

MPPSC

Previous Year Paper
Assistant Professor
Statistics

Test Prime

ALL EXAMS, ONE SUBSCRIPTION

70,000+ Mock Tests

600+ Exam Covered

Personalised Report Card

Previous Year Papers

Unlimited Re-Attempt

500% Refund

ATTEMPT FREE MOCK NOW

मध्यप्रदेश लोक सेवा आयोग रेसीडेन्सी एरिया इन्दौर

क्रमांक : 169/69/2011/प-9

इन्दौर, दिनांक-13.07.2018

अंतिम उत्तर कुंजी

-: विज्ञप्ति ::-

सहायक प्राध्यापक परीक्षा—2017 के संदर्भ में आयोग द्वारा जारी विज्ञप्ति क्रमांक 120/69/2011/प—9 दिनांक 30.06.2018 के अंतर्गत प्रावधिक उत्तर कुंजी परीक्षा परिणाम बनाने के पूर्व आयोग की वेबसाईट पर प्रकाशित की गई थी। अभ्यर्थियों से प्राप्त ऑनलाईन आपित्तियों का विषय विशेषज्ञों द्वारा परीक्षण किया गया तथा समस्त ऑनलाईन आपित्तियों का सूक्ष्म परीक्षण करने के पश्चात विषय—सांख्यिकी प्रश्न पत्र की अनुशंसित संशोधित अंतिम उत्तर कुंजी बनाई गई है। यह अंतिम उत्तर कुंजी है। इस अंतिम उत्तर कुंजी के आधार पर परीक्षा परिणाम तैयार किया जायेगा। अतः अब इस संबंध में अभ्यार्थियों की किसी प्रकार की आपित्तियों/अभ्यावेदनो पर विचार नहीं किया जायेगा। अभ्यर्थी आयोग की वेबसाईट पर अपना रोल नंबर एवं प्रवेश पत्र पर दिये गये पासवर्ड की सहायता से लॉग—इन कर अपनी रिस्पांस शीट का अवलोकन कर सकते हैं। यह विज्ञप्ति आयोग की वेबसाईट www.mppsc.nic.in, www.mppsc.com & www.mppscdemo.in पर दिनांक 13.07.2018 से उपलब्ध है।

(डॉ. पी.सी. यादव) परीक्षा नियंत्रक

Assistant Professor Exam - 2017

(Final Answer Key)

Statistics

Q.No: 1	Let X be a random variable whose probability density function is $f(x) = \begin{cases} 1 \; ; \; 0 \leq x \leq 1 \\ 0 \; ; \; other wise \end{cases}$ Then $P_r(X = 1)$ is	माना x एक याष्ट्रन्छिक चर है जिसका प्रायिकता घनल फलन है $f(x) = \begin{cases} 1 \; ; \; 0 \leq x \leq 1 \\ 0 \; ; \end{cases}$ अन्यथा तो $P_r(x=1)$ का मान है:
A	1	a contract of the contract of
В	0	0
С	1/2	1/2
D	3/4	3/4

Q.No. 2	The standard deviation of a binomial distribution with parameters $n=16$ and $p=1/4$ is:	एक द्विपद बंटन जिसके प्राचल हैं n=16 तथा p=1/4 उसका मानक विचलन है:
A	3	3
В	4	4
C	$\sqrt{3}$	$\sqrt{3}$
D	2	2

Q.No: 3	An unbiased cain is tossed 6 times and it gives 4 'heads'. What is the probability of getting 'head' in seventh toss?	एक अनिभनत सिक्का 6 बार उछाला जाता है तथा 4 बार 'चित' आता है। सातवीं उछाल में 'चित' आने की प्रायिकता क्या है ?
A	1/2	1/2
В	3/7	3/7
C	4/7	4/7
D	5/7	5/7

Q.No: 4 If A and B are mutually exclusive events and $P(A \cup B) \neq 0$, then which one of the यदि A तथा B परस्पर अपवर्जी घटनाये हैं तथा $P(A \cup B) \neq 0$, तो निम्न में कीन संस्य है ? following is true?

A

	$P(A/A \cup B) = \frac{P(A)}{P(A) + P(B)}$	$P(A/A \cup B) = \frac{P(A)}{P(A) + P(B)}$	
В	$P(A/A \cup B) \le \frac{P(A)}{P(A) + P(B)}$	$P(A/A \cup B) \le \frac{P(A)}{P(A) + P(B)}$	
С	$P(A/A \cup B) \ge \frac{P(A)}{P(A) + P(B)}$	$P(A/A \cup B) \ge \frac{P(A)}{P(A) + P(B)}$	
Ď	$P(A/A \cup B) = \frac{P(A)}{P(A) - P(B)}$	$P(A/A \cup B) = \frac{P(A)}{P(A) - P(B)}$	

Q.No: 5	A random variable \boldsymbol{X} has a normal distribution. Its moment generating function about origin is	एक याहुच्छिक वर X का बंटन प्रसामान्य हैं। इसका आधूर्ण जनक फलन शून्य के सापेक्ष है
	$M_x(t) = \exp{\left[2t + 32t^2\right]}. \label{eq:mass_mass} \ \text{its fourth central moment is}$	$M_{\rm x}(t) = \exp{[2t + 32t^2]}$. तो इसका चतुर्थ केन्द्रीय आधूर्ण है:
A	4096	4096
В	10096	10096
C	11288	11288
D	12288	12288

Q.No: 6 If for a binomial distribution b(n,p), P(x=0) = P(x=1) then coefficient of variation is: यदि द्विपद बेंटन b(n,p), के लिये P(x=0) = P(x=1) है तो विचरण गुणांक है:

B 1 1
C Np
D P

The random variable X has the cumulative distribution function $Q.No: 7 \quad F(x) = \begin{cases} 0 \quad ; \quad x \leq a \\ 0 \quad ; \quad x \leq a \end{cases}$ $Q.No: 7 \quad F(x) = \begin{cases} \frac{x-a}{b-a} \quad ; \quad a \leq x \leq b \\ 1 \quad ; \quad x \geq b \end{cases}$ $If a = -3 \text{ and } b = 4 \text{ the probability that } |X| \leq 1/2 \text{ is:}$ $A \qquad 1/3$ $B \qquad 1/5 \qquad 1/5$

C 1/7	1/7	
D 1/9	1/9	

Q.No: 8	Let X be a random variable whose probability density function is $f(x) = \theta \exp(-\theta x) ; 0 < x < \infty, \theta > 0. \text{ the value of E}(X^2) \text{is} :$	माना X एक याष्ट्रस्थिक चर है जिसका प्रायिकता धनल फलन है $f(x)$ = $ heta \exp(- heta x)$; $0 < x < \infty$, $ heta > 0$ तब E(X²) का मान है:
A	$\frac{1}{\overline{\theta}}$	$\frac{1}{\theta}$
В	$\frac{1}{\theta^2}$	$\frac{1}{\theta^2}$
С	$\frac{1}{\theta} + \frac{1}{\theta^2}$	$\frac{1}{\theta} + \frac{1}{\theta^2}$
D	$\frac{2}{\theta^2}$	$\frac{2}{\theta^2}$

Q.No:	The probability density function of a random variable X is $f(x) = \begin{cases} \exp(-x), & x>0 \\ 0, & otherwise \end{cases}$ Then the probability density function of $y=+\sqrt{x}$ is	एक याष्ट्रिक चर का प्रापिकता घनल फलन x है $f(x) = \begin{cases} \exp(-x), & x > 0 \\ 0, otherwise \end{cases}$ तो $y = +\sqrt{x}$ का प्रापिकता घनल फलन हैं:
A	ye ^{-y}	ye ^{-y}
В	y ² e ⁻ y ²	y ² e ^{-y²}
C	ye ^{-y²}	ye ^{·y²}
D	2ye ^{-y²}	2ye y²

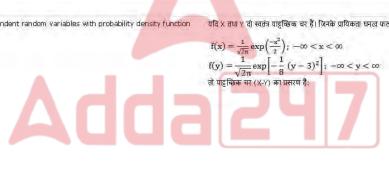
Q.No: 10 One integer is chosen at random from first two hundred positive integers probability प्रथम 200 प्रनासक पूर्णाकों में से एक संख्या याहुन्छिक रूप से चुनी जाती है। चुनी गयी संख्या 6 तथा 8 से विभाजन होने की प्राधिकता है:

A 0.04

8 0.08 0.08 0.08 0.05 0.25 0.25 0.50

Q.No: 1:	If the probability density function of a normal distribution is proportional to $exp\left[\frac{-x^2}{4}+5x\right]$, then its mean is	यदि प्रसामान्य बंटन का प्राधिकता घनल फलन $exp\left[\frac{-x^2}{4}+5x\right]$ के समानुपाती हो तो इसके माध्य का मान है:
A	0	0
В	5	5
C	10	10
D	2	2

Q.No: 12 Let X follows a binomial distribution b(2,p), Y follows binomial distribution b(5,p) and यदि X का बंदन द्विपद b(2,p), Y का बंदन, द्विपद b(5,p) तथा P(X ≥ 1) = 5/4, तो P(Y ≥ 1) का मान


	P(X 2 1) = 3/4, then value of P(T 2 1) is	6;
A	32/243	32/243
В	211/243	211/243
C	112/243	112/243
D	None of these	इनमें से कोई नहीं

Q.No: 1	If x and y are independent Poisson Variables such that $g(x) = p(x=3)$ $p(y=3) = p(y=4)$ Then variance of $(x-3y)$ is	यदि x तथा Y क्रमश्च-स्वतंत्र प्यासौ वर इस प्रकार हैं कि P(X=2)=P(X=3) P(Y=3)=P(Y=4) तब (X-3Y)का प्रसरण हैं:
A	3	3
В	24	24
C	36	36
D	39	39

Q.No: 14 If X and Y are two independent random variables with probability density function respectively

यदि 🗴 तथा Y दो स्वतंत्र याद्वन्धिक चर हैं। जिनके प्रायिकता घनत्व फलन क्रमश: हैं:

$$\begin{split} f(x) &= \frac{1}{\sqrt{2\pi}} \exp\left(\frac{x^2}{2}\right); \ -\infty < x < \infty \\ f(y) &= \frac{1}{\sqrt{2\pi}} \exp\left[-\frac{1}{8} \left(y - 3\right)^2\right]; \ -\infty < y < \infty \end{split}$$
 if its that we fix the precise as $(x + y)$ and precise $\frac{1}{8}$.

	$\begin{split} f(x) &= \frac{1}{\sqrt{2\pi}} \exp\left(\frac{-x^2}{2}\right); \ -\infty < x < \infty \\ f(y) &= \frac{1}{\sqrt{2\pi}} \exp\left[-\frac{1}{8}\left(y - 3\right)^2\right]; \ -\infty < y < \infty \end{split}$		
	Then, variance of random variable (X-Y) is:		
A	2	2	
В	4	4	
C	5	5	
D	7	7	

Q.No: 15	The mean of ten observations is 10 and standard deviation is Zero. The median of these observations is	दस समेकों का माध्य 10 है तथा मानक विचलन शून्य है। इनकी माध्यिका का मान है:
Α	8	8
В	10	10
С	n -	11
D	9	9

Q.No: 16	If the correlation coefficient between X and Y is r, correlation coefficient between 4X and -4Y is:	यदि \times तथा $ imes$ के बीच सहसम्बंध गुणांक r हैं तो $4 imes$ तथा $-4 imes$ के बीच सहसम्बंध गुणांक हैं:
A	e .	r
В	4r	4r
С	-4r	-4r
D	et .	4

Q.No:	17 Which of the following statements is wrong?	निम्न में कौन सा कथन गलत हैं ?	
A	β_1 gives a measure of departure from symmetry	β1 समित से दूरी की माप देता है।	
В	β_2 gives a measure of departure from symmetry	β2 सममित से दूरी की माप देता हैं।	
С	β ₂ gives a measure of peakedness	β2 कुकुदता की माप देता है।	
D	$\beta_2 > \beta_1$	$\beta_2 > \beta_1$	

Q.No: 18 The rank correlation coefficient between the marks in Statistics and Mathematics

किसी वर्ग के छात्रों द्वारा सांख्यिकी तथा गणित में प्राप्त किये गये अंको के बीच कोटि सहसम्बन्ध गुणांक 0.8 है।

	obtained by a group of students is 0.8. If sum of squares of difference in ranks is given to be 33, the number of students in the group is	यदि कोटियों में अन्तर के वर्गों का योग 33 है तो वर्ग में छात्रों की संख्या है:
A	10	10
В	25	25
С	100	100
D	500	500

