	If J _n (x) is the Besse						function	is given by
	A)	$\exp\frac{x}{2}(1-\frac{1}{t})$					$\left(1-\frac{1}{t}\right)^{-1}$		
	C)	$\exp\frac{x}{2}(t-\frac{1}{t})$			D)	$\exp \frac{x}{2}$	$(1-t)^{-1}$		
10.	For D	irac delta func	ction, ∫	$_{-\infty}^{\infty}\delta(3$	x-2	$)x^2dx$ i	s		
	A)	<u>2</u> 3		_		C)	_	D)	<u>1</u> 3

15.	The differential equation for planetary motion is									
	A) $\frac{d^2u}{d\theta^2} = u + \frac{1}{2}$	$\frac{m}{l^2u^2}f(1/u)$	B) $\frac{d^2u}{d\theta^2}$	$= -u - \frac{m}{l^2 u^2}$	f(1/u)					
	$C) \qquad \frac{d^2u}{d\theta^2} = u - c$	$\frac{m}{l^2u^2}f(1/u)$	D) $\frac{d^2u}{d\theta^2}$	$= -u + \frac{m}{l^2 u^2}$	<i>f</i> ()					
16.	Hamilton's canon									
	A) $\dot{q}_i = \frac{\partial H}{\partial p_i}$ an	$\mathrm{d}\dot{p}_i = -\frac{\partial H}{\partial q_i}$	B) $q_i =$	$=\frac{\partial H}{\partial \dot{p}_i}$ and $p_i=$	$=\frac{-\partial H}{\partial \dot{q}_i}$					
	C) $\dot{q}_i = \frac{\partial H}{\partial p_i}$ an	$\mathrm{d}\dot{p}_i = \frac{\partial H}{\partial q_i}$	D) $q_i =$	$=\frac{\partial H}{\partial \dot{P}_i}$ and $p_i=$	$= \frac{\partial H}{\partial \dot{q}_i}$					
17.	The number of po molecules are:	ssible longitud	inal normal	modes of line	ar symm	etric triatomic				
	A) One	B) Two	C)	Three	D)	Four				
18.	The generalised ve	-	nate q_k of a	classical syste	m with I	Lagrangian ' L ' is				
	$A) \qquad \frac{\partial L}{\partial q_k} = 0$		$\frac{1}{c} = 0$ C)	$\frac{\partial L}{\partial q_k} = \dot{q}_k$	D)	$\frac{\partial L}{\partial q_k} = \frac{d}{\mathrm{d}t} \left(\frac{\partial L}{\partial \dot{q}_k} \right)$				

If $P_n(x)$ is Legendre's polynomial, then -----

of friction in the shortest distance is a -----

B)

 $P_n(-x) = P_n(x)$

 $P_n(-1) = 1$

Cycloid

Sphere

its proper length?

С

B) $P_n(-x) = (-1)^n P_n(x)$

D) $P_n(-1) = -1$

Sigmoid

Catenary of revolution

 $\sqrt{0.98} c$

D)

None of these

The path followed by a particle in sliding from one point to another in the absence

How fast does a rocket ship have to go for its length to be contracted to 0.99% of

C)

B)

D)

0.98c

Lagrangian for a charged particle in an electromagnetic field is -----

A) $\frac{1}{2}mv^2 + q\phi + \frac{q}{c}V \cdot A$ B) $\frac{1}{2}mv^2 + q\phi - \frac{q}{c}V \cdot A$

C) $\frac{1}{2}mv^2 - q\phi - \frac{q}{c}V \cdot A$ D) $\frac{1}{2}mv^2 - q\phi + \frac{q}{c}V \cdot A$

11.

12.

13.

14.

