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5. Find  so that the vector
^ ^^ 4 2F y x j zki


     is irrotational.

[A] 2

[B] 4

[C] –2

[D] –4

6. If  
1 1
2 0

A
 

   
, then A5 is

[A] 21 11
22 10
 
  

[B] 21 11
22 10
 
  

[C] 21 11
22 10

 
  

[D] 21 11
22 10
 
  

7. The characterization of an orthogonal
matrix A is

[A] 1A A I 

[B] 1AA I 

[C] TAA I

[D] 1 TA A I 

8. The function ( ) sin(1/ )f x x x  at
0x   is

[A] not continuous

[B] continuous and bounded

[C] continuous but unbounded

[D] bounded but not continuous

1. The value of double integral

2 2/ 2

0 2 2

a a y

y
y dxdy

x y




   is

[A]
22 2

4
a

 
  

[B]
22 2

2
a

 
  

[C]
22 2

4
a

 
  

[D]
22 2

2
a

 
  

2. Find a vector normal to the surface
2 22 3 6x y z    at the point (1,–1,1).

[A] ^ ^ ^4 6i j k 

[B] ^ ^ ^4 6i j k  

[C] ^ ^ ^4 6i j k 

[D] ^ ^ ^4 6i j k 

3. If ^ ^ ^3 4A x i y j zk   , then the
divergence of curl A is

[A] 8

[B] ^ ^ ^3 4i j k 

[C] 0


[D] 0

4. Find the maximum directional
derivative of the function

2 2( , ) lnf x y x y x y   at the point
(1,1).

[A] 0

[B] 1

[C] 13

[D] 8

https://applink.adda247.com/d/XhqWf9lSap


Applied Science ( Mathematics )/11-A 3 [ P.T.O.

9. The infimum and supremum for the
set 2{ : 2 5 0}D x R x x      are

[A] –6, 0

[B] 6, 
[C] –1·45, 3·45

[D] , 

10. Which of the following functions is
not entire?

[A] cos z

[B] sin z

[C] tan z

[D] ez

11. The family of conics represented by
the solution of differential equation
(4 3 1) (3 2 1) 0x y dx x y dy     

is

[A] circles

[B] parabolas

[C] hyperbolas

[D] ellipses

12. Let f (x) be a function defined on [a, b]
satisfying the following conditions :

1. f (x) is continuous on [a, b].

2. f (x) is differentiable on (a, b).

Then which of the following is true?

[A] There exists a number ( , )c a b

such that 
( ) ( )( ) f b f af c
b a



[B] There exists a number ( , )c a b

such that 
( ) ( )( ) f b f af c
b a



[C] There exists a number ( , )c a b
such that ( ) 0f c 

[D] There exists a number [ , ]c a b

such that 
( ) ( )( ) f b f cf c
b a



13. The function 1( ) sinf z z
z

  has

[A] pole of order 3 at z = 0
[B] removable singularity at z = 0
[C] essential singularity at z = 0
[D] None of the above

14. The orthogonal trajectories of the
family of curves 3 2

13y x y k   are

[A] 2 3
23xy x k  

[B] 2 2
23x y k 

[C] 2 2
23 2x y k 

[D] 2 3
2xy x k 

15. The maximum number of linearly
independent solutions of the
differential equation

4

4 0d y
dx

 , (0) 0y 

is

[A] 4
[B] 3
[C] 2
[D] 1

16. For the differential equation

 
2

2
2(1 ) 0d y dyx x x y

dxdx
   

[A] x = 1 is an ordinary point
[B] x = 1 is a regular singular point
[C] x = 1 is an irregular singular point
[D] None of the above

17. The number of surjective maps
from a set of 4 elements to a set of
3 elements is
[A] 64
[B] 69
[C] 36
[D] 81
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18. Let G be a non-Abelian group. Then
its order can be

