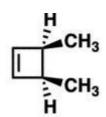
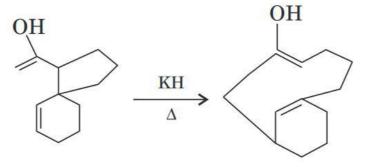
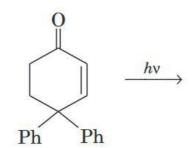
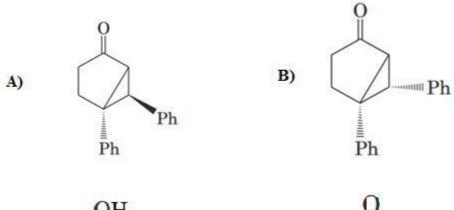

120 MINUTES

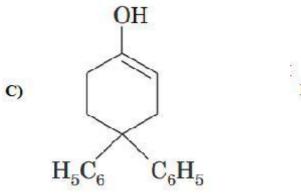

1. The following reaction is an example of ----- reaction.

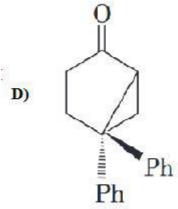

- A) Stereospecific
- B) Diastereoselective
- C) Enatioselective
- D) Regioelective
- 2. The following reaction is an example of ----- reaction.

- A) Group transfer
- B) Sigmatropic
- C) Electocyclic
- D) Cycloaddition
- 3. When the molecule given below undergoes thermal electrocyclic ring opening the product formed will be:

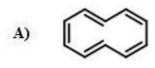


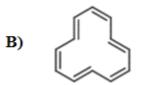

- A) (2Z,4E)-2,4-hexadiene
- B) (2E,4E)-2,4-hexadiene
- C) (2Z,4Z)-2,4-hexadiene
- D) Cannot predict stereochemistry
- 4. The transformation described below involves ----- Sigmatropic rearrangement.

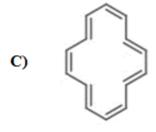


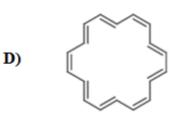

- A) [1,5]
- B) [2,3]
- C) [3,3]
- D) [1,7]

5. Identify the major product of the reaction given below:

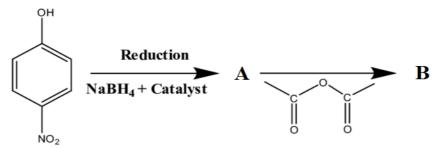








6. Which of the following molecule is non-aromatic in nature?



7.	Whice medi		wing co	ompoun	d can i	release a proton easily in a strong basic						
	A)			B)	Cyclopentadiene							
	C)	Cycloheptat			D)	•	octatetraene					
8.		mechanism of ron deficient		nann rea	ırrange	ment ir	nvolves s	hift of a	alkyl group onto			
		1,2; nitrog			B)	1,2; carbon						
		1,4 ; carbon			-		oxygen					
9.	The A)	ion which pos Ca ²⁺	sess the		t coag			nst ferr D)	ic hydroxide sol: CO_3^{2-}			
10.	elect	metal present i	ocess i	s:	ving c							
	A)	Fe	B)	Cu		C)	Mn	D)	Co			
11.	Ce ⁴⁺ A) C)	ion shows ora d-d Charge trans		lour due	e to B) D)	f-f	ion. allowed					
12.	For tA)	he complex [C	CoF ₆] ³⁻ , B)	the cry	stal fie	eld stabi C)	lization ener 0.6	gy in te D)	rms of Δ_0 is: 0.4			
13.		e complexometric indicator used for the determination of calcium in presence of gnesium and other metals is reagent. Pfitzer-Moffat B) Patton and Reeder Barfoed's D) Wij's										
14.	The A)	material used i	in ion e B)	_	e and i		ar sieves: Permutit	D)	Misch metal			
15.	The A)	metalloprotein Transferrin			electror globin		r is: Cytochrom	e D)	Chlorophyll			
16.	Which A)	, · · · · · · · · · · · · · · · · · · ·										
17.	The A)	formula of ino $B_3N_3H_6$	organic B)	benzen H ₃ B ₃ 0		C)	$(PNX_2)_n$	D)	S_4N_4			
18.		temperature at			rage sp	peed of	gas molecule	es becoi	mes double that of			
	A)	- ·	B)		\mathbf{C}	C)	1200°C	D)	600°C			