Q.No: 19	, When all the observations are multiplied by $k,$ then variance is doubled. The value of k is	जब समस्त प्रेक्षकों को k से गुणा कर दिया जाता है, तो उनका प्रसरण दुगना हो जाता है। k का मान है:
A	1/2	1/2
В	1/√2	$1/\sqrt{2}$
c	$\sqrt{2}$	$\sqrt{2}$
D	2	2

Q.No:	20 Which of the following statements is not true?	निम्न कथनों में कौन सा कथन सहय नहीं हैं ?	
A	$r_{yx}^2 \le 1$	$r_{yx}^2 \le 1$	
В	$b_{yx} \ b_{xy} \le 1$	$b_{yx} \ b_{xy} \leq 1$	
c	$b_{xy} = -1.5, b_{yx} = -0.9$	$b_{xy} = -1.5, b_{yx} = -0.9$	
D	$b_{yx} = 2, b_{xy} = \frac{1}{3}$	$b_{yx} = 2, b_{xy} = \frac{1}{3}$	

Q.No: 21	If 20x - 9y = 107 and 4x - 5y + 32 = 0 are two regression lines then correlation coefficient between x and y is	यदि 20x - 9y = 107 तथा 4x - 5y + 32 = 0 वो समाश्रयण रेखायें है तो उनके बीच का सहसम्बन्ध गुणांक हैं:
4	4/5	4/5
3	3/5	3/5
	9/20	9/20
)	None of these	कोई सही नहीं है

Q.No: 22 If V(X-Y) > V(X+Y), then correlation coefficient r_{XY} between X and Y is

यदि V(X-Y)>V(X+Y) तो X तथा Y के बीच सहसम्बन्ध गुणांक r_{XY} है:

Α	$r_{XY} = 0$	r _{XY} = 0	
В	$r_{XY} = 1$	r _{XY} = 1	
С	r _{XY} > 0	r _{XY} > 0	
D	r _{XY} < 0	r _{XY} < 0	

Q.No:	23 If σ_x = 0.5 , σ_y = 1.5 and ${\sigma^2}_{(x\cdot y)}$ = 1.25; correlation coefficient between x and y is	यदि σ_x = 0.5, σ_y = 1.5 तथा $\sigma^2_{(x-y)}$ = 1.25 तो x तथा y के बीच सहसम्बन्ध गुणांक है:
A	5/6	5/6
В	1/2	1/2
C	1/4	1/4
D	0	0

D	All of these	सभी सही है	
0	Always Negative	सदैव ऋणात्मक	
3	Zero	शून्य	
A	Always Positive	सदैव धनात्मक	
Q.No:	24 The sum of deviations taken from median is :	माध्यिक से लिये गये विचलनों का योग होता है	

Q.No: 25	If each value of X is halved and that of Y is doubled regression coefficient of X and y becomes	यदि X के सभी मान आधे कर दिये जाते हैं तथा Y के सभी मान दो गुने कर दिये जाते हैं तो X पर Y का समाश्रयण गुणांक हो जाता है:
A	Unchanged	अपरिवर्तित
3	Halved	आधा
С.	Doubled	दो गुना
D	None of these	इनमें से कोई नहीं

Q.No: 26	If y=mx+4 and x=4y+5 are regression lines of y on x and x on y respectively, the value of m is between	यदि y पर x तथा x पर y की समाश्रयण रेखायें क्रमश: y=mx+4 तथा x=4y+5 है, तो m का	
A	0 and 1	0 तथा 1 के बीच	
В	0 and 1/2	0 तथा 1/2 के बीच	

	0 and 1/4	0 तथा 1/4 के बीच	
D	None of these	इनमें से कोई नहीं	
Q.No; 27	The sum of the squares of the deviations of a set of values is minimum when deviations are taken about	किसी समृह के विचलनों के वर्ग का योग तब न्यूनतम होता है जब विचलन निम्न मापों में से किसके सापेक्ष लिये जातें हैं ?	
A	Arithmetic Mean	समानान्तर माध्य	
В	Harmonic Mean	इरात्मक माध्य	
C	Geometric Mean	गुणोत्तर माध्य	
D	Median	माधिका	
Q.No; 28	A person drives his scooter from his home to his office at a speed of 30km per hour and back from the office to his house at 20km per hour, then the average speed is (in km per hour)	एक व्यक्ति अपना स्कूटर अपने घर से अपने कार्यालय तक 30 कि.मी प्रति घंटे की रफतार से जाता हैं,तथा वापस 20 कि.मी प्रति घंटे की रफतार से आता हैं। उसकी औसत गति हैं:	
A	23	23	
В	24	24	
C	25	25	
D.	26	26	
Q.No: 29 A	A bag contains 5 black and 4 white balls. A man selects two balls at random. The probability that both these are of same colour is	एक थैले में 5 काली तथा 4 सफेद गैंदे हैं । एक व्यक्ति याद्यन्धिक, रूप से दो गैंदे निकालता है । वे दोनों गैंदे ए ही रंग की हैं, इसकी प्राधिकता होगी : 1/6	
В	5/108	5/108	
c	4/9	4/9	
D	5/18	5/18	
Q.No: 30	For the grouped data having equal width h for each class interval Sheppard's corrected μ_3 equals to $\mu_3=\frac{h^2}{12}$	वर्गीकृत आकड़ों में जहाँ कक्षा अन्तराल सभी कक्षाओं में एक समान h हैं, 'श्रैपर्ड करेक्शन' लगाने के बाद सही तृतीय केद्रीय आधूर्ण का मान होगा : $\mu_3 - \frac{h^2}{12}$	
A	14		

Q.No: 3	In arithmetic mean, median and mode of a distribution are same and their value the values of its 5th decile should be	is 7, यदि एक बंटन के समानान्तर माध्य, माध्यिका तथा बहुलक समान हो तथा उनका मान 7 है, तो 5 वें दर्शांक का मान होना चाहिये: —
A. B	12	12
C	35	35
D	None of these	इनमें से कोई नहीं

Q.No: 3:	$_2$ If X follows N(0,1) and $_Y=\begin{cases} 1\ if\ X>0 \\ -1\ if\ X\leq 0 \end{cases}$ Then E(Y) is equal to	यदि X का बंटन N(0,1) तथा $Y=egin{cases} 1\ ext{ यदि} & X>0 \ -1\ ext{ यदि} & X\leq 0 \end{cases}$ तो E(Y) का मान है
Α	1	.1
В	1/2	1/2
C	Zero	<u> </u>
D	None of these	इनमें से कोई नहीं

Q.No: 33 $\frac{X_1}{2}$ and $\frac{X_2}{2}$ are independent variants with means 4 and 9 and standard deviations 1 and 2 respectively. The correlation coefficient between $u=2X_1+X_2$ and $v=X_1-2X_2$ is: $\frac{X_1}{2}$ वेश $\frac{1}{2}$ व

Q.No: 34 Two regression lines of Y on X and X on Y are respectively

	$Y = \frac{l}{m}X + C$ and $X = \frac{m^*}{l^*} + C^*$. Then which one is true?	γ पर $ imes$ तथा $ imes$ पर γ दो समाश्रयण रेखायें क्रमणः $Y=rac{l}{m}X+C$ तथा $X=rac{m^*}{l^*}+C^*$ है तौ
	m.	निम्न में कौन सा सत्य है?
A	lm* ≤ l*m	lm* ≤ l*m
В	lm* ≥ l*m	lm* ≥ l*m
С	lm* = J*m	lm* = J*m
D	None of these	इनमें से कोई नहीं

Q.No: 3	5 Let x_1, x_2, \ldots, x_n be a random sample taken from N(μ , σ^2). The sufficient statistic for μ when σ^2 is known, is:	समष्टि N(μ , σ^2) से x_1 , x_2 , x_n एक याद्वच्छिक प्रतिदर्श है। यदि σ^2 का मान दिया हो तो μ का पर्याप्त प्रतिदर्श है:
A	$\sum x$	$\sum x$
В	$\sum x^2$	$\sum x^2$
С	$\frac{1}{n}\sum x^2$	$\frac{1}{n}\sum x^2$
D	None of these	इनमें से कोई नहीं

Q.No; 3	6 How many perametric values are specified for the simple hypothesis in a bivariate normal distribution ?	द्विचर प्रसामान्य बॅटन के लिये सरल परिकल्पना कितने प्राचलों के मान को निर्दिष्ट करती हैं ?
A	2	2
В	3	3
С	4	4
D	5	5

C	$\sigma > \sigma_0$	$\sigma > \sigma_0$
D	None of these	इनमें से कोई नहीं
Q.No: 38	For the population with probability density function $f(x,\theta)=(\theta+1)\times\theta;\ 0< x<1,\ \theta>-1.$ Sample mean $\overline{\chi}$ is an unbiased estimator of	किसी समष्टि के जिसका प्रायिकता घनल फलन $f(x, \theta)$ =(θ + 1) $x\theta$; $0 < x < 1$, $\theta > -1$ है प्रतिदश्याध्य $\overline{\chi}$, एक अनीभित्त ओकलक है:
A	θ	θ
В	0+1	0+1
c	(0+1)/(0+2)	(0+1)/(0+2)
D	1/(g+2)	1/(0+2)
	If x_1, x_2,x_n is a random sample from the pmf $f(x,p)=p^x(1-p)^{1-x}$; $x=0,1,0< p<1$. Then, a sufficient statistic for p is	प्रायिकता मात्रा फलन ж ₁₂ х ₂ ,х _p से एक याट्टान्डिक प्रतिदर्श pmf f(x,p)= p ^x (1-p) ^{1-x} ;x=0, 1, 0 < p < 1 लिया है। तब, p का एक एयोप्त प्रतिदर्शन है:
Α	x ₁	x ₁
В	$\sum_{i=1}^{n} x_{i}$	$\sum_{i=1}^{n} x_{i}$
С	× _n	x _n
D	None of these	इनमें से कोई नहीं
Q.NO: 40	IIf T_1 is most efficient estimator of θ with variance v_1 and T_2 is any other estimator of θ with variance v_2 , efficiency of T_2 with respect to T_1 is	θ का आकलक है v_2 प्रसरण के साथ तो T_2 की दक्षता T_1 के सापेक्ष है:
	v ₂ /v ₁	v ₂ /v ₁
7	V ₁ /V ₂	v ₁ /v ₂
	v ₁ v ₂	v ₁ v ₂
D	None of these	इनमें से कोई नहीं
Q.No: 41	Which of the following testing problem makes use of Chi-square distribution?	निम्न परिकल्पना परीक्षकों में से किसमें काई स्क्रायर बंटन का प्रयोग होता है ?
A	$\sigma^2 = \sigma_0^2$	$\sigma^2 = \sigma_p^2$

В	$\sigma_1^2 = \sigma_2^2$	$\sigma_1^2 = \sigma_2^2$
С	$\mu_1 = \mu_2$	$\mu_1 = \mu_2$
D	p ₁ =p ₂	p ₁ =p ₂
Q.No: 42	Let $\bar{\chi}$ be the mean of a random sample from N(μ ,1). If null hypothesis H $_0$: μ = μ_0 is rejected when $\bar{\chi} > \mu_0$, then the size of the test is	माना समष्टि N(μ ,1) से लिये गये एक याट्टाच्छिक प्रतिदर्श का माध्य χ है। यदि शून्य परिकल्पना H $_0$: μ = $_0$ अस्वीकृत की जाती है जब χ > μ 0 तब परीक्षण का परिमाप है:
A	0.05	0.05
В	0.50	0.50
С	0.75	0.75
D	D.95	0.95
Q.No: 43	In a normal population N(μ , σ^2), let the MLE of σ^2 be s^2 . Then the MLE of fourth central moment of this population is:	एक प्रसामान्य समष्टि N(μ , σ^2) में यदि σ^2 का अधिकतम संभाविता आक्लक s^2 है तो समष्टि के बतुर्थ केन्द्रीय आधूर्ण का अधिकतम संभाविता आक्लक है:
A	364	354
В	54	s ⁴
C	3s ²	3s ²
D	None of these	इनमें से कोई नहीं
Q.No: 44	A maximum likelihood estimator of θ in U($\theta,\theta+1)$ is:	बंटन ∪(β, β+1) के लिये हैं β का महत्तम संभाविता आकलक है:
A	X(1)	X(1)
В	X(n)	X(n)
Ç	Any number in $X(n)-1 < \theta < X(1)$	X(n)-1< θ< X(1) में कोई संख्या
D	None of these	इनमें से कोई नहीं
Q.No: 45	For the population $f(x) = \begin{cases} exp[-(x-\theta)], & \theta < x < \infty \\ 0, & otherwise \end{cases}$ likelihood estimator of θ based on random sample of size n is:	समष्टि $f(x) = \begin{cases} exp[-(x-\theta)], & \theta < x < \infty \text{ के लिये } n \text{ परिमाप के यादृन्धिक प्रतिदर्श } \\ 0, & otherwise \end{cases}$ आधारित θ का अधिकतम सम्माविता आक्लक हैं।
-	English Asia Sandari	The state of the s