A)

C)

A)

C)

A)

19.	The n	nass of an elec	etron is	double	its rest	mass,	then the veloc	city of t	he electron is:
	A)	2 <i>c</i>	B)	$^{c}/_{2}$		C)	$\sqrt{\frac{3}{2}} c$	D)	$\frac{\sqrt{3}}{2}$ C
20.		naximum and ccentricity of					ellite are v_1 , a	nd v_2 re	espectively.
		$e = \frac{v_1}{v_2}$					$e = \frac{v_1 - v_2}{v_1 + v_2}$	D)	$e = \frac{v_1 + v_2}{v_1 - v_2}$
21.	dimen	roduct of generations of							has the
	A) C)	Linear mome Force	entum		B) D)	Angul Energ	ar momentum y	1	
22.	space	hase velocity, are related as							
	A)	$v_{ m p}v_{ m g}=c$	B)	$\frac{vp}{vg} = \gamma$	$\sqrt{2}$	C)	$v_{\rm p}v_{\rm g}=c^2$	D)	$v_{\rm p}v_{\rm g}=\sqrt{2}c^2$
23.		uration of rad 0	ar puls	e is 1µs	. The u	ncertai	nty in its ener	gy will	be
	A) C)	$1.05 \times 10^{-40} \text{J}$		·	D)	1.05 x 1.05x	10^{-21} J		
24.	The e	xpectation val			_				
		$\int \Psi(i\hbar \nabla)\Psi^*$	dτ		B)	$\int \frac{\hbar}{i} \nabla ($	$\Psi^*\Psi$) $d\tau$		
	C)	$\int \Psi^*(\frac{\hbar}{i}\nabla)\Psi d$	dτ		D)	∫Ψ*(iħ∇)Ψdτ		
25.		n of the follow	_	_	n functi			D)	G 2
	A)	Cosφ	B)	Sinφ		C)	$e^{i\phi}$	D)	$\cos^2 \varphi$
26.		tial wave anal		_	ession f	or total	l cross section	of scat	ttering is
	A) R)	$4\pi\sum_{l}k^{2}(2l)$ $\frac{4\pi}{k^{2}}\sum_{l}(2l+1)$	•	•					
		$\frac{k^2}{2\pi}\sum_{l}k^2 (2l)$			9)				
		$\frac{2\pi}{k^2} \sum_{l} (2l + 1)$							
27.		n of the follow							
	A)	$\left(\frac{d}{dx}\right)$	B)	$\left(\frac{d}{dx}\right)^2$		C)	$\left(\frac{d}{dx}\right)^3$	D)	$i\frac{d}{dx}$
28.	The v	alue of $\frac{1}{2}(L_{-}L_{-})$	$L_{+} + L_{-}$	L ₊)is -					
	A)	$L^2 - L_z^2$	B)	$L^2 + I$	$\frac{1}{2}$	C)	$L-L_z$	D)	L+L _z