19. Identify the product B of the following reaction:

- A) Paracetamol
- **Aspirin** B)
- C) Phenobarbital
- D) Phenacetin
- When 340 g of ammonia is decomposed at STP, the volume of nitrogen produced in 20. litres is:
 - A) 140
- B) 170
- C) 448
- D) 224
- Consider that a process is both endothermic and spontaneous, then the correct 21. statement is:
 - $\Delta G > 0$ A)
- $\Delta S > 0$ B)
- $\Delta S < 0$ C)
- $\Delta H = 0$ D)
- Bond order predicted for F_2^{2+} according to molecular orbital theory is: 22.
- B)
- C)
- 1.5
- Which of the following molecule possess sp^3d^2 hybridisation? 23.
 - A) IF
- B) IF_3
- C) IF_7
- D) IF_5

The product X in the following reaction is: 24.

 $XeF_6+SiO_2 \rightarrow X+SiF_4$

- XeOF₂ A)
- XeOF₄ B)
- C) XeO₃
- D) XeO₂F₂
- The magnetic moment of $[Co(H_2O)_6]^{2+}$ is 4.0 BM. The electronic configuration of 25. the complex is:
 - $t_{2a}^{5} e_{a}^{2}$ A)
- $t_{2a}^{6} e_{a}^{1}$ B)
- $t_{2a}^{5} e_{a}^{1}$ C)
- D) $t_{2a}^{4} e_{a}^{3}$
- 26. Maximum oxidation state shown by the element osmium is:
 - A)
- B) +5
- C)
- D) +7
- The species which does **not** show disproportionation reaction is: 27.
 - A) ClO_2
- ClO_3 B)
- C) ClO_4
- D) ClO
- Which of the following complex is paramagnetic in nature? 28.
 - $[V(CO)_6]$
- $[Mo(CO)_6]$ B)
- $[Fe(CO)_6]$ C)
- D) $[Ni(CO)_6]$
- The metal carbonyl which does not obey 18- electron rule is: 29.
 - $[Co(CO)_4]$ A)
- B)
- $[Mn(CO)_5Cl]$ C) $[Mn_2(CO)_{18}]$ D)
- $[Mn(CO)_5CH_3]$

30. Product of the following reaction is:

- A) 2-Cyclohexene-1-one
- C) Cyclohexane
- B) Cyclohexene
- D) Cyclohexan-1,2-dione

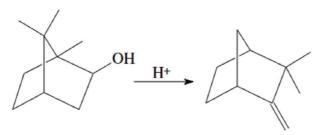
31.

The reagent used for the above conversion is:

A) OsO₄/ether B) DCC/DMAP C) CHCl₃/KOH D) KMnO₄/H⁺

32.

Identify the product of the above reaction.

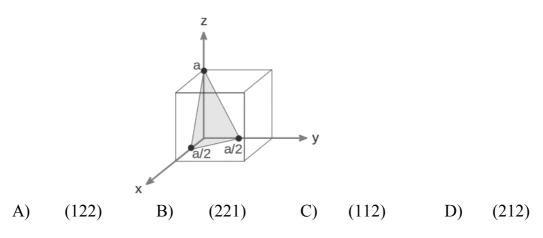

- 33. Methyl magnesium chloride on treatment with carbon dioxide followed by acid workup will yield:
 - A) Methanol
- B) Acetic acid C)
- C) Ethanol
- D) Acetaldehyde

34.

The resultant product of the reaction is:

35. Pinacol rearrangement of the following compound will produce:

36.



The above reaction is best described as ---- rearrangement.