न्यूनतम् प्रेक्षण

A Smallest observation

В	Largest observation	अधिकतम प्रेक्षण
С	Sample mean	प्रतिदर्श माध्य
D	Sample median	प्रतिदर्श माण्यिका
Q.No: 46	Let x_1, x_2 be a random sample from Poisson distribution with parameter λ . Then $\left(\frac{1}{4}X_1+\frac{3}{4}X_2\right)$ is:	माना x_1, x_2 फोसों बंटन से किसका प्राचल λ है, एक यादृष्टिक प्रतिदर्श हैं। तब, $\left(\frac{1}{4}X_1+\frac{3}{4}X_2\right)$ हैं:
A	An unbiased estimator of $\tilde{\lambda}$	λ का अनिधिनत आक्षाक
В	Consistent estimator of λ	λ का संगत आवसक
C	A biased estimator of λ	λ का अनिभनत आक्तक
D	None of these	इनमें से कोई नहीं
Q.No; 47	If the sample mean of a random sample of size 16 from N(θ ,1) is 0.19, then 95% systematic confidence interval for θ is:	यदि N(β,1) से लिये गये 16 आमाप के यादृच्छिक प्रतिदर्श का प्रतिदर्श माध्य 0,19 है तो N(β,1) का 95% सम्मित विश्वास्थता अन्तराल है:
A	(-0.30,0.68)	(-0.30,0.68)
В	(0.19,0.60)	(0.19,0.60)
С	(-0.22,0.19)	(-0.22,0.19)
D	None of these	इनमें से कोई नहीं
Q.No: 48	Let X be a single observation from a binomial distribution with parameters (5,p). Let H_0 : p=1/5 and H_1 : p=2/5. If H_0 is rejected when X>3, probability of type I error is:	माना कि प्राचलों (5,p)चाले द्विपद बंटन से एक अकेला प्रेक्षण x है H ₀ :p=1/5 तथा H ₁ ::p=2/5 है । यदि H ₀ अस्तीकृत की जाती है जब कि x>3 तो प्रथम प्रकार की त्रुटि की प्रायिकता है:
À	20 (5) ⁵	20 (5) ⁵
B	21 (5) ⁵	21 (5) ⁵
С	1 (5) ⁵	<u>1</u> (5) ⁵
D	None of these	इनमें से कोई नहीं

Adda 247

	T/n) ²	(T/n) ²	
3 T(
	(T-1)/n(n-1)	T(T-1)/n(n-1)	
т((n-T)/n(n-1)	T(n-T)/n(n-1)	
) No	ione of these	इनमें से कोई नहीं	
Q.No: 50 If	T is any consistent estimator of $oldsymbol{ heta}$, another consistent estimator of $oldsymbol{ heta}$ is	यदि θ का संगत आक्लक T है तो θ का एक अन्य संगत आकलक है	
nī nī	Т	nT	
3 T-	+n	T+n	
т-	-n	T-n	
) n7	T/(n+1)	nT/(n+1)	
Q.No: 51 W	/hich one of the following is true for estimation of mean of the normal distribution y sample median:	प्रतिदर्श माध्यिका द्वारा प्रसामान्य बंटन के माध्य के आक्लन हेतु निम्न में से कीन सा सत्य है ?	
-	nbiased but not consistent	अनिभनत परंतु संगत नहीं होता	
3 co	onsistent but not unbiased	संगत परंतु अनभिनत नहीं होता	
bo	oth consistent and unbiased	संगत तथा अनभिनत दोनों होता है	
) ne	either consistent nor unblased	न संगत तथा न अनभिनत होता है	
	or a UMP test of size $lpha$, state which of the following statements is true? (Where eta the probability of second kind of error)	α आकार वाले एक समान सामर्थ्यवान परीक्षण के लिये कौन सा कथन सत्य है ? (जबकि β द्वितीय प्रकार की दुटि की प्रायिकता है)	
α α	t ≤ β	$\alpha \leq \beta$	
3 (1	1 - α)≤ β	$(1-\alpha) \leq \beta$	
α	ι = β	$\alpha = \beta$	
) No	one of these	इनमें से कोई नहीं	
Q.No: 53 Le	et the statistic T_1 be an unbiased estimator of parameter θ , while T_2 is a sufficient tatistic for θ . Then the best statistic in the sense of variance is :	माना कि प्रतिदर्श \mathbf{T}_1 प्राचल $\mathbf{\theta}$ का एक अनमिनत आकलक है जबकि प्रतिदर्शज \mathbf{T}_2 प्राचल हेतु पर्याप्त है तो प्रसरन की दृष्टि से सबसे अच्छा प्रतिदर्शज है:	
Т1		T ₂	

В	T ₂	T ₂	
C	E(T ₁ /T ₂)	E(T ₁ /T ₂)	
D	None of these	इनमें से कोई नहीं	

Q.No: 54 For testing H ₀ : θ = 4 against H ₁ : θ \neq 4 in population N(θ ,5), UMPU Critical region is:	एक प्रसामान्य समष्टि $N(\theta,5)$ में H_0 : $\theta=4$ के विरूद्ध $H1$: $\theta\neq4$ के परीक्षण के लिये $UMPU$ क्रांतिक
15:	क्षेत्र हैं:

	12 .	અત્ર ૯.
A	$ \overline{x} \ge K$	$ \overline{x} \ge K$
В	$ \overline{x} \ge K$	$ \overline{x} \ge K$
С	$ \overline{x} \le K$	$ \overline{x} \leq K$
D	None of these	इनमें से कोई नहीं

Q.No: 55 Let x_1, x_2, x_n be as random sample from population N(μ, σ^2), μ and σ^2 both are	माना $x_1, x_2 x_n$ समष्टि $N(\mu, \sigma^2)$ से एक याहुन्छिक प्रतिदर्श है (μ तथा σ^2 दोनों अज्ञात हैं) तो σ^2 का
unknown. The unbiased estimator of σ^2 is :	अनभिनत आकलक है:

$$\frac{1}{n}\sum x_i^2 \qquad \qquad \frac{1}{n}\sum x_$$

$$\begin{array}{lll} \mathbb{A} & & \frac{1}{n} \sum x_i^2 & & \frac{1}{n} \sum x_i^2 \\ \mathbb{B} & & \frac{1}{n-1} \sum (x_i - \overline{x} \)^2 & & \frac{1}{n-1} \sum (x_i - \overline{x} \)^2 \\ \mathbb{C} & & \frac{1}{n} \sum (x_i - \overline{x} \)^2 & & \frac{1}{n} \sum (x_i - \overline{x} \)^2 \end{array}$$

Q.No: 56 For estimating mean of a distribution on the basis of a random sample $\mathbf{x_1}, \mathbf{x_2}, \mathbf{x_3}, \ldots$ $\mathbf{x_n}$, which one of the following is unbiased estimator ? $\frac{2}{\mathbf{n(n+1)}}(\mathbf{x_1}+2\mathbf{x_2}+\cdots+n\mathbf{x_n})$

$$\frac{2}{n(n+1)}(x_1 + 2x_2 + \cdots + nx_n)$$

B
$$\frac{2}{n^2}(x_1 + 2x_2 + \dots + nx_n)$$

c
$$\frac{2}{n(n+1)}[x_1 + \frac{1}{2}x_2 + \dots + \frac{1}{n}x_n]$$

×1, ×2, ×3.... ×n, याद्टव्हिक प्रतिदर्श के आधार पर बंटन के माध्य के आकलन हेतु अनिभनत आकलक निम्न में कीन हैं ?

$$\frac{2}{n(n+1)}(x_1 + 2x_2 + \dots + nx_n)$$

$$\frac{2}{n^2}(x_1 + 2x_2 + \dots + nx_n)$$

$$\frac{2}{n(n+1)}[x_1 + \frac{1}{2}x_2 + \dots + \frac{1}{n}x_n]$$

None of these	इनमें से कोई नहीं
A random sample $\mathbf{x}_1, \mathbf{x}_2, \dots \mathbf{x}_n$ of size n is taken from the population whose pdf is $f(x)$ = $(\alpha+1)x^{\alpha}, 0 \leq x \leq 1$. The MLE of α is	एक n आकार का याद्द खिक प्रतिदर्श $x_1, x_2, \ldots x_n$ उस समष्टि से लिया गया है जिसका प्रायिकता घनल फलन $f(x)$ = $(lpha+1)x^lpha, 0 \leq x \leq 1$. है, $lpha$ का अधिकतम संभविता आकलक है:
$\frac{n}{\sum_{i}logx_{i}}$	$\frac{n}{\sum_{t}logx_{t}}$
$1 + \frac{n}{\sum_i \log x_i}$	$1 + \frac{n}{\sum_i \log x_i}$
$-1 + \frac{n}{\sum_{l} log x_{l}}$	$-1 + \frac{n}{\sum_{l} log x_{l}}$
$-1 - \frac{n}{\sum_{i} log x_{i}}$	$-1 - \frac{n}{\sum_{i} log x_{i}}$
	A random sample $\mathbf{x}_1, \mathbf{x}_2, \dots \mathbf{x}_n$ of size n is taken from the population whose pdf is $f(x) = (\alpha+1)x^{\alpha}, \ 0 \le x \le 1$. The MLE of α is $\frac{n}{\sum_i log x_i}$ $1 + \frac{n}{\sum_i log x_i}$ $-1 + \frac{n}{\sum_i log x_i}$

Q.No: 58	Let $\{X_j\}$ be a sequence of identically and independently distributed random variable with finite means and variance. Then for $\{X_j\}$.	माना {x _j } एक परस्पर स्वतंत्र समान बेटन वाले याट्टच्छिक चरों की श्रेखला है, जिनके माध्य तथा प्रसरण परिमित हैं। {x _j } के लिये:
A	Weak law of large numbers holds but central limit theorem does not	निर्वत वृहत् संख्या नियम सत्य है किन्तु केन्द्रीय सीमा प्रमेय नहीं
В	Central limit theorem holds but weak law of large numbers does not	केन्द्रीय सीमा प्रमेय सत्य है किन्तु निमेय वृहत् संख्या नियम नहीं
Ç	Both weak law of large numbers and central limit theorem hold	केन्द्रीय सीमा प्रमेय तथा निर्बल बृहत् संख्या नियम दोनो सत्य हैं
D	None of these	इनमें से कोई नहीं

Q.No:	59 The point of intersection of two Ogives gives	दो तोरणों का कटान बिंदु प्रदान करता है;
Α	Mean	माध्य
В	Mode	बहुराक
C	Median	माधिका
D	None of these	इनमें से कोई नहीं

Q.No: 60 When the total frequency of a distribution is increased indefinitely and class-intervals जब किसी बेंटन की कुल बारम्बारवा बहुत बहा दी जाय तथा वर्ग अन्तराल बहुत छोटा कर दिया जाय तो are made very small, the frequency polygon takes the following form:

A	Ogives	तोरण
3	Frequency curve	बारम्बारता वक्र
	Histogram	आयतचित्र
)	None of these	इनमें से कोई नहीं
Q.No: 61	The most appropriate diagram to represent the distribution of national plan outlay of a country in different sectors of economy is	किसी देश के राष्ट्रीय योजना परिसर का विभिन्न आर्थिक क्षेत्रों में बंटन को प्रदर्शित करने के लिये निम्न चित्र का प्रयोग सर्वाधिक उपयुक्त है:
4	Histogram	आयतचित्र
3	Frequency Polygon	वारम्बारता बहुभुज
	Ogive	तोरण
D	Pie Chart	पाई चित्र
Q.No: 62	Which one of the following measure of central tendency remains unaffected by extreme observations?	निम्नलिखित में केन्द्रीय प्रवृत्ति की कौन सी माप चरम प्रेक्षकों से अप्रभावित रहती है ?
A	Arithmetic Mean	समानान्तर माध्य
3	Harmonic mean	हरात्मक माध्य
3	Median	माध्यिका
D	Geometric Mean	गुणोत्तर माध्य
Q.No: 63	The correlation coefficient between X and Y is r = -1/2. If regression coefficient $b_{\gamma\chi}$ = -1/8 then other regression coefficient $b_{\chi\gamma}$ is	x तथा y के बीच सहसम्बंध गुणांक है $_{\rm r}$ = $-1/2$, यदि समाश्रयण गुणांक $_{\rm byx}$ = $-1/8$ हैं तो दूसरा समाश्रयण गुणांक $_{\rm ry}$ है
	-2	-2
3	-4	-4
3	2	2
	4	4
Q.No: 64	For testing the independence of attributes in a contingency table, which one of the following test is used?	किसी आसंग तालिक। में गुणों की स्वतन्त्रता के परीक्षण हेतु निम्न में कौन सा परीक्षण प्रयुक्त होता है ?
1	Chi-Square	काई-स्कायर
		t