29.	P. The existence of zero point energy for a linear harmonic oscillator is a consequence of									
		Pauli's exclu	usion pr	inciple			tainty principal theory of re			
30.		$ xpression for $ $ I_m f(0) = k $					$0) = 2\hbar i$			
		$I_m f(0) = \frac{k}{4\pi}$ $I_m f(0) = \frac{k}{4\pi}$								
31.	Which	n of the follow	wing is I	Fermi (Golden	rule?				
	A)	$\frac{2\pi}{\hbar} H_{\alpha\beta}(E) ^2$	$^{2}\rho_{\alpha}^{E}(E)$		B)	$\frac{2\pi}{\hbar^2} H_{\alpha} $	$_{\beta}(E)\big ^{2}\rho_{\alpha}^{E}(E)$			
	C)	$-\frac{2\pi}{\hbar} H_{\alpha\beta}^2(E) $	$ \rho_{\alpha}^{E}(E) ^{2}$	E)	D)	None	of these			
32.		is the follow $\sigma_x \sigma_y = \sigma_y \sigma_y$								$=-i\sigma_{x}\sigma_{y}$
33.		oot mean squa ratio	are spee	d, avera	age spe	ed and	most probabl	y speed	l for a g	gas are
		$\sqrt{2}:\frac{2\sqrt{2}}{\sqrt{\pi}}:\sqrt{2}$	3		B)	$\sqrt{3} : \frac{1}{3}$	$\frac{\sqrt{2}}{\pi}$: $2\sqrt{2}$			
	C)	$\sqrt{3}:\frac{2\sqrt{2}}{\pi}:3\sqrt{3}$	/2		D)	$\sqrt{3}:\frac{2}{\sqrt{3}}$	$\frac{\sqrt{2}}{\sqrt{\pi}}$: $\sqrt{2}$			
34.		tistical Physic er of accessib			_	rature [Γ of a system	is relate	ed to th	e total
	A)	$kT = \frac{\partial \Omega}{\partial E}$	B)	kT =	$\frac{\partial \log \Omega}{\partial E}$	C)	$\frac{1}{kT} = \frac{\partial \Omega}{\partial E}$	D)	$\frac{1}{kT} = \frac{\hat{o}}{}$	$\frac{\partial \log \Omega}{\partial E}$
35.	In cas A) B) C) D)	Decreases in Increases in	lower e lower e lower e	nergy l energy nergy l	evels at levels of evels at	t low te of low t t high t	of particles - emperatures a temperatures emperatures a temperatures	nd high and hig and low	h press pressu	ures. re
36.		of the follow $\partial S = \partial P$	_							
		$\left(\frac{\partial S}{\partial V}\right)_T = \left(\frac{\partial P}{\partial T}\right)_T$ $\left(\frac{\partial V}{\partial P}\right)_S = \left(\frac{\partial T}{\partial S}\right)_T$				01	$= -(\frac{\partial P}{\partial S})_V$ $= (\frac{\partial V}{\partial S})_P$			
	C)	$\left({\partial P}\right)_S = \left({\partial S}\right)_S$	JP		ש)	$(\frac{1}{\partial P})_S$	$-\left(\frac{1}{\partial S}\right)_{P}$			
37.	three	der a system of single particle sin Statistics a	e states.		-				•	
	A)	1	B)	3		C)	6	D)	9	

38.			0.10		-	-	neter is giver	ō /o	-
	A)	$A = \frac{h}{2m}$	$\frac{2}{4kT}\left(\frac{3N}{8\pi}\right)^{2/3}$		B)	ln A	$1 = \frac{h^2}{2mkT} \left(\frac{3N}{8\pi} \right)$	$\left(\frac{1}{V}\right)^{2/3}$	
	C)	$\ln A =$	$\frac{h^2}{2mk} \left(\frac{3NV}{8\pi}\right)^2$	2/3	D)	ln A	$1 = \frac{h^3}{2m} \left(\frac{3NV}{8\pi} \right)$	2/3	
39.	energ		hen the pro	•					of electrons per te temperature
				0		C)	Infinity	D)	$\frac{1}{2}$
40.	In the	e distribut	ion of energ	gy rad	iated by	a blac	k body, Plan	ck's for	mula reduces to

41. According to Wien's displacement law, the spectral distribution of energy emitted at a given temperature has a definite ----.

D)

Shorter wavelength region No relation between the two

A) Minimum and this minimum shifts to longer wavelengths as the temperature decreases

B) Minimum and this minimum shifts to shorter wavelengths as the temperature increases

C) Maximum and this maximum shifts to shorter wavelengths as the temperature decreases

D) Maximum and this maximum shifts to shorter wavelengths as the temperature increases

42. $\nabla^2 V = -4\pi \rho \text{ is } ----$

C)

the Rayleigh Jeans Law for -----

Both A and B

Higher wavelength region B)

A) Maxwell's equation B) Poisson's equation

C) Laplace's equation D) None of these

43. Magnetic vector potential is related to electrostatic potential V through the relation:

A) $\operatorname{div} \vec{A} + \mu_0 \varepsilon_0 \frac{\partial V}{\partial t} = 0$ B) $\operatorname{curl} A + \mu_0 \varepsilon_0 \frac{\partial V}{\partial t} = 0$