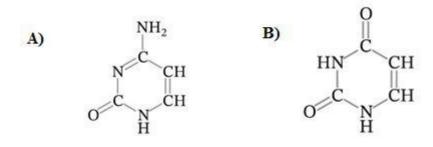
- A) Wagner-Meerwin
- B) Fries

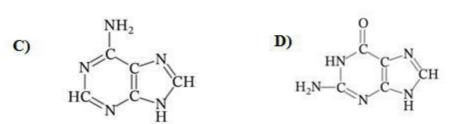
C) Cope

- D) Claisen
- 37. The diagram shows a highlighted plane intersecting main crystallographic axes of the solid. The Miller indices of the plane is:

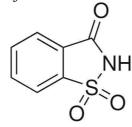
38. Assertion (A): The hydrolysis of ethyl acetate using dilute hydrochloric acid is a pseudo first order reaction.

Reason (R): HCl act as the catalyst for the ester hydrolysis.

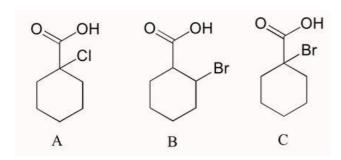

- A) Both (A) and (R) are correct and (R) is the correct explanation of (A)
- B) Both (A) and (R) are correct but (R) is the not the correct explanation of (A)
- C) (A) is correct but (R) is wrong
- D) (A) is wrong but (R) is correct
- 39. Identify the polyester among the polymers given below:
 - A) Dacron
- B) Teflon
- C) Nylon 6,6
- D) Bakelite
- 40. Which of the following amino acid contain heterocyclic ring?
 - A) Tyrosine


B) Aspartic acid

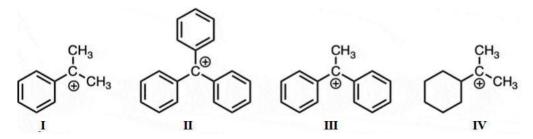
C) Glutamine


D) Histidine

41. One of the following nitrogenous base is present only in RNA which is:



The major use of the molecule shown below is: 42.

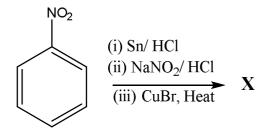


- A) Food preservative
- B) Analgesic
- Artificial sweetener C)
- Antacid D)
- Biodegradable polymer Nylon-2,6 is synthesized from: 43.
 - Glycine and aminocaproic acid A)
 - Glycine and adipic acid B)
 - Alanine and adipic acid C)
 - Hexamethylenediamine and alanine D)
- Arrange the compounds shown below based on the acidic strength, from most acidic 44. to least acidic:

- A > C > BA)
- A > B > CB)
- C)
 - B > C > A D) C > B > A

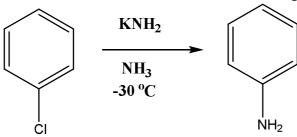
45. Rank the following ionic species based on their stability.

- A) IV > III > I > II
- B) II > III > IV > I
- C) III > II > IV
- $D) \qquad II > III > IV$
- 46. In rotational spectroscopy, If B is the rotational constant and J is the rotational quantum number, the energy difference between adjacent rotational energy levels in rigid rotor approximation:
 - A) Increases with increase in J value
 - B) Decreases with increase in J value
 - C) Is equal to 2B
 - D) Depends on the temperature
- 47. TiO₂ crystallises with unit cell dimensions $a = b \neq c$ and crystal angles $\alpha = \beta = \gamma = 90^{\circ}$ and then it belongs to ----crystal system.
 - A) Orthorhombic
- B) Tetragonal
- C) Monoclinic D)
- D) Trigonal
- 48. The volatilization gravimetric technique where the parameter dH/dt or heat flow is plotted against T is:
 - A) Differential thermal analysis
 - B) Thermogravimetric analysis
 - C) Differential scanning calorimetry
 - D) Derivative thermogravimetry
- 49. The ground state term symbol 5D_4 belongs to:
 - A) Mn^{2+}
- B) Co^{3+}
- $C) V^3$
- D) Fe²⁺
- 50. Which of the following compound shows only four peaks in the Carbon-13 NMR spectrum?
 - A) 2-methylpropane
- B) Pentan-2-one
- C) Pentan-3-one
- D) Butanone
- 51. The lanthanide contraction is due to ---- electrons.
 - A) Perfect shielding of 3d
- B) Perfect shielding of 4f
- C) Large atomic radius of
- D) Poor shielding effect of 4f
- 52. In nephelometry, determination of amount of turbidity do not depends upon:
 - A) Concentration
- B) Transmission and scattering of light