[A] 25

[B] 55

[C] 35

[D] 49

19. Which one of the following is a ring
homomorphism 20 30:f Z Z ?

[A] 6x x

[B] 10x x

[C] 20x x

[D]  All of the above

20. A complete normed linear space is
called

[A] Banach space

[B] Hausdorff space

[C] Hilbert space

[D] metric space

21. Which of the following is true?
[A] ( , ) | |d x y x y   is not a metric

on R

[B] ( , ) | | 1d x y x y    is not a
metric on R

[C]
0 ,

( , )
1 ,

x y
d x y

x y


  
is not a

metric on R

[D] 1 2 1 2{( , ), ( , )}d x x y y = 1 2| |x x 

1 2| |y y  is not a metric on R 2

22. The global truncation error in the
classical Runge-Kutta fourth order
method, with step-size h is

[A] 0(h4)

[B] 0(h5)

[C] 0(h6)

[D] 0(h)

23. Gauss N-point integration formula
yields exact value of the integral if
the integrand is a polynomial of
degree less than, or equal to

[A] N – 1
[B] 2N – 1
[C] N
[D] 2N

24. The recursion relation to solve
xx e  using Newton-Raphson

method is

[A] 1
xn

nx e
 

[B] 1
xn

n nx x e
  

[C] 1 (1 )
1

xn
n n xn

ex x
e



  


[D]
2

1
(1 ) 1xn

n n
n xn

n

x e xx
x e



 
  




25. Let ( , ) ( )iwxu x t e v t  with (0) 1v   be

a solution to 
3

3
u u
t x

 
 

. Then ( , )u x t

is
[A]

2( )iw x w te 

[B]
2iwx w te 

[C]
2( )iw x w te 

[D]
3( )iw x te 

26. The second-order partial differential
equation

   
2 2 2

2 21 2 1u u uxy xy
x yx y

      
  

is

[A] hyperbolic in the second and
the fourth quadrants

[B] elliptic for all x, y

[C] hyperbolic in the second and
elliptic in the fourth quadrants

[D] hyperbolic in the first and the
third quadrants

https://applink.adda247.com/d/XhqWf9lSap


Applied Science ( Mathematics )/11-A 5 [ P.T.O.

27. The equation y xz ze e
x y
 
 

 gives the

general solution

[A] x xz ae be 

[B] x yz ae be 

[C] ( )x yz a e e b  

[D] ( )x yz a e e 

28. The following partial differential
equation

2

25z zxy
x y
 
 

is classified as

[A] elliptic

[B] parabolic

[C] hyperbolic

[D] None of the above

29. Solve the partial differential equation

3 2 0u ux y
x y
  
 

 using method of

separation of variables if
5/(0, ) 10 yu y e .

[A]
25/2 5/10 x ye e

[B] 5/2 5/10 x ye e

[C]
25/2 5/10 y xe e 

[D]
25/2 5/10 x ye e

30. Which of the following properties
of a topological space remains
preserved under taking arbitrary
subsets?

[A] Separability

[B] Connectedness

[C] Normality

[D] Regularity

31. How many distinct topologies are
there on the collection of real
numbers ?
[A] Exactly two
[B] Finitely—many may be more

than two
[C] Infinitely—many but there are

only countably many
[D] Uncountably many

32. Which of the following statements
is true with respect to the optimal
solution of an LP problem?
[A] Every LP problem has an

optimal solution
[B] Optimal solution of an LP

problem always occurs at an
extreme point

[C] At optimal solution, all
resources are completely used

[D] If an optimal solution exists,
there will always be at least
one at a corner

33. Consider the following pay-off matrix

1 1 2
2 2 2
 
  

If solved as game of pure
strategies, then the game value is
[A] –2
[B] 1
[C] 2
[D] –1