C) $\operatorname{div} \vec{A} - \mu_0 \varepsilon_0 \frac{\partial V}{\partial t} = 0$ D) $\operatorname{curl} A - \mu_0 \varepsilon_0 \frac{\partial V}{\partial t} = 0$

44. An electromagnetic wave passing through vacuum is described by $E = E_0 \sin(kx - \omega t)$ and $B = B_0 \sin(kx - \omega t)$, then ----

A) $E_0B_0 = \omega k$ B) $E_0k = B_0\omega$ C) $E_0\omega = B_0k$ D) None of these

45. The displacement current arises due to -----

A) Positive charges only

B) Negative charges only

C) Both positive and negative charges

46.	D)	,				orm val	uma aharaa d	longitu	a Tha
40.		id sphere of ra itude of electr							centre is
	A)	_			•			D)	$\frac{R^3\rho}{3\epsilon_0}$
47.		Curie law in ca							
	A)	$\chi_e = \frac{nP_0^2}{3\varepsilon_0 kT}$	B)	$\chi_e =$	$\frac{nP_0^2T}{3\varepsilon_0k}$	C)	$\chi_e = \frac{nkT}{3P_0^2 \varepsilon_0}$	D)	None of these
48.	A)	ield of magnet Irrotational Non-Solenoi			B)	Solene	oidal	nd Non-	-Solenoidal
49.		ath of a charg Parabolic							fields is a Circular
50.		oss-less transn lance will be -			Ü				he input
	A)	Inductive	B)	Infin	ite	C)	Capacitive	D)	Zero
51.	The fo	ollowing equa $\nabla^2 V = -\frac{\rho}{\varepsilon} + \epsilon$ $\nabla^2 A = J + \omega^2$	tions aι ω²μεV	re give	en for re 2.	tarded $\nabla^2 \mathbf{V} = \nabla^2 \mathbf{\Delta} = \nabla^2 \mathbf{\Delta}$	time-varying $\frac{\rho}{\varepsilon} + \omega^2 \mu \varepsilon V$ $\frac{\rho}{\varepsilon} - 1 + \omega^2 \mu \varepsilon \Delta$	fields:	
		se the correct							
	A)	1 & 4 only	B)	1 & 3	3 only	C)	2 & 3 only	D)	2 & 4 only
52.	This i	ona around the s due to the						gy or m	isty night.
	A) B)	Scattering of Dispersion o	_	-			-		
	C) D)	Diffraction properties of the					oplets		
53.	The to	otal energy of	the ele	ctron i	n the n ^{tl}	orbit o	of hydrogen a	tom is -	.2
	A)	$\frac{e^2}{4\pi\varepsilon_0 r_n}$	B)	$\frac{e^2}{8\pi\varepsilon_0 r_1}$	n	C)	$\frac{-e^2}{4\pi\varepsilon_0 r_n^2}$	D)	$\frac{-e^2}{8\pi\varepsilon_0 r_n}$
54.		atio of frequer er series is		the fin	rst line o	of the L	yman series a	and the	first line of
	A)			<u>27</u> 5		C)	<u>8</u> 27	D)	<u>5</u> 27
55.	For an	n atom in the s	state of	$^{2}D_{5/2}$	the Lan	de-g fa	ctor should be	e	
	A)	1.33	B)	1.75		C)	1.20	D)	0.98