C) Viscosity

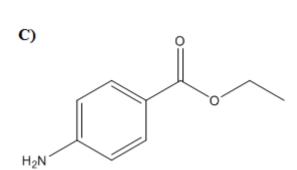
D) Size distribution of particles

53.	The an A)	nalytical techr STEM					n of photoeled XPS	etric eff D)	ect is:			
54.	If kinetic energy (E) and mass (m) of the particle is given, its de Broglie wavele can be calculated using the equation:											
	A)	$\lambda = \frac{h}{\sqrt{mE}}$	B)	$\lambda = \frac{1}{\sqrt{2}}$	h 2mE	C)	$\lambda = \frac{h^2}{\sqrt{mE}}$	D)	$\lambda = \frac{h}{\sqrt{mE^2}}$			
55.	Which A)	n of the follow HI	_			_	ce rotational CH ₃ Cl	-				
56.	A) decreases, decreases					ith oxygen, the bond order and hence b _{str} of O ₂ -B) increases, increases D) increases, decreases						
57.	then the	der 'n' as a qu he energy of p rtional to:	article	confine	ed in ar	n one d	imensional b		ength 1 is			
	A)	11	D)	111		C)	15	D)	C			
58.	follow	mmett plot, the vs the order: -CN > -OCH							n benzoic acid			
	C)	$-OCH_3 > -CN$	I > -NF	\mathbf{I}_2	D)	-NH ₂ >	> -CN > -OCI	H_3				
59.	The o	xidation numb	per of s	ulphur	in H ₂ S0	O ₃ , H ₂ S	S ₂ O ₄ , H ₂ SO ₄ ,	$H_2S_2O_6$	respectively are:			
		+3, +5, +4, +	-5		B)	+5, +3	3, +4, +4 1, +4, +5					
	C)	+4, +3, +4, +	-5		D)	+3, +4	1, +4, +5					
60.		elles from ion		ectants	can be	formed	only above a	certain	temperature			
	A)	Critical	B)	Kraft		C)	Boyle	D)	Inversion			
61.	Match the spectroscopic technique radiation in List II. List I a. Mossbauer spectroscopy b. Electronic spectroscopy c. ESR spectroscopy d. NMR spectroscopy					List II 1. Radio wave 2. UV-Visible 3. Gamma ray 4. Microwave						
		a-3, b-2, c-1, a-1, b-2, c-3,	d-4		B) D)	a-2, b	-1, c-4, d-3 -2, c-4, d-1					

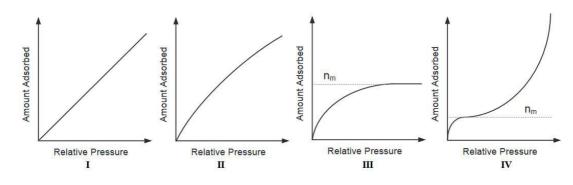

- 62. Michaelis constants for an enzyme catalyzed reaction at 25°C are given as $K_3 = 0.20 \times 10^3 \text{ s}^{\text{-1}}, \ 0.60 \times 10^3 \text{ s}^{\text{-1}}, \ K_s = 7.0 \times 10^{\text{-6}} \text{mol L}^{\text{-1}}, \ K_p = 100 \times 10^{\text{-6}} \text{mol L}^{\text{-1}}$. Find the equilibrium constant $[P]_{eq} / [S]_{eq}$.
 - A) 2.2
- B) 4.8
- C) 6.0
- D) 8.6
- 63. Hydrolysis of phosphorus trichloride will produce:
 - A) Hypophosporous acid
- B) Phosphorous acid
- C) Orthophosphoric acid
- D) Peroxophosphoric acid

64.