С	P'	F
D	None of these	इनमें से कोई नहीं
Q.No: 65	For testing that a bivariate sample has come from an uncorrelated bivariate Normal population. Which one of the following test is used?	इस परीक्षण हेतु कि एक द्विचरीय प्रतिदर्श किसी असम्बन्धित द्विचर प्रसामान्य समष्टि से लिया गया है, निम्न में वि परीक्षण का प्रयोग किया जाता है ?
A	Chi-Square	काई स्क्रायर
В	F	F
С	•	t
D	None of these	इनमें से कोई नहीं
Q.No: 66	Let T be an unbiased estimator of A . Then which one of the following is true?	यदि Τ, Α का अनिभनत आक्तक है तो निम्न में कौन सत्य है ?
À	T^2 is unbiased for θ^2	T², A² का अन्धिनत आक्तक हे
В	\sqrt{T} is unbiased for $\sqrt{ heta}$	\sqrt{T} , $\sqrt{ heta}$ का अनभिनत आक्लक है
С	1/T is unbiased for 1/ θ	1/ β, 1/Τ का अनिधनत आक्लक है
D	None of these	इनमें से कोई नहीं
- W 10	2	
	The consistency of an estimator is:	आक्लक की संगतता
A	Larger sample property only	केवल वृहत् प्रतिदर्श गुण है
В	Small sample property only	वृहत् अल्प प्रतिदर्श गुण है
C D	Both Large and Small sample property None of these	वृहत् तथा अल्प प्रतिदर्श गुण दोनों है इनमें से कोई नहीं
Q.No: 68	For Cauchy distribution with parameter $oldsymbol{\theta}$, the consistent estimator of $oldsymbol{\theta}$ is	प्राचल θ के साथ का उषी बंटन के लिये , θ का संगत आक्लक है:
A	Sample mean	प्रतिदर्श माध्य
В	Sample median	प्रतिदर्श माध्यिका
С	Sample mode	प्रतिदर्श बहुलक
D	None of these	इनमें से कोई नहीं

Q.No: 73 The minimum variance unbiased estimator of θ in U(0, θ) is:

Q.No: 69	If the variance of an unbiased estimator attains the Cramer-Rao lower bound, the estimator is $% \left\{ 1,2,\ldots ,2,3,3,4,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4$	यदि किसी अनभिनत आक्लक का प्रसरण क्रेमर-राव न्यूनतम सीमा प्राप्त करता है तो आक्लक है:
А	Consistent	संगत
В	Sufficient	पर्याप्त
С	Most efficient	दक्षतम
D	None of these	इनमें से कोई नहीं
Q.No: 70	If a sufficient statistic exists for a parameter, the maximum likelihood estimator of that parameter is always :	यदि पर्याप्त प्रतिदर्शज किसी प्राचल के लिये है तो प्राचल का अधिकतम संभाविता आक्लक सदैव होता है
A	Unique	अद्वितीय
В	Unbiased	अनभिनत
С	Most efficient	दक्षतम
D	Sufficient	मर्गाप्त सरल शन्य परिकल्पना को संयुक्त परिकल्पना के विरूद्ध परीक्षण के लिये एक समानत: अधिकतम सामर्थ्यवान
	A UMP test for a simple null hypothesis against a composite alternative hypothesis: May or may not exist	सरल शून्य परिकल्पना को संयुक्त परिकल्पना के विरूद्ध परीक्षण के लिये एक समानत: अधिकतम सामर्ध्यवान परीक्षण प्राप्त हो सकता है और नहीं भी
Q.No: 71	A UMP test for a simple null hypothesis against a composite alternative hypothesis:	सरल शूच परिकल्पना को संयुक्त परिकल्पना के विरूद्ध परीक्षण के लिये एक समानत: अधिकतम सामर्ध्यवान परीक्षण
Q.No: 71 A	A UMP test for a simple null hypothesis against a composite alternative hypothesis: May or may not exist	सरल शून्य परिकल्पना को संयुक्त परिकल्पना के विरूद्ध परीक्षण के लिये एक समानत: अधिकतम सामर्थ्यवान परीक्षण प्राप्त हो सकता है और नहीं भी
Q.No: 71 A B	A UMP test for a simple null hypothesis against a composite alternative hypothesis: May or may not exist Always exist	सरल शून्य परिकल्पना को संयुक्त परिकल्पना के विरूद्ध परीक्षण के लिये एक समानत: अधिकतम सामर्थ्यवान परीक्षण प्राप्त हो सकता है और नहीं भी सदैव प्राप्त हो सकता है
Q.No: 71 A B C	A UMP test for a simple null hypothesis against a composite alternative hypothesis: May or may not exist Always exist Never exist	सरत बून्य परिकल्पना को संयुक्त परिकल्पना के विरूद्ध परीक्षण के लिये एक समानत: अधिकतम सामर्थ्यवान परीक्षण प्राप्त हो सकता है और नहीं भी सदैव प्राप्त हो सकता है कदापि प्राप्त नहीं हो सकता है
Q.No: 71 A B C	A UMP test for a simple null hypothesis against a composite alternative hypothesis: May or may not exist Always exist None of these It is proposed to test H_0 : $\theta = 2$ against H_1 : $\theta = 1$ on the basis of a single observation X from distribution $f(x) = \theta$ exp($-\theta x$); $x \ge 0$. If critical region is $x > 1$,	सरल शून्य परिकल्पना को संयुक्त परिकल्पना के विरूद्ध परीक्षण के लिये एक समानतः अधिकतम सामर्ध्यवान परीक्षण प्राप्त हो सकता है और नहीं भी सदैव प्राप्त हो सकता है कदापि प्राप्त नहीं हो सकता है कदापि प्राप्त नहीं हो सकता है इनमें से कोई नहीं
Q.No: 71 A B C D	A UMP test for a simple null hypothesis against a composite alternative hypothesis:	सरल शून्य परिकल्पना को संयुक्त परिकल्पना के विरूद्ध परीक्षण के लिये एक समानत: अधिकतम सामर्थ्यवान परीक्षण
Q.No: 71 A B C D	A UMP test for a simple null hypothesis against a composite alternative hypothesis: May or may not exist Always exist Never exist None of these It is proposed to test $H_0\colon \theta=2$ against $H_1\colon \theta=1$ on the basis of a single observation X from distribution $f(x)=\theta$ exp($-\theta x$); $x\geq 0$. If critical region is $X>1$, the value of probability of type I error is: e^2	सरल शून्य परिकल्पना को संयुक्त परिकल्पना के विरूद्ध परीक्षण के लिये एक समानत: अधिकतम सामर्थ्यवान परीक्षण

U(0, θ) में θ का न्यूनतम प्रसरण अनिभनत आक्लक है:

A	$\frac{n}{n+1}X_{(n)}$	$\frac{n}{n+1}X_{(n)}$	
В	$\frac{n+1}{n}X_{(n)}$	$\frac{n+1}{n}X_{(n)}$	
С	$X_{(n)}$	$X_{(n)}$	
D	None of these	इनमें से कोई नहीं है	

If X_1, X_2, \dots, X_{n+1} are independently and identically distributed N(0,1) variables,

Q.No: 74 then the distribution of $\frac{\sqrt{n} \; X_{n+}}{\sqrt{\sum\limits_{i=1}^{n} \chi_{i}^{2}}}$ is

यदि $\mathbf{x_1}, \mathbf{x_2}, ..., \mathbf{x_{n+1}},$ खतंत्र तथा समान रूप से बंदित N(0,1)चर है, तो $\dfrac{\sqrt{n} \ \widehat{X}_{n+}}{\sqrt{\sum\limits_{i=1}^{n} x_i^2}}$ का बंदन हैं:

A		t e	
В	Chi-Square	काई-स्कायर	
C	E	E.	
D	None of these	इनमें से कोई नहीं	

Q.No: 75 For testing the 'goodness of fit' of a distribution. Which of the following test is used? [कसी बेंटन के 'आसंजन सुकुत्ता' के परीक्षण हेतु निम्न में किस परीक्षण का प्रयोग किया जाता है ?

A F

A F F C Z Z

D Chi-Square काई-स्कापर

In answering a question on a multiple choice test, an examinee either knows the answer with probability p or guesses with probability (1-p). The probability of Q.No; 76 answering question correctly is one if he knows the answer and 1/m if he guesses. If an examinee answers a question correctly the probability that he really know the answer is

बहुविकल्प परीक्षण में एक प्रश्न के उत्तर देने में एक परीक्षणीं या तो p प्रायिकता के साथ उत्तर जानता है या (1p) प्रायिकता के साथ अनुमान लगाता है। प्रश्न के सही उत्तर देने की प्रायिकता एक है पदि वह उत्तर जानता है तथा 1/m है यदि वह अनुमान लगाता है। यदि कोई परीक्षणीं किसी प्रश्न का सही उत्तर देता है तो वह सचमुच में उस उत्तर को जानता है,की प्रायिकता है:

 $\begin{array}{ccc} mp & & mp \\ \hline 1+mp & & 1+mp \end{array}$

A

	mp	mp	
	1 + (m-1)p	1+(m-1)p	
	(m-1)p	(m-1)p	
2	1+(m-1)p	1+(m-1)p	
EV.	(m-1)p	(m-1)p	
U	1 + mp	1 + mp	

Q.No: 7	7 The relation between mean and variance of a chi square distribution is	काई स्कायर बंटन के माध्य तथा प्रसरण में सम्बंध है	
A	Mean = Variance	माध्य=प्रसरण	
В	Mean = 2 Variance	माध्य = 2 प्रसरण	
C	Variance = 2 Mean	प्रसरण = 2 साध्य	
D	None of these	इनमें से कोई नहीं	

Q.No.	78 Least square estimators of parameters of a linear model are:	रैखिक माडल में प्राचलों के न्यूनतम वर्ग आकलक होते हैं	
Α	Unbiased	अनभिनत	
В	Best linear unbiased	श्रेष्ठतम रैखिक अनभिनत	
C	Uniformly minimum variance unbiased	एक समान न्यूनतम प्रसरण अनिभनत	
D	All of these	👝 इनमें से कोई नहीं	

Q.No: 7	g In a binomial distribution with parameters n and p, the coefficient of skewness is zero if	द्विपद बंटनं, जिसके प्राचल n तथा p है, का विषमता गुणांक शून्य होता है यदि
A	P = 1/2	P = 1/2
В	P > 1/2	P > 1/2
С	P < 1/2	P < 1/2
D	None of these	इनमें से कोई नहीं

Hypothesis under test	परीक्षण में परिकल्पना पर
A CONTRACTOR OF THE PARTY OF TH	

0	Number of linearly independent observations in the set	सेट में दिये रैखिक रूप से स्वतन्त्र प्रेक्षणों की संख्या पर
)	None of these	इनमें से कोई नहीं
Q.No; 81 4	Let X and Y be two independent variables with variances σ_1^2 and σ_2^2 respectively. Then, correlation coefficient between X and (X-Y) is: $\frac{\sigma_2}{\sqrt{\sigma_1^2+\sigma_2^2}}$	माना X तथा Y दो स्वतंत्र चर है जिनका प्रसरण क्रमष: $\sigma_1{}^2$ तथा $\sigma_2{}^2$ है। तब X तथा (X-Y) के मध्य सह सम्बन्ध गुणांक है $\frac{\sigma_2}{\sqrt{\sigma_1{}^2+\sigma_2{}^2}}$
	$\frac{\sigma_1}{\sqrt{{\sigma_1}^2+{\sigma_2}^2}}$	$\frac{\sigma_1}{\sqrt{\sigma_1^2+\sigma_2^2}}$
3	$\frac{\sigma_1\sigma_2}{\sqrt{{\sigma_1}^2+{\sigma_2}^2}}$	$\frac{\sigma_1\sigma_2}{\sqrt{{\sigma_1}^2+{\sigma_2}^2}}$
Ó	None of these	इनमें से कोई नहीं
Q.No: 82 4 3	Let $M_x(t)$ be moment generating function of a random variable X about origin. Then, moment generating function of $Y = \{(X/3) + 4\}$ about origin is $M_y(t) = M_x(t/3)$ $M_y(t) = M_{3x}(t)e^{4t}$	माना $M_x(t)$ याद्विक्कि चर \times का शून्य के सापेक्ष आधूर्णजनक फलन है। तब $Y = \{(X/3) + 4\}$ का शून्य के सापेक्ष आधूर्ण जनक फलन है $M_y(t) = M_x(t/3)$ $M_y(t) = M_{3x}(t)e^{4t}$
4	$M_{\gamma}(t) = M_{\chi}(t/3)e^{4t}$	$M_{\gamma}(t) = M_{\chi}(t/3)e^{4t}$
)	$M_{y}(t) = M_{3x}(t)e^{t/4}$	$M_{y}(t) = M_{3x}(t)e^{t/4}$
Q.No; 83 4	If X has exponential distribution with mean $1/\lambda$ then $\frac{P_T(X\geq 2x)}{P_T(X\geq 3x)}$ is: $\mathbf{e}^{-}\lambda$ ×	यदि $ imes$ का बंटन चर घातीय है,जिसका माध्य 1 $/\lambda$ है, तो $rac{P_r(X \ge 2x)}{P_r(X \ge 3x)}$ का मान है $\mathbf{e}^{\cdot}\lambda^{\mathbf{x}}$
3	eλ*	eX*
	e*/λ	e-x/\lambda
0	e*/ λ	e*/\lambda