56.	The h A) B) C) D)	hyperfine splitting of the spectral lines of an atom is due to The coupling between the spins and the orbital angular momenta of electrons The coupling between spins of two or more electrons The effect of external electromagnetic fields The coupling between the electron spin and the nuclear spin								
57.	Which	h one of the fo HCl	ollowin B)	ng moleo CO	cules d	loes no C)	t exhibit a ro	otational D)	spectrum? HBr	
58.		brations produ Spectra.	ucing a	change	e in the	electri	c dipole mo	ment of	molecule yi	eld
	A)	Infrared	B)	Ultrav	violet	C)	Raman	D)	X-ray	
59.		rery strong ma is called Zeeman Paschen-Bac	Effect		ne split B) D)	ting of Rama Stark	ın	ne is nor	mal. This	
60.		election rule o	of the ti	ranslatio	onal en	ergy le	evels in the F	Raman S _j	pectrum is 2	ΔJ
	A)	<u>±</u> 1	B)	<u>±</u> 2		C)	+1	D)	+2	
61.	Popul A) B) C) D)	lation inversion Heavily dopon Reverse biase Lightly dopin Introducing	ing p & sing the ng p &	t n region negion negion negion negion	ons on ons			eved by		
62.	The -A)C)	experiment Double Slit Franck and I		ms the e	existen B) D)	Stern	pace quantis and Gerlack elson and M	ı		
63.		lependence of erature <i>T</i> is given			dened l	line wic	dth of a laser	r transitio	on on	
	A)	$T^{1/2}$	B)	$T^{-1/2}$		C)	T^2	D)	T	
64.		rmal neutron l on is proportio	_	speed 1	ı impir	nches o	n a ²³⁵ U nuc	leus. The	e reaction c	ross
	A)	\sqrt{v}	B)	$v^{-1/2}$		C)	v	D)	$v^{\text{-1}}$	
65.	Whic A)	h of the follow $k^0 \rightarrow + +$		ecay pro	ocess is B)		ed? e ⁻ +γ			
	C)	$n{\rightarrow} p{+}\pi^-$			D)	$n \rightarrow \pi$	$^{+}+\pi^{-}$			

66.	From meson field theory the potential energy of interaction between two nucleons is proportional to												
	A)	$\frac{e^{-\mu r}}{r}$	B)	$\frac{e^{-\mu r}}{r^2}$	C)	$\frac{e^{-\mu r^2}}{r^2}$	D)	$\frac{e^{-\mu r^2}}{r}$					
67.	Acco A) B) C) D)	Magic numb Nucleons in Nucleons in	oers exi teract w a nucle	st vith their neard eus interact wi	est neig th a ge		ld	g is incorrect ?					
68.	The rA)	nuclear reactio α-decay	on 4 ₁ H ¹ - B)	\rightarrow_2 He ⁴ + 2 ₋₁ e ⁰ β-decay	+ 26 N C)	MeV represent Fusion	s D)	Fission					
69.		sponding to m Proportional	omenta to pdp	a between p ar	nd p+dj Propo	ortional to p ² d		electrons					
70.	A)	B) Heating of the coilsC) Loss of energy due to air resistance											
71.	The (A)	quark structure uuu		is udu	C)	SSS	D)	ddd					
72.	What	is the mass 'n	n' of a	particle, if its	rest ma	ass ' m_0 ' move	es with	a velocity of $^{c}/\sqrt{2}$?					
	A)	m_0	B)		C)	$0.707~m_0$		v -					
73.		otal energy of l of the meson		ing meson is e	exactly	twice its rest of	energy.	Find the					
	A)	$v = \frac{c}{\sqrt{2}}$	B)	$v = \sqrt{\frac{3}{2}} c$	C)	$v=\frac{\sqrt{3}}{2}c$	D)	$v = \frac{c}{2}$					
74.	differ	rent from 90°?	•			gths (a≠b≠c) a							
	A)	Hexagonal	B)	Triclinic	C)	Tetragonal	D)	Monoclinic					
75.	NaCl A) C)	crystals appears Schottky des Interstitials		bw due to B) D)		kel defect atres							