The product X of the above reaction is:


- A) p-chloronitrobenzene
- B) o-bromonitrobenzene
- C) o-bromoaniline
- D) Bromobenzene
- 65. In degradation of peptides, a reaction of phenylisothiocyanate with the free amino group of the N-terminal residue is performed where one aminoacid is removed at a time and identified using electrophoresis or chromatography as---- derivative.
 - A) Phenylthiocarbamoyl
- B) Phenylthiohydantoin-amino acid
- C) Thiazolinone
- D) Thiazolone
- 66. The maximum work or the free energy obtained from a Daniel cell is: (Given that ${\rm E^o_{Zn}}^{2+}_{/Zn}$ =-0.76 V, ${\rm E^o_{Cu}}^{2+}_{/Cu}$ =+0.34 V)
 - A) 106150 J
- B) 212300 J
- C) -106150 J
- D) -212300 J
- 67. The intermediate involved in the following conversion is:

- A) Carbocation B)
- Carbanion
- C) Free radical D)
 - D) Benzyne


- Which of the following alkali metal halide has the highest lattice energy? 68.
 - A) NaC1
- LiCl B)
- C) **KC1**
- D) CsCl
- 69. ¹H NMR chemical shift data for an organic compound X is given. X (ppm) 7.9 (d, 2H), 6.6 (d,2H), 4.3 (q, 2H), 4.0 (s, 2H), 1.4 (t, 3H). The structure of the compound X is:

B) NH_2

D) OH H_2N

Choose the correct description of Freundlich adsorption isotherm from the diagrams 70. given below:

- I and II only A)
- II only B)
- III and IV only C)
- IV only D)
- 71. Which of the following is **not** square planar complex?
 - A)
- $[Ni(CN)_4]^{2-}$ B) $[PdCl_4]^{2-}$
- C) $\left[\text{CdCl}_4 \right]^{2-}$
- D) $[Cu(NH_3)_4]^{2+}$

72. The product of the following reaction is:

73. The below transformation is called:

$$R \longrightarrow \begin{array}{c} 2 \text{ eq.} & 2.5 \text{ eq.} \\ TiCl_4 & \\ DCM & \\ \end{array} \qquad R \longrightarrow \begin{array}{c} R' \\ O \end{array}$$

- A) Schmidt rearrangement
- B) Claisen condensation
- C) Perkin reaction
- D) Wittig reaction

74. The reagent used for the following transformation is:

- A) Grignard reagent
- B) DIBAL
- C) Lithium aluminium hydride
- D) Lithium metal in liquid ammonia

75. Two centred B – B bonds in boranes is represented by which of the following styx:									following in
	A)	S	B)	t		C)	y	D)	X
76.	Choo	se the odd wit	th regai	rd to hy	bridisa	ition of	the central	atom from	m among the
	A)	NO_3^-	B)	CO_3^{2-}	-	C)	PO_4^{3-}	D)	SO_3
77.	The rA)	number of radi	ial node B)	es in 4f 2	orbita	ls is: C)	1	D)	0
78.	Giver 1. 2. 3. 4.		ave a hi orm oxo s are ra	igher tent o-cation dioactive	ndency s while we while	to form lantha le none	n complexe nides do no of the lanth	es. ot nanides an	re radioactive d actinides is +4
	A) C)	1 only 1 and 2only					4 only and 3 only		
79.	The C	CFSE for [Co	$[Cl_4]^{2-}$, [[CoBr ₄]	^{2–} , [Co	$[I_4]^{2-}$ an	d [Co(NCS)) ₄] ^{2–} follo	ws the order:
	A)	[Co(NCS) ₄]	²⁻ > [Cc	oCl ₄] ²⁻ >	· [CoB	$[r_4]^{2-} > [$	$CoI_4]^{2-}$		
	B)	$[\text{CoI}_4]^{2^-} > [\text{CoI}_4]^{2^-}$	$[coBr_4]^2$	> [CoC	$[2l_4]^{2-}>$	[Co(N	$(CS)_4]^{2-}$		
	C)	[Co(NCS) ₄]	²⁻ > [Co	$[I_4]^{2-} > [I_4]^{2-}$	CoBr ₄] ²⁻ > [C	$oCl_4]^{2-}$		
	D)	$[CoCl_4]^{2-} > [$	[CoBr ₄]] ²⁻ > [Co	$[0]_4]^{2-} >$	· [Co(N	$(CS)_4]^{2-}$		
80.	Identi A) B) C) D)	ify the wrongl [Zn(OH) ₄] ^{2–} Na ₃ [Cu(CN) [Ni(NH ₃) ₄ C) [Cd(H ₂ O) ₄]() ₄] ₂ O ₄]	- - -	Tetra Sodiu Tetra	hydrox ım tetra ammin	on Compour ozincate(II) acyanocupra eoxalatonic dmium(II) 1) ion ate(I) kel(IV)):
81.	The I A) B) C) D)	UPAC name of trans-carbonyl trans-carbonyl cis-carbonyl	nylchlo lchlorol nylchlo	robis(tr bis(tripl robis(tr	ipheny henylp ipheny	lphosp hosphii lphosp	ne)iridium(l hine)iridiun	n(III)	
82.	Lowe A) C)	est pKa value : CH ₃ –CH ₂ –C C ₆ H ₅ COOH	COOH	cted for	which B) D)	$CH_2=$	following of CH-COOH	-	ds:

83. Match List I containing Metals with List II containing the in biological systems in which they are part of:

List I

List II

a. Fe

b. Mg

d. Cu

c. Co

2. Azurin

3. Chlorophyll 4. Myoglobin

1. Vitamin B₁₂

A) a-1, b-3, c-4, d-2 B)

a-2, b-1, c-3, d-4

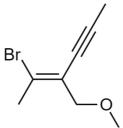
C) a-4, b-3, c-1, d-2

a-2, b-1, c-4, d-3 D)

- 84. With regard to the stability and reactivity of pyridine, which among the following statements are correct?
 - 1. It is a very unreactive aromatic imine
 - The lone pair of pyridine's nitrogen atom is not delocalized. 2.
 - It is less reactive than benzene in aromatic electrophilic substitution reactions 3.
 - Pyridines can undergo electrophilic substitution only if they are activated by 4. electron-donating substituents
 - 1, 2, 3 &4 A)

- 1, 2 & 3 only B)
- 1, 2 &4 only C)
- D) 3 & 4 only
- 85. Given below are few meta directing substituents. Which among them is the most deactivating?
 - -CN A)
- B) -COOH
- C) $-NO_2$
- D) $-SO_3H$
- 86. The product obtained in the reaction given below is:

A)


B)

C)

D)

- The major product obtained when benzene is treated with 1-chloropropane in 87. presence of AlCl₃.
 - n-propylbenzene A)
- B) Cumene
- 3-phenylpropene C)
- D) Mesitylene

88. The IUPAC name of:

- A) (E)-2-Bromo-3-(methoxymethyl)hex-2-en-4-yne
- B) (E)-5-Bromo-4-(methoxymethyl)hex-4-en-2-yne
- C) (Z)-2-Bromo-3-(methoxymethyl)hex-2-en-4-yne
- D) (Z)-5-Bromo-4-(methoxymethyl)hex-4-en-2-yne
- 89. An organic compound was obtained in an enantiomerically pure state. 28 mg of it was dissolved in 1 cm³ of ethanol, the solution was placed in a 10 cm long polarimeter cell at 20°C. An optical rotation a of –4.35° was measured with light of wavelength 589 nm. The specific rotation of the said compound is -----.
 - A) -15.535
- B) -155.35
- C) -483.58
- D) -91.51
- 90. Let P and Q represent cis and trans-1, 3-dimethylcyclohexane respectively. Which of the statements are TRUE of this pair?
 - 1. both methyl groups are either axial or equatorial in P
 - 2. one methyl in axial and the other is equatorial in P
 - 3. both methyl groups are either axial or equatorial in Q
 - 4. one methyl in axial and the other is equatorial in Q
 - A) 1 and 4 only B)
- 1 and 3 only C)
- 2 and 3 only D)
- 2 and 4 only
- 91. Given below are few processes usually depicted in a Jablonski diagram?
 - 1. Absorption

- 2. Fluorescence
- 3. Internal Conversion
- 4. Intersystem Crossing

- 5. Phosphorescence
- 6. Vibrational Relaxation

Which among these represent the correct nature of these processes?