Adda 247

Q.NO: 84	The distribution which possesses 'memory less property' is	वह बंटन जिसमें स्मृति रहित गुण होता है:
A	Geometric	ज्यामितीय
В	Gamma	गामा
C	Hyper geometric	हाईपर ज्यामितीय
D	All of these	सभी सही है
Q.No: 85	With the help of Ogive curve, which of the following can be determined?	तोरण वक़ से निम्न में से किसकी गणना की जा सकती है ?
A	Median	माध्यिका
В	Deciles	दशांक
Ċ	Percentiles	शतांक
D	All of these	सभी सही है
Q.No: 86	A negative correlation between anxiety before test and the performance there in,	किसी परीक्षण से पहले की चिंता तथा परीक्षण में प्रदर्शन के बीच ऋणात्मक सहसम्बन्ध दर्शाता हैं:
Q.NO. 80	indicates that	The result is 1400 account to the same of the same and the same at
A	More the anxiety the better is the performance	जितनी अधिक चिंता उतना अच्छा प्रदर्शन
В	Lesser the anxiety better is the performance	जितनी कम चिंता उतना अच्छा प्रदर्शन
C	Lesser the anxiety lesser is the performance	जितनी कम चिंता उतना खराब प्रदर्शन
D	None of these	इनमें से कोई नहीं
Q.No: 87	Simple random sample can be drawn with the help of :	सरल याइच्छिक प्रतिदर्श निम्न में किसकी सहायता से लिया जा सकता है ?
A	Random Number Table	याट्टच्छिक संख्या सारिणी
В	Chit method	चिट विधि
C	Roulett Wheel	रौलेट चक्र
D	All of these	सभी सही है
Q.No: 88	If F value for treatments in ANOVA comes out to be less than unity, it may be due to	यदि प्रसरण विस्लेषण में कारको के लिए F का मान एक से कम आता है तो इसका कारण हो सकता:
A	Improper Randomisation	गलत याट्टच्छिकता
В	Non-normality	प्रसामान्यता का न होना
С	Selecting a wrong statistical model	गलत सांखिकी आबाह का चनाव

D	All of these	सभी सही हैं
Q.No: 89	To select team for an inter collegiate Quiz Competition, which of the following	विभिन्न कारोज के बीच होने वाली पहेली प्रतियोगिता के लिये टीम चुनने में निम्न में कौन सी प्रतिचयन विधि सबर्ष
	sampling technique is most appropriate?	उचित है ?
A	Quota Sampling	कोटा प्रतिचयन
В	Stratified Sampling	स्तरित प्रतिचयन
С	Purposive sampling	उद्देश्यीय प्रतिचयन
D	Simple Random Sampling	सरत याष्ट्रच्छिक प्रतिचयन
Q.No: 90	In sampling with probability proportional to size, the units are selected with probability proportional to	प्रतिचयन विधि जिसमें प्रायिकता आकार के अनुपात में हैं,इकाइयाँ चुनी जाती है उस प्रायिकता के साथ जो अनुपात में होती है
A	Size of sample	प्रतिचयन आकार के
В	Size of population	समष्टि आकार के
С	Size of unit	इकाई आकार के
D	None of these	इनमें से कोई नहीं
Q.No: 91	When calculating the average rate of debt expansion for a company, which one of the	ै किसी कम्पनी की ऋण वृद्धि के माध्य की गणना करने के लिये,निम्न में कौन सा माध्य सबसे उचित है ?
Q.NO: 91	following mean is most appropriate?	किसी कम्पना का ऋण वृद्धि के मार्थ्य का गणना करने के लिप, निर्म में कान सा मार्थ्य सबसे उचत है है
A	Geometric Mean	गुणोत्तर माध्य
В	Arithmetic mean	समानान्तर माध्य
C	Harmonic mean	हरात्मक माध्य
D	None of these	इनमें से कोई नहीं
Q.No: 92	Let X and Y be two independent binomial $b(n,p)$ variates, which one of the following is true?	माना X तथा Y दो खतंत्र द्विपद b(n,p) चर है। निम्न में कौन सत्य है।
A	E(X+Y) > V(X+Y)	E(X+Y) > V(X+Y)
3	E(X+Y) < V(X+Y)	E(X+Y) < V(X+Y)
c	E(X) = V(Y)	E(X) = V(Y)
0	None of these	इनमें से कोई नहीं

Adda 247

Q.No: 93	The difference between a statistic and the corresponding parameter is said to be:	प्रतिदर्शाज तथा उसके प्राचल के बीच के अन्तर की कहते है:
A	Standard error	मानक त्रुटि
В	Sampling error	प्रतिचयन बुटि
С	Both (Standard) and (Sampling error)	दोनों (प्रतिचयन तुटि) तथा (प्रतिचयन तुटि)
D	Neither (Standard) nor (Sampling error)	न (मानक त्रुटि) न (प्रतिचयन त्रुटि)
Q.No: 94	The target population is another way of describing	लक्ष्य समष्टि निम्न में किसको बताने का दूसरा तरीका है ?
Д	Survey Population	सर्वे समष्टि
В	Main Sample	मुख्य प्रतिचयन
С	The population for which results are required	वह समष्टि जिसकें परिणाम अपेक्षित है
D	None of these	इनमें से कोई नहीं
Q.No: 95	A sample survey is to be conducted to estimate the average size of land holdings of house holds in a district. Which one of the following will be most appropriate procedure of sampling?	एक जिले के परिवारों के जोतों का औसत क्षेत्रफल आंकलित करना है। निम्न में से कौन सी विधि सबसे उपयुक्त होनी?
Ą	Simple Random Sampling	सरल याट्टच्छिक प्रतिचयन
В	Stratified Random Sampling	स्तारित याट्टच्छिक प्रतिचयन
С	Systematic Sampling	क्रमबध्द प्रतिचयन
D	None of these	इनमें से कोई नहीं
Q.No: 96 A	For a m x m laten square design, the degree of freedom for error is: m^2-1	m x m लैटिन वर्ग अभिकल्प में त्रुटि के लिये स्वतंत्र कोटि होती है: m ² - 1
3	(m-1) ²	(m-1) ²
С	m(m-1)	m(m-1)
D	(m-1)(m-2)	(m-1)(m-2)
Q.No: 97	In 2 ³ factorial experiment, the number of two factor interaction is	2 ³ बहुउपादानी प्रयोग में 2 उपारान अत्योन्य क्रिया की संख्या होगी
A	2	2
В	3	3

С	4	4
D	8	8
	In a randamised block design there are 5 treatments and 20 plots. Then the number	एक याद्रच्छिक खंडक अभिकल्प में 20 भुखण्ड तथा 5 उपचार है। तो तृतीय उपचार की पुनरावृत्ति की संख्या
Q.No: 98	of replications for third treatment will be:	होगी ?
A	3	3
В	4	4
C	5	5
D	19	19
Q.No: 99	In a 2 3 factorial experiment, the treatment contract (1) –a-b+c+ab-ac-bc+abc belongs to the effect:	एक 2 ³ बहुउपादानी प्रयोग में उपचार विपर्यास (1) ~a-b+c+ab-ac-bc+abc जो प्रभाव निरूपित करता वह है:
A	AC	AC
В	BC	BC
С	AB	AB
D	ABC	ABC
Q.No: 100	Completely Randomised design is based on the principles of :	पूर्णत: याष्ट्रच्छिकीकृत अभिकल्प निम्न सिद्धांतो पर आधारित है:
A	Replication Randomisation and local control	पुनरावृत्ति,याट्टच्छिकीकरण एवं स्थानीय नियन्त्रण
В	Replication and Randomisation only	केवल पुनरावृत्ति एवं याष्ट्रक्थिकीकरण
c	Randomisation and local control only	केवल याष्ट्रच्छिकीकरण एवं स्थानीय नियन्त्रण
D	Replication and local control only	केवल पुनरावृत्ति एवं स्थानीय नियन्त्रण
O No. 10	A ratio estimator gives higher precision if	एक अनुपात आक्लक अधिक दक्षता देता है यदि

A Regression line of Y on X passes through origin समाश्रयण रेखा Y की X पर मूल बिद्ध से जाती है B Regression of Y on X is linear समाश्रयण रेखा Y की X पर एक घातीय है Both (Regression line of Y on X passes through origin) and (Regression of Y दोनो (समाश्रयण रेखा Y की X पर मूल बिद्ध से जाती है) तथा (समाश्रयण रेखा Y की X पर मूल बिद्ध से जाती है) तथा (समाश्रयण रेखा Y की X पर मूल बिद्ध से जाती है) तथा (समाश्रयण रेखा Y की X पर मूल बिद्ध से जाती है) तथा (समाश्रयण रेखा Y की X पर मूल बिद्ध से जाती है) तथा (समाश्रयण रेखा Y की X पर मूल बिद्ध से जाती है) तथा (समाश्रयण रेखा Y की X पर मूल बिद्ध से जाती है)	
Both (Regression line of Y on X passes through origin) and (Regression of Y दोनों (समाश्रयण रेखा Y की X पर मूल बिन्द से जाती है) तथा (समाश्रयण रेखा Y के	
on X is linear)hold	ही x पर एक घाती
D Neither (Regression line of Y on X passes through origin) nor (Regression of Y on X is linear)necessary (समाश्रयण रेखा Y की X पर मूल बिनुद्ध से जाती है) न (समाश्रयण रेखा Y की X पर मूल बिनुद्ध से जाती है) न (समाश्रयण रेखा Y की X	पर एक घातीय

	In simple random sampling without replacement the probability that a particular unit is selected at r^{th} draw, is:	पुनरर्थापन रहित सरत बाहुच्छिक प्रतिचयन में किसी दी गई इकाई के r वें चुनाव में चयन की प्रायिकता होती है:
A	r/N	r/N
В	1/N-r	1/N-r
С	1/(N-r+1)	1/(N-r+1)
D	1/N	1/N
	In a 2^3 factorial experiment the contribution of any effect (A) to the sum of squares for treatment is	एक 2 ³ बहुउपादानी प्रयोग में किसी उपाचार (A) का उपचार वर्ग योग में योगदान देता है:
	[A] ² /6r	[A] ² /6r
В	[A] ² /2r	[A] ² /2r
С	[A] ² /8r	[A] ² /8r
D	[A] ² /4r	[A] ² /4r
	A population consisting of 50 units is divided into two strata such that N_1 =30,	एक समष्टि जिसमें 50 इकाइयाँ है, दो स्तरों में विभाजित इस तरह से हैं कि N_1 =30, N_2 =20, S_1 =2,
2	$N_2=20$, $S_1=2$, $S_2=3$ if by Neymon Allocation, $n_1=6$ the sample size is	$S_2=3$ यदि नेमेन आवंटन से $n_1=6$ है तो प्रतिदर्श आकार का मान है:
	6	6
В	12	12

° va	The blocks are made in the direction perpendicular to route of fertility variation	विभिन्न खण्ड,उर्वरता परिवर्तन की दिशा की लम्बवत् दिशाओं में बनाये जाते हैं।
	The design controls experimental error in both the directions of experimental field	यह अभिकल्पना प्रयोगिक क्षेत्र की दोनों दिशाओं में प्रयोगिक तुटि को नियन्तित करती है।
C In	in this design the number of treatments of replications	इस अभिकल्पना में अनिवार्यतः उपचारों की संख्या पुनरावृत्तियों की संख्या के समान होती है।
	Only the principles of randomisations and replications are used in this design	इसमें मात्र याट्टच्छिकी करण तथा पुनरावृत्ति सिद्धांतों का उपयोग होता है।