76.	The p	oacking fraction 0.35	on of fc B)	c structure is 0.68	C)	0.32	D)	0.74
77.		Fermi energy eximately		netal is 1.4 eV	V, the Fe	ermi temperat	ture of the	he metal is
	A)	$1.6\times10^{3}\mathrm{K}$		$1.6 \times 10^4 \text{K}$	C)	$1.6 \times 10^{5} \text{K}$	D)	$1.6 \times 10^6 \text{K}$
78.	$\frac{\varepsilon_r - 1}{\varepsilon_r + 2}$ A) C)	$= \frac{N\alpha}{3\varepsilon_0} \text{ is}$ Lorentz rela Einstein rela		B) D)		sius-Mossotti e of these	relation	1
79.	separ	e AC Josephso ated by a thin The angular fro	insulat	ing layer and	l kept at	an electrical	potentia	al difference
	A)	$\frac{e\Delta V}{h}$	B)	$\frac{e\Delta V}{\pi h}$	C)	<u>2e∆</u> h	D)	$\frac{2e\Delta V}{\pi h}$
80.	The s A) B) C) D)	Specific hea Water is a ba Temperature	t of wa ad cond e of wa	ter is high ductor of hea	t in that o	f the room	a closed	l room because
81.	The 6 A) B) C) D)	Can never be Can never be Can be posit Depends on	e positi e negat tive or 1	ve ive negative	semicon	ductor		
82.	Temp A) C)	perature coeffi Zero Negative	cient o	f resistance i B) D)	Posit			
83.		nsistor connect the current gas 0.95		a common ba	confi	iguration has	$I_E = 2m$ $D)$	A = 20 A = 0.99
84.	JFET A) B) C) D)	Drain currer	is cont it is cont is cont	trolled by dra ntrolled by ga trolled by so	ain volta ate volta urce vol	ige ige tage		
85.		amplifier, e input signal. Class A	the col	llector currer	nt flows C)	only during t Class C	he posit D)	ive half cycles Class AB

86.	RC os	scillators are u Audio	-	used in Radio		requenc C)	y range. Video	D)	Ultrahigh
87.	For a A) C)	*	output	of an i		A tria	ngular wavefo ke	orm	
88.	The so A)	emiconductor SiC						D)	Si
89.	The mA)	nain purpose o Used as prim Temporary d	ary poi	inter	B)	Storin	e microproces g instructions ion of periphe		85 is
90.	How 1 A)	many bits of ti 2 bits		used in 4 bits		microco C)	ontroller? 8 bits	D)	16bits
91.	If \vec{r} =	$=x\hat{\imath}+y\hat{\jmath}+z$	\hat{k} then	diverge	ence of	\vec{r} is:			
	A)	0			B)	$\sqrt{x^2}$	$y^2 + z^2$		
	C)	x + y +	z						
92.	then t	epresents Bess he solution of	above	equatio	n at x	= 0 is:	cere cere	$(x^2 - D)$	$1)y = 0,$ ∞
93.	Gauss	Both original	An incr Issian fi Issian fi I Gauss	rease in unction unction ian fun	the va wider narrov	lue of ' and Fo wer and nd Fou	a' makes	m narro form w narrov	ower ider
94.	What	is the modulu	s of $\frac{2-}{2+}$	$\frac{i}{i}$?					
		$\sqrt{5}$		-		C)	1	D)	5
95.	If the	generalized co	oordina	te is an	gle, the	e corres	sponding gene	ralized	force has the
	dimen A)	sion of : Force	B)	Torqu	ie	C)	Energy	D)	Momentum
96.		nction F does ts Poisson's br iħ		_		_	-	constan D)	t of motion, $-\hbar$