- A) 1, 2& 5 are only radiative B)
- 2, 4 & 5 are only radiative
- C) 2 & 5 are only radiative
- 3, 4 &6 are only radiative
- 92. Match the vitamins in List I with their deficiency diseases List II.

List 1

List II

D)

a. Vitamin A

1. Beriberi

b. Vitamin B₁

2. Keratomalecia

c. Vitamin B₃

3. Megaloblastic anemia

d. Vitamin B₁₂

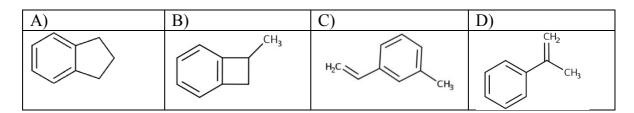
- 4. Pellagra
- A) a-4, b-2, c-3, d-1
- B) a-3, b-1, c-4, d-2
- C) a-2, b-4, c-1, d-3
- D) a-2, b-1, c-4, d-3

93.	1.	Electrical co	nductiv	vity	2.	ing are: Density 3. Viscosity			Volume		
	4. A)		B)				-	25 only	D)	2, 3&4 only	
	ŕ	•	Ź	-	3 Only	C)	1,2 0	x5 only	D)	2, 3 & 4 Omy	
94.	Fermi A) B) C) D)	ons are partic antisymmetr symmetric w antisymmetr symmetric w	ic wave vave fur ic wave	e functions e functions	and ha	ving int I having	tegral g inte	spin gral spir	1		
95.	procee	ed faster, which	ch facto	or in the	e above	equation	on sho	ould be	decreas		
	A)	A	B)	Ea		C)	Τ		D)	None of these	
96.		der the electro	n this ca	ase will	be the	highest	whe			I) AgCl Ag. The	
	A)	Li ⁺	B)	Na ⁺		C)	K ⁺		D)	H^{+}	
97.	1Å wo	ncertainty in tould be (h=6.6 5.275 ^ 10 ^{-2.6} 6.625 ^ 10 ^{-2.6}	525 ¹	0^{-34}kgr	ms^{-1})					its position is	
98.	Hydro A)	ogen bond is a HF	bsent in B)	n Water	<u>.</u>	C)	Liqu	id HCl	D)	Liquid NH ₃	
99.	The sl A) C)	hape of I ₃ ⁺ and Bent and Lin Seesaw shap	near		g to VSI B) D)		edral	are and T s	haped		
100.	Which A) C)	n among the fo Boron trifluc Allene – D _{2d}	oride – I	_	_	p-dich	lorob	ir is wro enzene - (stag.) –	$-D_{2h}$	natched?	
101.	The n A)	umber of C_4 a 0 & 4	nd S ₄ a: B)	xes pre 4 and		methan	ne is: 4 and	d 4	D) 0 a	and 0	
102.		h among the form C_{3v} , C_{2h} , D_{2h} , C_{2h}		g are a	belian ş	groups?	•				
		C _{2v} & D _{2h} on C _{2v} & C _{2h} on	•		B) D)	C _{3v} & C _{2v} , C		nly D _{2h} only			

 $A_{\text{g}},\,B_{\text{g}},\,A_{\text{u}}$ and B_{u} are the irreducible representations of $C_{2\text{h}}.$ The Raman active modes of trans-1,3-butadiene (Point group: C_{2h}) are:

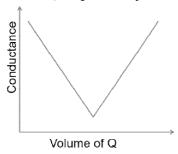
The character table is given below.