34. The partial differential equation
2 2 2

2
2 2 2
u u uc

t x y

         , is known as

[A] two-dimensional Laplace
equation

[B] two-dimensional wave equation
[C] one-dimensional heat flow

equation
[D] two-dimensional heat flow

equation

https://applink.adda247.com/d/XhqWf9lSap


Applied Science ( Mathematics )/11-A 6

35. Maximum value of 3 4Z x y 
subject to the constraints,
4 2 80;x y   2 5 180;x y   , 0x y  ,
is
[A] 147·5 at x = 2·5, y = 35

[B] 150 at x = 2·5, y = 36
[C] 200 at x = 20, y = 35
[D] 147·5 at x = 1·5, y = 35

36. The radius of convergence of power

series 
!

1

n

n
z




  is equal to

[A] 0
[B] 1
[C] 
[D] Any real value greater than 1

37. In the Laurent series expansion of
1( )

( 1)
f z

z z 
  valid for | 1| 1z   , the

coefficient of 3
1

( 1)z 
 is equal to

[A] 1

[B] –1
[C] 0

[D]
1
3!

38. The bilinear transformation w
which maps the points 2, i, –2 in
the z-plane onto the points 1, i, –1
in the w-plane is

[A]
2
6

z i
z



[B]
2
6

z i
z



[C]
3 2

6
z i

iz



[D]
3 2

6
z i

iz



39. The residue of 
3

2( )
1

zf z
z




 at

z    is

[A] –1

[B] 1

[C] 0

[D]
1
2

40. If the difference of interval is
unity, then the value of a for which

3(1 2 )(1 3 )(1 ) 36x x ax      , is

[A] –1

[B] 2

[C] 1

[D] –2

41. If the first forward difference of a
function f (x ) with spacing h is ex,
then the function f (x ) is

[A] ex + h

[B] eh – x

[C]
1

x

h
e

e 

[D]
1

x

h
e

e 

42. The relationship between forward
and backward difference operators
 and   is

[A] 1   

[B] 1   

[C]     

[D]     

https://applink.adda247.com/d/XhqWf9lSap
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43. Consider the linear system :

3
2 9

6

ax y z
x by z

x y cz

  
   
    

For what values of a, b, c Gauss-
Seidel method surely converges?

[A] 4, 6, 7a b c  

[B] 2, 6, 7a b c  

[C] 4, 3, 7a b c  

[D] 4, 6, 2a b c  

44. An infinite space with co-finite
topology is

[A] first countable space

[B] Hausdorff space

[C] regular space

[D] separable space

45. Under the usual topology on 2 ,
the complement of    is

[A] open but not connected

[B] connected but not open

[C] both open and connected

[D] neither open nor connected

46. Let X and Y be topological spaces
and :f X Y  be continuous and
bijective map. Then f is a
homeomorphism if

[A] X and Y are compact

[B] X is compact and Y is Hausdorff

[C] X and Y are Hausdorff

[D] Y is compact and X is Hausdorff

47. Which of the following pair of
functions is not a linearly
independent pair of solutions of

9 0y y  ?

[A] sin3 , sin3 cos3x x x

[B] 3sin3 cos3 , 3sin 4sinx x x x 

[C] sin3 , sin3 cos 3x x x

[D] 3sin3 cos3 , 3sin 4sinx x x x 

48. Which of the following is not an
integrating factor of  xdy – ydx = 0?

[A] 2
1
x

[B]
1
xy

[C]
x
y

[D] 2 2
1

x y

49. Linear combinations of solutions of
an ordinary differential equation
are also solutions if the differential
equation is