D	None of these	इनमें से कोई नहीं
0	Equal standard deviation	बरावर मानक विचलन हों
В	Equal standard deviation and equal per unit cost	बराबर प्रति इकाई क्या तथा बराबर सानक विचलन हों
Α	Equal size and equal standard deviation	बरावर इकाइचाँ तथा बरावर मानक विचलन हो
Q.No: 109	when strata have	स्तारित याट्टव्हिक प्रतिवयन में इष्टतम् वितरण समानुपाती वितरण हो जाता है जबकि स्तरों में
D	PQ(N-n)/n(N-1)	PQ(N-n)/n(N-1)
C	P(N-n)/Q(N-1)	P(N-n)/Q(N-1)
В	PQ(N-n)/(n-1)N	PQ(N-n)/(n-1)N
Δ,	PQN/n(N-1)	PQN/n(N-1)
Q.No: 108	For estimating the population proportion P by a simple random sample without replacement, let p be the sample proportion. The value of V(p) is	माना कि प्रतिस्थापन रहित एक सरल साट्टव्छिक प्रतिचयन द्वारा समष्टि अनुपात P के आक्लक के लिये प्रतिद अनुपात P है। V(p) का मान है:
D	1	1
3	√0.85	$\sqrt{0.85}$
В	$\sqrt{0.75}$	$\sqrt{0.75}$
4	√0.6	<u>√0.6</u>
Q.No: 107	size 2 is taken without replacement. The standard error of its sample mean is	किसी समष्टि जिसकी इकाइयों का मान 5,4,3,2,1 है से 2 आकार का एक प्रतिदर्श, प्रतिस्थापन रहित सरर यादिन्डिक विधि से लिया जाता है। इस प्रतिदर्ष के माध्य की मानक त्रुटि है:
D	5	5
0	4	4
3	3	3
4	2	2
).No: 106	degrees of freedom of error is to be kept 14, the number of blocks required is:	स्वातंत्र कोटि 14 रखनी है तो खण्डक की संख्या होनी बाहिये

Q.No:	110 In 2 ³ factorial experiment with 5 blocks, the degrees of freedom of error is	पाँच खण्डों वाले एक 2 ³ बहुउपादानी प्रयोग में त्रुटि की स्वातंत्र कोटि है।
A	4	4
В	9	9
C	16	16
D	28	28

	Using stand	ard not	ations given that	मानक संकेतों मे	दिया है:	
	Stratum	W	S _i	Stratum	W,	Si
Q.No: 111	1	0.8	2	1	0.8	2
	2 The Neymar	0.2 ralloca	4 tion of a sample of size 12 will be	2 ते 12 आकार व	0.2 गले प्रतिदः	4 र्श का नीमेन नियतन होगा
A	(4,8)			(4,8)		
В	(6,6)			(6,6)		
c	(8,4)			(8,4)		
D	None of th	ese		इनमें से कोई न	ही	

Q.No: 112 Let the degrees of freedom for error sum of squares is 6. Then the order of the Latin माना कि एक लेटिन वर्ग अभिकल्पना में ब्रुटि वर्ग योग की स्वातंत्र कोटि 6 है तो लेटिन वर्ग का आकार है: A 3 X 3 3 X 3 B 4 X 4 4 X 4 С 5 X 5 5 X 5 D 6 X 6 6 X 6

प्रतिवर्षेज $T=\sum_{i=1}^k \left\{\!\! rac{(0_i\!-\!e_l)^2}{e_i}\!\!
ight\}$ का बंटन होता है: Q.No: 113 The statistic $T=\sum_{i=1}^k \!\! \left\{\!\! rac{(o_i-e_i)^2}{e_i}\!\! \right\}$ follows

Chi-square distribution with (k-1)df काई स्कापर (१८-1) स्वातंत्र कोटि का Chi-square distribution with k df В काई स्क्रायर k स्वातंत्र कोटि का C

Chi-square distribution unit (k+1)df काई स्कायर (k+1) स्वातंत्र कोटिका

	None of these	इनमें से कोई नहीं
Q.No: 114	If X_1 , X_2 and X_3 are mutually independant standard normal variates, then the variance of $(X_1^2+X_2^2+X_3^2)$ is:	यदि X_1 , X_2 तथा X_3 परस्पर स्वतंत्र मानक प्रसामान्य चर है तो $({X_1}^2 + {X_2}^2 + {X_3}^2)$ का प्रसरण है:
А	2	2
В	3	3
С	6	6
D	12	12
Q.No: 115	Let X be a chi-square variate with 5 degrees of freedom. Then $E(X^2)$ is	माना x एक 5 स्वातंत्र कोटि का काई वर्ग चर है तो $E(X^2)$ का मान है:
A	50	50
В	35	35
С	10	10
D	5	5
	Stratum is larger	स्तर बड़ा हो
В	Stratum is larger Stratum is more variable internally Sampling is cheaper in the stratum All of these	स्तर बड़ा हो स्तर में आन्तरिक विविधता अधिक हो स्तर में प्रतिचयन सस्ता हो सभी सही है
А В С D	Stratum is more variable internally Sampling is cheaper in the stratum	स्तर में आन्तरिक विविधता अधिक हो स्तर में प्रतिचयन सस्ता हो सभी सही है
A B C D Q.No: 117	Stratum is more variable internally Sampling is cheaper in the stratum All of these	स्तर में आन्तरिक विविधता अधिक हो स्तर में प्रतिचयन सस्ता हो
A B C D Q.No: 117	Stratum is more variable internally Sampling is cheaper in the stratum All of these The principle of local control is used to	स्तर में आन्तरिक विविधता अधिक हो स्तर में प्रतिचयन सस्ता हो सभी सही हैं स्थानीय नियंत्रण सिख्दांत का प्रयोग निम्न हेंद्र करते हैं:
Q.No: 116 A B C D Q.No: 117 A B C	Stratum is more variable internally Sampling is cheaper in the stratum All of these The principle of local control is used to Reduce error variance	स्तर में आन्तरिक विविधता अधिक हो स्तर में प्रतिचयन सस्ता हो सभी सही हैं स्थानीय नियंत्रण सिख्दांत का प्रयोग निम्न हेंतु करते हैं: बुटि प्रसरण कम करना

sification assification e ad block design, we always have ocks = number of treatments ocks < number of treatments ocks > number of treatments e ch test is used for testing the equally of any two treatment means?	द्विधा वर्गीकरण इनमें से कोई नहीं याट्टिक खण्डक अभिकल्पना में सदैव खण्डकों की संख्या = उपचारों की संख्या खण्डकों की संख्या > उपचारों की संख्या खण्डकों की संख्या > उपचारों की संख्या इनमें से कोई नहीं याट्टिककृत खण्डक अभिकल्प में किन्हीं दो उपचारों के माध्य की समानता परीक्षण के लिये किस परीक्षण क प्रयोग होता है ? F परीक्षण र परीक्षण काई वर्ग परीक्षण इनमें से कोई नहीं	
ed block design, we always have ocks = number of treatments ocks < number of treatments ocks > number of treatments e ch test is used for testing the equally of any two treatment means?	इनमें से कोई नहीं याइन्छिक खण्डक अभिकल्पना में सदेव खण्डकों की संख्या = उपचारों की संख्या खण्डकों की संख्या > उपचारों की संख्या खण्डकों की संख्या > उपचारों की संख्या खण्डकों की संख्या > उपचारों की संख्या इनमें से कोई नहीं याइन्छिककृत खण्डक अभिकल्प में किन्हीं दो उपचारों के माध्य की समानता परीक्षण के लिये किस परीक्षण व प्रयोग होता है ? F परीक्षण t परीक्षण काई वर्ग परीक्षण	
ed block design, we always have ocks = number of treatments ocks < number of treatments ocks > number of treatments e ch test is used for testing the equally of any two treatment means?	यादृष्टिक खण्डक अभिकल्पना में सदैव खण्डकों की संख्या = उपचारों की संख्या खण्डकों की संख्या < उपचारों की संख्या खण्डकों की संख्या > उपचारों की संख्या इनमें से कोई नहीं यादृष्टिककृत खण्डक अभिकल्प में किन्हीं दो उपचारों के माध्य की समानता परीक्षण के लिये किस परीक्षण व प्रयोग होता है ? F परीक्षण t परीक्षण	
ocks = number of treatments ocks < number of treatments ocks > number of treatments e ch test is used for testing the equally of any two treatment means?	खण्डकों की संख्या = उपचारों की संख्या खण्डकों की संख्या > उपचारों की संख्या खण्डकों की संख्या > उपचारों की संख्या इनमें से कोई नहीं याष्ट्रच्छिककृत खण्डक अभिकल्प में किन्हीं दो उपचारों के माध्य की समानता परीक्षण के लिये किस प्ररीक्षण व प्रयोग होता है ? F परीक्षण t परीक्षण काई वर्ग परीक्षण	
ocks < number of treatments ocks > number of treatments e ch test is used for testing the equally of any two treatment means?	खण्डकों की संख्या < उपचारों की संख्या खण्डकों की संख्या > उपचारों की संख्या इनमें से कोई नहीं यादृष्ठिककृत खण्डक अभिकल्प में किन्हीं दो उपचारों के माध्य की समानता परीक्षण के लिये किस परीक्षण क प्रयोग होता है ? F परीक्षण t परीक्षण काई वर्ग परीक्षण	
ocks > number of treatments e ch test is used for testing the equally of any two treatment means?	खण्डकों की संख्या > उपचारों की संख्या इनमें से कोई नहीं यादृष्टिककृत खण्डक अभिकल्प में किन्हीं दो उपचारों के माध्य की समानता परीक्षण के लिये किस प्ररीक्षण व प्रयोग होता है ? F परीक्षण t परीक्षण काई वर्ग परीक्षण	
ch test is used for testing the equally of any two treatment means?	इनमें से कोई नहीं याइच्छिककृत खण्डक अभिकल्प में किन्हीं दो उपचारों के माध्य की रामानता परीक्षण के लिये किस प्ररीक्षण व प्रयोग होता है ? F परीक्षण t परीक्षण काई वर्ग परीक्षण	
ch test is used for testing the equally of any two treatment means?	याट्टच्छिककृत खण्डक अभिकल्प में किन्हीं दो उपचारों के माध्य की समानता परीक्षण के लिये किस परीक्षण व प्रयोग होता है ? F परीक्षण t परीक्षण काई वर्ग परीक्षण	
ıst	प्रयोग होता है ? F परीक्षण ६ परीक्षण काई वर्ग परीक्षण	
	t मरीक्षण काई वर्ग परीक्षण	
	काई वर्ग परीक्षण	
	इनमें से कोई नहीं	
freedom of F-ratio in a 5 x 5 latin square design are:	5 x 5 हैटिन वर्ग अभिकल्प में F- अनुपात का स्वातांत्र कोटि होता है:	
and the second s	(4,8)	
	(5,8)	
	(4,12)	
	(5,12)	
of freedom of error sum of squares in a Latin square design is 20.	किसी लैटिन वर्ग अभिकल्प में त्रुटि वर्ग योग की स्वातांत्र कोटि 20 है। पंक्तियों की संख्या है:	
	7	
	6	
	5	
	of freedom of error sum of squares in a Latin square design is 20. rows is	

D 4 एक याट्टिब्बिकीकृत खण्डक अभिकल्प में 4 खण्ड,6 उपचार है तथा एक प्रेक्षक लुप्त है। तब इसकी त्रुटि की स्वातीत्र कोटि हैं: Q.No: 123 In a randomised block design with 4 blocks, 6 treatments and one observation is missing. Then its error degree of freedom is A 17 17 В 16 16 15 C 15 D 14 14 A,B,C तीन उपचारों का निम्न अभिन्यास दिया है: f A f B f CThe layout of three treatments A,B,C is given as A B C BAC Q.No: 124 B A C $egin{aligned} C & C & B \\ \mathbf{u}_{\mathbf{g}} & \mathbf{t}_{\mathbf{q}} \mathbf{t}_{\mathbf{q}} \mathbf{t}_{\mathbf{q}} \mathbf{t}_{\mathbf{q}} \mathbf{t}_{\mathbf{q}} \end{aligned}$ CCB It represents: लैटिन वर्ग अभिकल्प A Latin Square design В 2³ बहुउपादानी अभिकल्प 2³ factorial experiment C Randomised block design याष्ट्रच्छिकीकृत खण्डक अभिकल्प Completely randomized design पूर्णतया याष्ट्रच्छिकीकृत अभिकल्प