C_{2h}	Е	C_2	i	g_h		
A_{g}	1	1	1	1	R_z	x^{2}, y^{2}, z^{2}, xy
B_g	1	-1	1	-1	R_x , R_y	xz, yz
$A_{\rm u}$	1	1	-1	-1	\boldsymbol{z}	
B_{u}	1	-1	-1	1	<i>x</i> , <i>y</i>	


- A)

- A_g and B_g B) A_g and A_u C) A_u and B_g D) B_g and B_u
- The number of lines in the ESR spectrum of the radical anion of benzene and 104. naphthalene are respectively:
 - 7 and 25 A)
- 7 and 11 B)
- C) 6 and 22
- D) 6 and 27
- An organic compound having molecular formula C₉H₁₀ shows the following spectral 105. data:

¹H NMR (d, CDCl3): 2.1 (pentet, 2H), 2.9(t, 4H), 7.25(s, 4H)


¹³C NMR: 25.3(t), 32.8(t), 124.2 (d), 125.9 (d), 143.9(s)

The structure of the compound is:

- Mossbauer spectrum of sodium nitroprusside consists of: 106.
 - A) singlet
- B) doublet
- C) triplet
- multiplet D)
- The number of significant figures in 51771, 5.1771, 0.51771, 0.051771 are 107. respectively:
 - A) 1, 1, 1, 1
- 5, 5, 6, 6 B)
- C) 5, 5, 5 & 7
 - D) 5, 5, 5 & 5
- Water may be trapped in pockets during the precipitation of AgNO₃. This can be 108. termed as:
 - A) Occlusion
- B) Inclusion
- C) Digestion
- D) Adsorption
- The number of plates resulting in the chromatographic peak with retention time 52.5 109. mm and base peak width 10 mm is approximately:
 - A) 220
- 440 B)
- 1158 C)
- D) 2315

- 110. The nature of Stationary and Mobile Phases in reverse-phase partition chromatography is:
 - A) Stationary phase Polar; Mobile phase Polar
 - B) Stationary phase Non-polar; Mobile phase Non-polar
 - C) Stationary phase Polar; Mobile phase Non-polar
 - D) Stationary phase Non-polar; Mobile phase Polar
- 111. The conductometric titration curve of an acid **P** and an alkali **Q** is given below. Here P and Q respectively is most probably

- A) CH₃COOH and NaOH
- B) CH₃COOH and NH₄OH
- C) HCl and NaOH
- D) NaOH and CH₃COOH
- 112. The fast neutrons in Fast Neutron Activation Analysis possess energies in the range of ----.
 - A) 0 to 0.01 eV

B) 0.01 to 0.025 eV

C) 0.1 to 1.0 eV

- D) 0.5 20 MeV
- 113. 'Reduce derivatives' is a Green Chemistry Principle. It means:
 - A) Find new applications for parent compounds and do not go for new derivatives
 - B) Unnecessary derivatization (use of blocking groups, protection/ deprotection) should be minimized or avoided if possible
 - C) Chemical products should be designed so that at the end of their function they break down into harmless products that do not persist in the environment
 - D) It is better to prevent waste than to treat or clean up waste after it has been created
- 114. Which among the following can be considered to be green solvents?
 - A) Deep Eutectic mixtures
- B) Bio-based solvents
- C) Supercritical fluids
- D) All the above
- 115. Ozone layer is part of the:
 - A) Mesosphere
- B) Stratosphere
- C) Thermosphere
- D) Troposphere

116.	matched?											
	A)	Plexiglass	_	Methylmeth								
	B)	Nylon 6		Adipic acid								
	C)	Teflon	_	Tetrafluroetl	hene							
	D)	Orlon	-	Acrylonitrile								
117.	Which among the following is not a thermoplastic?											
	A)	PEEK		B)								
	C)	Polystyrene		D)	Melar	mine res	sin					
118.	The an	ntimicrobial d	rug Sal	varsan contai								
	A)	Se	B)	As	C)	Ag		D)	Au			
119.	Identify the correct statements related to IC ₅₀ ?											
	1. It indicates how much a drug is needed to inhibit a biological process by half											
	2. Dose that specifies the action of a drug in 12 hrs											
	3. Higher the IC ₅₀ value, Better the drug											
	4. IC_{50} is usually expressed in molar concentrations											
	A)	1 & 4 only	B)	2 & 3 only	C)	1 & 3	only	D)	3 & 4 only			
120.	Which	n among the fo	ollowin	g is not an es	sential	amino a	cid?					
	A)	Isoleucine	B)	Leucine	C)	Threor	nine	D)	Tyrosine			