[A] linear and non-homogeneous

[B] non-linear and homogeneous

[C] linear and homogeneous

[D] non-linear and non-homogeneous

50. If 1( )y x  and 2( )y x  are solutions of
2 (1 ) 0y x y x y      such that

1(0) 0y  , 1(0) 1y    and 2(0) 1y  ,
2(0) 1y  , then the Wronskian

1 2( , )W y y  will be

[A] –1

[B] 2

[C] 0

[D] 1

https://applink.adda247.com/d/XhqWf9lSap
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51. The solution of partial differential

equation 0u ux y
x y
  
 

 is of the

form

[A] ( / )f y x
[B] ( )f x y

[C] ( )f x y

[D] ( )f xy

52. If f (x ) g (y) are arbitrary functions,
then the general solution of partial

differential equation 
2u u uu

x y x y
  
   

is

[A] ( , ) ( ) ( )u x y f x g y

[B] ( , ) ( ) ( )u x y f x y g x y   

[C] ( , ) ( ) ( )u x y f x g y 

[D] ( , ) ( ) ( )u x y yf x xg y 

53. If the nullity of the matrix
1 2

1 1 2
1 1 4

k 
   
  

 is 1, then the value of

 k is

[A] –1

[B] 0

[C] 1

[D] 2

54. If
1 1 1
2 2 3A
x y z

 
   
  

and 3{( , , ) : det( ) 0}V x y z R A   ,
then the dimension of V is
[A] 0
[B] 1
[C] 2
[D] 3

55. Let T be the linear transformation
on V such that 3 2 0T T T I    .
Then 1T   is

[A] 2I T T 

[B] 2I T T 

[C] 2I T T 

[D] 2I T T 

56. Which of the following matrices is
not diagonalizable?

[A]
1 1
1 2
 
 
 

[B] 1 1
0 1
 
 
 

[C]
1 0
3 2
 
 
 

[D]
0 1
1 0

 
 
 

57. Let {Sn} be the sequence defined by
the recursion relation 1 3n nS S  ,

1 1S  . Then, which of the following
is incorrect?

[A] Sn converges to 3

[B] Sn is monotonic increasing
sequence

[C] Sn is monotonic decreasing
sequence

[D] Sn is bounded sequence

58. The power series 
– 2

0
2 n nz




converges if

[A] | | 2z 

[B] | | 2z 

[C] | | 2z 

[D] | | 1z 

https://applink.adda247.com/d/XhqWf9lSap
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59. Let a, b and c be three distinct real
numbers. Then, the number of
distinct real roots of the equation

3 3 3( ) ( ) ( ) 0x a x b x c       is

[A] 1

[B] 2

[C] 3

[D] It depends on values of a, b and c

60. Let ( )
1

n

n
xf x

x



 and ( )

1

n

n
xg x

n x



for [0,1]x   and n  . Then on the
interval [0, l]

[A] both { fn } and { gn } converge
uniformly

[B] neither { fn } nor { gn } converges
uniformly

[C] { fn } converges uniformly but { gn }
does not converge uniformly

[D] { gn } converges uniformly but { fn }
does not converge uniformly

61. The maximum value of the function
f(x, y, z) = xyz subject to the
constraint xy + yz + zx = a, a > 0 is

[A] a3/2

[B] (a/3)3/2

[C] (2a/3)3/2

[D] (a/2)3/2

62. The volume common to the cylinders
2 2 2x y a   and 2 2 2x z a   is

[A] a3

[B] a3/3

[C] 16a3/3

[D] 4a3/3

63. Up to isomorphism, the number of
Abelian groups of order 105 is

[A] 2

[B] 5

[C] 7

[D] 49

64. In the group (Z, +), the subgroup
generated by 2 and 7 is

[A] Z

[B] 5Z

[C] 7Z

[D] 14Z

65. Let G be a group of order 49. Then

[A] G is Abelian

[B] G is non-Abelian

[C] G is cyclic

[D] centre of G has order 7

66. The number of 5-Sylow subgroup(s)
in a group of order 45 is

[A] 1

[B] 2

[C] 3

[D] 4

67. Let : ( [0,1], )T C      be defined

by 
1

0
( ) 2 ( )T f xf x dx   for all [0,1]f C .