97.	The transformation $q = PQ^2$, $p = \frac{1}{Q}$ is canonical. Then generating function is										
	giver				¥						
	A)	F = pq	B)	F = P)/q	C)	F = Pq	D)	$F = p^2 q$		
98.	hype	rajectory of a rbolic, then its	energy	is:			_				
	A)	zero	B)	Positiv	ve	C)	Negative	D)	Infinity		
99.	relate	displacement x ed to time t whacement of the	here $t =$	$=\sqrt{x}+3$	3. (t a	nd x are	e in second ar		a force is er). What is the		
	A)	18m	B)	12m		C)	6m	D)	0m		
100.		optical theorem ard direction. I						tering a	mplitude in		
	A)	$\frac{4\pi}{k^2} \sum_{i=0}^{\infty} (2l +$	- 1)f(())	B)	$\frac{1}{k^2} \sum_{i=1}^{\infty} \sum_{i=1$	$\int_{0}^{\infty} (2l+1)f(0)$))			
	C)	$\frac{4\pi}{k}I_mf(0)$			D)	$\frac{4\pi}{k}R_e$	f(0)				
101.		particle in cul sponding to qu				_	generate energ	gy state:	S		
	A)	3	B)	6		C)	8	D)	9		
102.	A) B)	Cond order pha Latent heat Change in v Discontinuo Irreversible	olume us char	nge in sp	pecific	heat					
103.	The 6 A) C)	electric field in Equal to E_0 Greater than		inside a	a diele B) D)	_	there placed in the E_0	n a unif	Form electric E_0 is:		
104.	veloc	particle is allowed by \vec{v} is antiparticle on the α particle $2evBL$	arallel t	o the ma	agnetic	c field h	\vec{B} . The work \vec{Q}				
105.		magnetic vectoriated magnetic $\hat{i} - 2\hat{j}$	_		s:	n is giv	en by $\vec{A} = z\hat{\imath}$ zero	$-2x\hat{j}$ D)	. The $-\hat{\imath} + 2\hat{\jmath}$		

106.	The p A)	otential energy Half of	y of an B)			_	atom is it Equal to		ic energy. Thrice
107.	The dA)	oublet observed Screening of Pressure of is	K elec	tron		Spir	o n orbit interact ne above	ion of 1	the electron
108.	Pure r A) C)	otational spec Two equally Many equally	spaced	lines	B)	Three	equally space	d lines	
109.	What A)		gth of B)	photon 1000	emitte A ⁰	d by hy C)		in a tra D)	nsition $2s \rightarrow 1s$ is: 2436 A^0
110.	Angul A) C)	lar momentum Stern-Gerlack Photo electric	h	ization	was est B) D)	Frank	ed by expe x Hertz son-Germer	eriment	
111.	Q = 1 order		R = 10 is:		. The a		ment of above		$P = 10cm^{-1}$, es in the increasing R,Q,P
112.	In a n		a nucl	eus rup	tures in	nto two	•	,	eir velocities in $2^{1/3}$:1
113.	Which	n of the follow proton	ring par B)	rticle d		have a	a spin half? photon	D)	nutrino
114.	The th A) B) C) D)	Shell model Meson theory Quantum Ch Standard mod	y romod <u>y</u>			ı of qua	arks is:		
115.		nal neutron ha		eed v i	mpinge	es on a	U^{235} nucleus,	the rea	action cross-
	A)	v	B)	$\frac{1}{v}$		C)	v^2	D)	\sqrt{v}
116.		ensity of a fcc er N and lattic		_		terms o	of atomic mass	A, Av	agadro
	A)	$\frac{A}{Na^3}$	B)	$\frac{2A}{Na^3}$	~-	C)	$\frac{4A}{Na^3}$	D)	$\frac{A}{Na^2}$

117.	The number of Bravias lattices that can exist is:							
	A)	17	B)	14	C)	32	D)	23
118.	 The Hall coefficient of a metal is low. It means that: A) The charge carrier density in that metal is high B) The charge carrier density in that metal is low C) The Hall field produced in that metal is high D) The conductivity of that metal is zero 							
119.	Which A) C)	h of the follow Neutron sca Electron sca	ttering	В) Prot	for obtain con scatter ne of the al	ing	spectra?
120.	For a A)	diamond stru $\frac{\pi\sqrt{3}}{8}$		packing $\frac{\pi\sqrt{3}}{4}$	fraction is	S: $\frac{\pi\sqrt{3}}{2}$	D)	$\frac{\pi\sqrt{3}}{16}$