C	onsidered the followir	ng table	
	Source	d.f	SS
	Treatment	3	5
Q.No: 125	Block	4	25
	Error	X	Υ
-	-	- 1	

The values of X,Y and Z respectively are

4,11,10 12,10,19

14,21,10

C

निम्न सारिणी पर विचार कीजि	र्षे:	
स्त्रोत	स्वातंत्र कोटि	वर्गयोग
उपचार	3	5
खण्डक	4	25

त्र्दि X Y Z योग 40

X,Y तथा Z के मान हैं क्रमश:

4,11,10

12,10,19

D	None of these	इनमें से कोई नहीं
Q.No: 126	With usual notations, efficiency of cluster sampling in relation to simple random sampling is approximately the reciprocal of the following	चिन्हों के सामान्य अर्थों में गुच्छ प्रतिचयन की दक्षता सरल याट्टच्किक प्रतिचयन विधि के सापेक्ष निम्न में लगभन किसके विलोम के बराबर होती है ?
A	1+мρ	1+мр
3	1+(M-1)ρ	1+(M-1)ρ
	1+(M+1)p	1+(M+1)p
D	(1+M)P	(1+M)P
Q.No: 127	A population consisting of 100 units is divided into two strata such that N_1 =60, N_2 =40, S_1 =2 and S_2 =3. If by Neyman Allocation n_1 =12, the sample size n is:	एक समष्टि जिसमें 100 इकाइयाँ है को दो स्तरों में इस प्रकार बाँटा गया है कि N1=60, N2=40, S1=2 तथा S2=3 यदि नेमेन नियतन से N1=12 है तो प्रतिचयन अमाप है:
Α	24	24
3	12	12
	6	6
0	None of these	इनमें से कोई नहीं
Q.No: 128	The randomised block design is preferred to completely randomised design when:	याद्रच्छिकीकृत खण्डक अभिकल्प को पूर्णतया याद्रच्छिकीकृत अभिकल्प पर वरीयता दी जाती हैं जब:
A	Treatments are heterogeneous	कारक विषम है
В	Experimental units are heterogeneous	प्रयोगिक इकाइयाँ विषम है
2	Number of replications are equal for treatments	कारकों की पुनरावृत्ति संख्या बराबर है
	None of these	इनमें से कोई नहीं
Q.No: 129	In a SX5 latin square design having one observation missing, the totals of row, column and treatment having the missing observations are 25, 40, 35 respectively and the grand total is 100. The estimate of missing observations is :	किसी SXS लैटिन वर्ग अभिकल्पना में एक प्रेक्षण लुप्त है । लुप्त प्रेक्षण वाले पंक्ति,स्तम्भ तथा उपचार योग क्रमष: 25,40,35 है तथा पूर्ण योग 100 है । तब लुप्त प्रेक्षण का आक्तक है :
Α	30	30
3	15	15
0	20	20
)	25	25

900 units of a population are divided into two strata with N_1 =100, N_2 =200, S_1 =2, Q.No; 130 S_2 =3, If a sample of size 20 have to be selected by Neyman's Allocation, the two sizes from strata are respectively किसी समष्टि को जिसमें 300 इकाइयाँ है, को दो स्तरों में इस प्रकार बाँदा गया है कि N₁=100, N₂=200, S₁=2, S₂=3 यदि 20 अमाप का प्रतिवर्श चुनना है तो नेमेन नियतन से दो स्तरों से चुने गये प्रतिवर्षों का अमाप क्रमश_े हैं: A (8, 12) (8, 12) В (12, 8) (12, 8)C (5, 15) (5, 15) (15, 5)D (15, 5)

An unbiased estimator of population proportion of male in a City is p. Which is based on simple random sampling without replacement, N and n are respectively population and sample sizes. Then an unbiased estimator of variance of p is c p(1-p) population and sample sizes. Then an unbiased estimator of variance of p is c p(1-p) p) तब है जब c का मान है:

A	$\frac{N-n}{N(n-1)}$	$\frac{N-n}{N(n-1)}$	
В	$\frac{N-n}{Nn}$	$\frac{N-n}{Nn}$	
С	$\frac{N-n}{(N-1)n}$	$\frac{N-n}{(N-1)n}$	
D	None of these	इनमें से कोई नहीं	

Q:No: 132	In a randomised block design there are 6 treatments 5 replications. The following is given Mean sum of squares due to replication = 20 Mean sum of squares due to treatment = 20 Total sum of squares = 220. Then , mean sum squares due to error is:	एक याष्ट्रव्यिकीकृत खण्डक अभिकल्पना में 6 कारक है तथा प्रत्येक की पुनरावृत्ति की संख्या 5 है। निम्न दिया है: पुनरावृत्ति वर्ग योग का माध्य = 20 कारक वर्ग योग का माध्य = 20 कुल वर्ग योग = 220 तब जुटि के वर्ग योग का माध्य है:
A	40	40
В	20	20
C	4	4
D	2	2

Q.No: 133	In a bivariete population the two regression lines are perpendicular to each other. When correlation coefficient ${\bf r}$ between the two variables is :	एक द्विचर समष्टि में दो समाश्रयन रेखायें एक दूसरें के लम्बवत होती है जब दोनों चरों के बीच सहसम्बन्ध गुणांक r का मान होता है:
A	r = 1	r = 1
В	r = 0	r = 0
С	r = -1	r = -1
D	0 < r < 1	0 < r < 1

Q.No: 134	For controlling quality of items in a production process where number of defects per item are counted. Which one of the following charts is used?	किसी उत्पादन प्रक्रिया में वस्तुओं के गुणता नियन्त्रण के लिये परीक्षा हेतु चुने हुये समूह में प्रत्येक वस्तु में दांष की संख्या के लिये निम्न में किस चार्ट (या चित्र) का प्रयोग किया जाता है?
A	Mean Chart	माध्य चित्र
В	R Chart	R चित्र
C	p Chart	P चित्र
D	C Chart	C चित्र

Q.No:	135 CUSUM Chart is especially useful for detection of	CUSUM चित्र (या चार्ट) निम्न में किसके संधान के लियें विषेष रूप से उपयुक्त है ?
A	Small process shifts	छोटी प्रक्रिया बदलाव
В	Large process shifts	बड़ी प्रक्रिया बदलाव
С	Nonrandom patterns	याष्ट्रच्छिक रहित रीति
D	None of these	इनमें से कोई नहीं

Q.No: 136	A double sampling plan is	द्विप्रतिचयन योजना
A	Equally efficient as a single sampling plan	एकल प्रतिचयन योजना के समान दक्ष होती है
В	Usually more efficient then a single sampling plan	एकल प्रतिचयन योजना की अपेक्षा साधारणतः अधिक दक्ष होती है
Ċ	Never more efficient than a single sampling plan	एकल प्रतिचयन योजना की अपेक्षा कभी नहीं अधिक दक्ष होती है
D	None of these	इनमें से कोई नहीं

Q.No: 137	Which of the following	distribution is used to construct p-Chart?	निम्न में किस बंटन का प्रयोग p चित्र बनाने में किया जाता है ?	
A	Binomial		हिपद	
В	Normal		प्रसामान्य	

С	Polsson	प्याँसा
0	None of these	इनमें से कोई नहीं
).No: 138	Process control is carried out:	प्रक्रिया नियन्त्रण को किया जाता है
	Before production	उत्पादन से पहलें
3	After production	उत्पादन के बाद
3	During production	उत्पादन के समथ
)	None of these	इनमें से कोई नहीं
Q.No: 139	If the price index for the year 2015 is110.3 and the price index for the year 2005 is 98.4 then upto two decimal places, the purchasing power of money(in ₹) of 2005 compared to 2015 is	यदि 2015 में मूल्य सूचकांक 110.3 तथा 2005 में मूल्य सूचकांक 98.4 है तो दशमलव का दो स्थानों तक,रूपये की क्रय क्षमता: 2005 में 2015 के सापेक्ष होगी
ν.	1.12	1.12
3	1.25	1.25
	1.35	1.35
)	0.89	0.89
Q.No: 140 A 3	If the linear trend for the number of footballs sold per year at a shop is given by equation Y=20+135t(the base period is 2008), then the forecast for number of foot balls to be sold in 2018 will be 1150 1370	एक दुकानदार द्वारा बेची गयी फुटवालों की प्रतिवर्ष संख्या की रेखीय उपनित को निम्न रेखा प्रदर्षित करती है Y=20+135t (यहाँ आधार वर्ष 2008 को माना गया है) तो उसके द्वारा 2018 में बेची जाने वाली फुटवार का पूर्वानुमान होगा: 1150 1370
)	None of these	इनमें से कोई नहीं
Q.No: 141 A	Which control Chat utilizes Poisson distribution for during its control limits? p - chart np - chart	किस नियन्त्रण चित्र में नियन्त्रण सीमाओं को प्राप्त करने के लिये प्वाँसा बंटन को प्रयुक्त किया जाता है ? p - चित्र np - चित्र
-	c - chart	c - चित्र
2		(√x, σ) चित्र

Q.No: 142	If the random variable X follows exponential distribution with mean 10 then P[X>10/X>5] is	यदि याट्टच्छिक वर X का ब्रंटन माध्य 10 वाला चरधातांकी ब्रंटन है तो P[X>10/X>5] होगी
Δ.	\sqrt{e}	\sqrt{e}
В	1/√e	1/√e
C	e	e
D	None of these	इनमें से कोई नहीं
Q.No: 143	Index number I satisfies circular test if	सूचकांक ! बक्रीय परीक्षण को सन्तुष्ट करता है यदि
Д	$\mathbf{I_{ab}} \ \mathbf{I_{bc}} = \mathbf{I_{ac}}$	$\mathbf{I}_{ab} \; \mathbf{I}_{bc} = \mathbf{I}_{ac}$
В	$\mathbf{I_{ab}} \mathbf{I_{bc}} \mathbf{I_{cd}} = 1$	$\mathbf{I_{ab}} \mathbf{I_{bc}} \mathbf{I_{cd}} = 1$
c	$\mathbf{I}_{ab} \mathbf{I}_{bc} \mathbf{I}_{cd} \mathbf{I}_{da} = \mathbf{I}$	$\mathbf{I}_{ab} \mathbf{I}_{bc} \mathbf{I}_{cd} \mathbf{I}_{da} = 1$
D	None of these	इनमें से कोई नहीं
Q.No: 144	In Marshall-Edgeworth index number the weight used is:	मार्शल-एजवर्थ सुवकांक में प्रयुक्त भार है:
A	$\frac{q_0+q_1}{2}$	$\frac{q_0+q_1}{2}$
В	$\sqrt{q_0q_1}$	$\sqrt{q_0q_1}$
С	Po qo	P0 40
D	p ₁ q ₁	p ₁ q ₁
Q.No: 145	The secular trend of a time series is measured by	किसी काल श्रेणी में दीर्घकालीन उपनति झात करने की विधि हैं:
Δ.	Link Relative Method	आपेक्षिक श्रंसला विधि
В	Moving Averages	गरिमान मध्य
C	Variate Difference Method	चर अन्तर विधि
D	Periodgram Analysis	पीरियो <mark>डोग्राम वि</mark> श्लेषण

A 0.999 B 0.99 C 0.90	Q.No: 146	i. If the average annual probability of dying between exact ages 20 and 30 yeas is 0.001, the value of I_{30}/I_{20} is	रादि 20 तथा 30 वर्ष की सहीं उम्रों के मध्य मृत्यु की औसत वार्षिक प्रायिकता 0.001 है तो I ₃₀ /I ₂₀ का मान है:
C 0.90 0.90	A	0.999	0.999
	В	0.99	0.99
A TANK	C	0.90	0.90
D 0.001	D	0.001	0.001

Q.No:	L47 In a life table, generally the value of radix (l_0) is taken to be	सामान्यतः किसी जीवन सारिणी में मूलांक (I ₀) को लिया जाता है:	
A		1	
В	10000	10000	
C	100000	100000	
D	1000000	1000000	

Q.No: 148	In a life table, for calculation of expectancy of life at age x, we use the formula:	किसी जीवन सारणी में उम्र x पर जीवन प्रत्याशा की गणना करने के लिये हम किस सूत्र को प्रयोग में लाते हैं ?
A	$e_x^0 = \frac{T_x}{l_x}$	$e_x^0 = \frac{T_x}{l_x}$
В	$e_x^0 = \frac{T_x}{L_x}$	$e_x^0 = \frac{T_x}{L_x}$
С	$e_x^0 = \frac{L_x}{L_x + 1}$	$e_x^0 = \frac{L_x}{L_x + 1}$
D	$e_x^0 = T_x L_y$	$e_v^0 = T_v L_v$

	known as General fertility rate	सामान्य उर्वरता दर
В	Crude birth rate	अशुद्ध जन्म द्र
c	Total fertility rate	कुत उर्वरता दर
D	Net reproduction rate	शुद्ध पुनरूत्पादन दर