Then ( )T f  is equal to

[A] 3/2

[B] 1

[C] 1/2

[D] 2

https://applink.adda247.com/d/XhqWf9lSap
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68. Which of the following is a unit
tangent vector to the surface x = t,

2y t , 3z t  at t = 1?

[A]
2 1 3, ,
14 14 14

 
 
 

[B]
1 2 3, ,
14 14 14

 
 
 

[C]
3 2 1, ,
14 14 14

 
  

[D]
1 3 2, ,
14 14 14

 
 
 

69. The area enclosed by the lemniscate
2 4cos2r    is equal to

[A] 1

[B] 2

[C] 3

[D] 4

70. Let 2 2:L R R  be the linear
transformation such that

(1,1) (1, 2), ( 1,1) (2,3)L L    . Then

( 1,5)L   is equal to

[A] (2,3)

[B] (2,–4)

[C] (6,9)

[D] (8,5)

71. Let 2 2P P  be the linear
transformation defined by

2( )L at bt c  =( 2 ) ( )a b t b c   . Then
which of the following elements of
P2 belongs to kerL ?

[A] 24 5 3t t 

[B] 24 2 2t t 

[C] 24 8 3t t 

[D] 26 3 5t t 

72. An eigenvalue and corresponding

eigenvector of the matrix 
5 4
1 2
 
 
 

,

respectively are
[A] 6, (1, 4)
[B] 1, (4, 4)
[C] 6, (–1, 1)
[D] 1, (1, –1)

73. Rank of the matrix 
1 2 3
1 4 2
2 6 5

 
 
 
  

 is

equal to
[A] 0
[B] 1
[C] 2
[D] 3

74. The series 
 

1

1 nn

n n





  is

[A] absolutely convergent
[B] conditionally convergent
[C] divergent
[D] oscillating

75. Let R be the set of real numbers
with usual metric. Then Q the
subset of rational numbers has
[A] no limit point
[B] only irrational points as limit

points
[C] every real number as a limit

point
[D] only integer as limit points

76. The relation |3 | |3 | 5z z   
represents

[A] a circle

[B] an ellipse

[C] a parabola

[D] a hyperbola
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77. The value of 
2

,
( 1)( 2)

z

C
e dz

z z   where

C is the circle :| | 3C z  , is

[A] 4 22 ( )i e e 

[B] 4 32 ( )i e e 

[C] 4 22 ( )i e e 

[D] 4 32 ( )i e e 

78. The function logw z  is

[A] analytic everywhere in the
complex plane

[B] analytic everywhere in the
complex plane except at origin

[C] analytic everywhere in the
complex plane except at z = 1

[D] analytic nowhere in the
complex plane

79. Under the transformation,
coshw z , the lines parallel to

x-axis in the z-plane are mapped
into

[A] ellipses in the w-plane

[B] hyperbolas in the w-plane

[C] circles in the w-plane

[D] parabolas in the w-plane

80. The particular integral of
2

2
2 2 4d y dy x x

dxdx
     is equal to

[A]
2

4
3
x x

[B]
2

4
4
x x

[C]
3

4
3
x x

[D]
3

4
x x

81. The solution of the differential

equation 
2

2
2 4 2 xd y dyx x y e

dxdx
    is

[A] 21
2 2

xcc ey
x x x

  

[B] 21
3 2

xcc ey
x x x

  

[C] 21
2 3

xcc ey
x x x

  

[D] 21
3 3

xcc ey
x x x

  

82. The order and degree of the
differential equation

3
22 2

23 1d y dy
dxdx

       
, respectively

are

[A] 2, 3

[B] 3, 3

[C] 3, 2

[D] 2, 2

83. Let G be a group of order 64. Let H
and K be subgroups of G of orders
16 and 32 respectively. Then
H K  is a subgroup of G with order

[A] 0

[B] > 1

[C] 1

[D] 1

84. Let F be a field and F [x ] be the ring
of polynomials over F. Then which
of the following is not true?

[A] F [x ] is an integral domain

[B] F [x ] is a Euclidean ring

[C] F [x ] is a principal ideal ring

[D] F [x ] is a field
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85. If U is an ideal of a ring R and
1 U , then

[A] U = {0}

[B] U R

[C] U = R

[D] U = {1}

86. Let X and Y be Banach spaces and
:f X Y  be a bijective, bounded

linear transformation. Then f –1 is

[A] unbounded

[B] closed

[C] bounded

[D] open

87. The matrix L in the LU
decomposition of the matrix

 
3 2 7
2 3 1
3 4 1

A
 
   
  

is

[A]
2

3
6

5

1 0 0

1 0

1 1

 
 
 
 
 

[B]
26

5 5

1 0 0
1 1 0

1

 
 
 
 
 

[C]
2

3
6

5

1 0 0

1 0

1 1

 
 
 
  

[D]
2

3
6

5

1 0 0

1 0

1 1

 
 
 
 
 

88. The missing value in the following
table is

x 0 1 2 3 4

y 1 3 9 -- 81

[A] 31

[B] 27

[C] 21

[D] 11

89. Simpson’s 1/3rd rule of numerical
integration is exact for polynomials
of degree

[A] greater than 3

[B] greater than 5

[C] less than or equal to 3

[D] less than or equal to 4

90. The solution of the partial

differential equation 
2

costu e x
x t

 
 

,

given that u = 0, when t = 0 and

0u
t

 


 when x = 0 is

[A] sin (1 )tu x e 

[B] sin (1 )tu x e 

[C] sin (1 )tu x e 

[D] cos (1 )tu x e  

91. The general solution of the partial
differential equation
 ( ) ( ) ( )z x y x y z p y z x q    
 is

[A] ( ) 0f xyz 

[B] ( , ) 0f xyz x y 

[C] ( , ) 0f xyz x y z  

[D] 2 2 2( , ) 0f x y z x y z    
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92. A solution of the Laplace equation

2 2

2 2 0u u
x y
  
 

 can be found by

solving

[A]
2 2

2 20 and 0d X d YkX kY
dx dy

   

[B]
2 2

2 20 and 0d X d YkX kY
dx dy

   

[C]
2

20 and 0dX d YkX kY
dx dy

   

[D]
2

2 0 and 0d X dYkX kY
dydx

   

93. Which of the following sets is
countable?

[A] The set [0, 1]

[B] The set R of all real numbers

[C] The set Q of all rational numbers

[D] The set C of all complex numbers

94. Let D be the discrete topology and
U be the usual topology for R. Then
the identity map : {( , ) ( , )}I R D R U
is

[A] a continuous map

[B] a closed map

[C] a homeomorphism

[D] neither continuous map nor
closed map

95. The number of basic variables in a
feasible solution of a balanced
transportation problem with 3 rows
and 4 columns is

[A] 1

[B] 6

[C] 7

[D] 12

96. A solution to an LPP which satisfies
the non-negativity restrictions of
the problem is called a/an
[A] basic solution
[B] feasible solution
[C] optimal solution
[D] non-negative solution

97. A transportation problem with m
sources and n destinations is
degenerate if it has no initial basic
solution containing
[A] m + n positive values
[B] m + n + 1 positive values
[C] m + n – 1 positive values
[D] mn + 1 positive values

98. The work done in moving a
particle in the force field

23 (2 )F x I xz y J zK     along the
straight line from (0, 0, 0) to
(2, 1, 3), is equal to
[A] 12
[B] 14
[C] 16
[D] 18

99. If y yu x f g
x x

          
, then the value

of 
2 2 2

2 2
2 22u u ux xy y

x yx y
   

  
 is

[A] 0
[B] 1
[C] 2
[D] 4

100. An assignment problem can be
viewed as a special case of
[A] transportation problem
[B] geometric programming
[C] queuing problem
[D] simulation
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