Q.No: 150	A human population will have a tendency to increase in size of net reproduction rate is	एक मानव समष्टि आकार में बढ़ने की प्रवृत्ति रखती है यदि शुद्ध पुनरूत्वादन दर
A	Greater than 1	1 से अधिक है
В	Less than 1	1 से कम है
C	Equal to 1	1 के बरावर है
D	Zero	शन्य है

Q.No: 1	51 Periodogram analysis is a method of determining	पीरियोडोग्राम विश्लेषण किसको जानने की एक विधि है ?	
A	Seasonal variation	मौसामी विविधता	
8	Cyclical variation	चक्रीय विविधता	
С	Random component	गाहस्थिक अवयव	
D	Secular trend	दीर्घकालिक उपनति	

Q.No; 152 Fisher's 2 transformation is used when we wish to test the equality of है
A Variances of k populations k समष्टियों के प्रसरणों का

B Means of k populations k समष्टियों के प्रमरणों का

C Skewness of two populations दो समष्टियों के विषमता का

D Correlation coefficients of k populations k समष्टियों के सहस्रायंथ गुणांकों का

The following table gives the frequency distribution of number of live births born to women in the age group 15-45 years $\,$

Q.No: 153 Age group Number of women Number of live births
15-19 20000 600
20-24 18000 1200
25-29 14000 800
30-35 8000 96

The value of General Fertility Rate (GFR) based on the above data is:

15 से 45 वर्ष की महिलाओं द्वारा जन्में बच्चों का निम्न बारबार बंटन है:

वर्ष समूह	महिलाओं की संख्या	जन्में बच्चों की संख्या
15-19	20000	600
20-24	18000	1200
25-29	14000	800
30-45	8000	96

उपरोक्त के आधार पर सामान्य उर्वरता दर हैं:

D

None of these

4	44.933	44.933
В	89.866	89.866
Ç	449.33	449.33
0	898.66	898.66
Q.No: 154	Consumer price index numbers reveal the state of	उपभोक्ता मृल्य सूचकांक दर्शाता है । स्थिति
4	Inflation only	मात्र मुद्रा स्फीति की
3	Deflation only	मात्र मुद्रा हास की
0	Both (Inflation only) and (Deflation only)	दोनो (मात्र मुद्रा स्फीति की) तथा (मात्र मुद्रा हास की)
0	Neither (Inflation only) nor (Deflation only)	न (मात्र मुद्रा स्फीति की) न (मात्र मुद्रा हास की)
Q.No: 155	Sample registration for collecting vital statistics is	जैव सांख्यिकी के एकत्रीकरण में प्रतिचयन पंजीकरण
4	A fixed panel survey	एक स्थिर पैनल सर्वेक्षण है
3	A Cross-sectional survey	एक क्रास-सेक्शनल सर्वेक्षण है
2	Both (A fixed panel survey) and (A Cross-sectional survey)	दोनों (एक स्थिर पैनल सर्वेक्षण है) तथा (एक क्रास-सेक्शनल सर्वेक्षण है)
0	Neither (A fixed panel survey) nor (A Cross-sectional survey)	न (एक स्थिर पैनल सर्वेक्षण है) न (एक क्रास-सेक्शनल सर्वेक्षण है)
Q.No: 156	In a time series if the demand of warm clothes is increased during winters, it is an example of	किसी काल श्रेणी में यदि जाड़ो में गर्म कपड़ों की माँग बढ़ती हैं तो यह उदाहरण है
4	Secular trend	दीर्घकालिक उपनति का
3	Seasonal variation	मौसमी विविधता का
2	Cyclical variation	चक्रीय विविधता का
0	None of these	इनमें से कोई नहीं
Q.No: 157	Which type of variation is found in a statistically controlled process?	एक सांख्यिकीय रूप से नियन्तित प्रक्रिया में किस प्रकार की विविधता पायी जाती है ?
A	Non - random	याष्ट्रच्छिक रहित
3	Random	याष्ट्रस्थिक
3	Normal	प्रसामान्य
		2.1.1.2

Q.No: 158	Control charts for variables are based on which of the following distribution ?	चरों के नियन्तित चित्र किस बंटन पर आधारित हैं ?
4	Normal	प्रसामान्य
3	Binomial	द्विपद
2	Poisson	प्याँसा
D	None of these	इनमें से कोई नहीं
Q.No: 159	A lock out in a factory for a month represents which component of time-series?	किसी फैंक्स्री में एक महीने तक ताला बन्दी काल श्रेणी के किस अवयव को दर्शाती है ?
A	Cyclic Movement	चक्रीय संचलन
3	Seasonal Movement	मौसमी संचलन
C	Secular Movement	दीर्घकालिक उपनति
D	Irregular Movement	अनियमित संचलन
Q.No: 160 A	Under which one of the following conditions will the outcome of an experiment classified as success E or failure \overline{E} follow a Bernoulli distribution? $\mathbf{P(E)} = \frac{1}{2}$	किसी प्रयोग की सफलता E या असफलता \overline{E} के रूप में वर्गीकृत परिणाम का बंदन निम्न प्रतिबन्धों में से कौ से एक के तहत् बर्नोली बंदन होगा ? $\mathbf{P}(\mathbf{E}) = \frac{1}{2}$
3	P(E) = 0	P(E) = 0
3	P(E) = 1	P(E) = 1
0	P(E) remains constant in all trials	सभी अभिप्रयोगों में P(E) अचर रहता है
Q.No: 161	Fisher's ideal index number satisfies which of the following tests?	फिसर आदर्श सुचकांक निम्न में कौन से परिक्षणों को सन्तुष्ट करता है ?
A	Andreas and analysis of the second se	0.00
	Circular test only	चक्रीय परीक्षण मात्र
В	Time reversal test only	चक्राय परीक्षण मात्र कालोक्कमन परीक्षण मात्र
3	ACTION OF THE CONTRACT OF THE	

Q.No: 162 Let X be a continuous random variable with cumulating distribution function F(x). Y is defined as Y=F(x). Then standard deviation of Y will be

माना X एक सतत् चर हैं जिसका संचयी बंटन फलन F(x) हैं। Y को परिभाषित किया जाता है Y=F(x) तो Y का मानक विचलन होना

Á	$\frac{1}{2}$	1 2	
B	1/2√3	1/2√3	
С	1/12	1/12	
D	None of these	इनमें से कोई नहीं	

Q.No: 163	The number of non-zero characteristic roots of a balanced incomplete block design with parameters (b,v,k,r,λ) is	संतुलित अपूर्ण खण्डक अभिकल्पना, जिसके प्राचल (b,v,k,r, λ) आव्यूह के शून्य रहित अभिलाक्षणिक मूलों की संख्या होती हैं:
A	λb/r	λb/r
В	λь/κ	λь /к
С	λr/k	λr/k
D	λv/k	λν∕κ

The layout of a 2³ factorial experiment is given as

Q.No; 164

Rep	lication -1	Repl	ication-2
Block-1	Block-2	Block-3	Block-4
(1)	а	abc	b
ab	b	bc	С
abc	ac	a	ac
c	bc	(1)	ab

The interactions confounded in two replicates are respectively

A	AB, ABC
В	AB, AC
C	AC. BC

D None of these

2³ बहुउपादानी प्रयोग का अभिन्यास निम्न प्रकार दिया है

पुनरावृत्ति—1		पुनरावृत्ति—2	
खण्डक -1	खण्डक -2	खण्डक-३	खण्डक-४
(1)	а	abc	b
ab	b	bc	Ċ
abc	ac	а	ac
С	bc	(1)	ab

पुनरावृत्ति 1 तथा 2 में क्रमशः अन्योत्य है:

AB, ABC AB, AC AC, BC इसमें से कोई नहीं

Q.No: 165 In a 2³ factorial experiment with 10 replications, the degrees of freedom due to

एक 2³ बहुउपादानी अभिप्रयोग मे, जिसमें 10 पुनरावृत्तियाँ है,तुटि स्वातंत्र कोटि हैं:

A	79	79
В	63	63
С	59	59
D	19	19

Which of the following distribution has a pair of degrees of freedom?	निम्न में कौन सा बंदन युग्म खातंत्र कोटि वाला है ?	
Normal	प्रसामान्य	
Binomial	द्विपद	
Chi-Square	काई वर्ग	
None of these	इनमें से कोई नहीं	
	Normal Binomial Chi-Square	Normal प्रसामन्य Binomial द्विपद Chi-Square काई वर्ग

	सदैव प्रसामान्य है
pulation size is greater than 100	केवल प्रसामान्य प्रतीत होता है जब समष्टि अमाप 100 से अधिक है
ple size increases	प्रसामान्य की ओर अग्रसर होता है जैसे-जैसे प्रतिदर्श आकार बढ़ता है
	इनमें से कोई नहीं
	opulation size is greater than 100 uple size increases

Q.No: 168	If in a symmetric distribution first quartile is 54.52 and third quartile is 78.86, the median of this distribution will be	यदि किसी सम बंदन में प्रथम चतुर्थांक 54.52 है तथा तृतीय चतुर्रथांक 78.86 है तो इस बंदन की माध्यिका होगी:
A	12.17	12.17
В	39.43	39.43
С	66.69	66.69
D	133.38	133.38

Q.No: 169	Which one of the following is not possible for a binominal distribution ?	निम्न में से कौन द्विपद बंटन के लिये सम्भव नहीं है ?
A	Mean = 2, Variance = 3/2	माध्य = 2, प्रसरण = 3/2
В	Mean = 5, Variance = 9	माध्य = 5, प्रसरण = 9
C	Mean = 10, Variance = 5	माध्य = 10, प्रसरण = 5
		3/JU//

D	Mean = 4, Variance = 8/3	माध्य = 4, प्रसरण = 8/3
O.No: 170	Poisson distribution is a limiting case of	प्वांसा बंटन एक सीतान्त अवस्था है
A	Normal distribution	प्रसामान्य बंटन का
В	Uniform distribution	सम बंटन का
c	Binominal distribution	द्विपद बंटन का
D	None of these	इनमें से कोई नहीं
Q.No: 171	The region in which null hypothesis is rejected, is called:	वह क्षेत्र जहाँ शून्य परिकल्पना को अस्वीकृत किया जाता है,कहलाता है:
A	Level of significance	सार्थकता स्तर
В	Region of Acceptance	स्वीकृत क्षेत्र
c	Critical Region	क्रान्तिक क्षेत्र
D	None of these	इनमें से कोई नहीं
Q.No: 172	Let $\rho_{1,2\;3,\ldots,p}$ be the population multiple correlation coefficient of x_1 on x_2 , x_3 , x_p . Then in order to test the null hypothesis H ₀ : $\rho_{1,2\;3,\ldots,p}$ = 0, which of the following test is used?	मान लीजिये कि $\rho_{1,2,3,,p}$, x_2 , x_3 , x_p पर x_1 का समष्टि अनेकथा सहसम्बंध है तो n आकार के यादृष्टिक प्रतिदर्श के आधार पर शून्य परिकल्पना $H_0\colon p_{1,2,3,,p}=0$ के परीक्षण के लिये निम्न में कौन सा परीक्षण प्रयुक्त किया जाता है ?
Á	Chi-Square	काई वर्ग
В	•	t
c	Normal	प्रसामान्य
D		F
Q.No: 173	Which one of the following is one the basic principles of design of experiments?	िम्स में कौन प्रयोगों की अभिकल्पना का एक मूलभूत सिद्धांत है ?
A	Confounding	संकरण
В	Error Control	बुटि नियन्त्रण
c	Compounding	संयोजन

Q.No: 174 If a systematic sample of size 10 taken from a population of size 100, the 27th,

यदि 100 आकार के किसी समष्टि से 10 आकार के लिये गये एक क्रमबंद्ध प्रतिदर्श में समष्टि की 27वीं, 87वीं,

	$87^{th},57^{th},97^{th},$ and $7^{th},$ units of the population are included, then rest of the five units of the sample are	57वीं, 97वीं तथा 7वीं इकाइयाँ शामिल हुयी है, तो प्रतिदर्श की शेष पाँच इकाइयाँ है
A	17 th , 67 th , 37 th , 77 th and 47 th units of population	समष्टि की 17 वीं, 67 वीं, 37 वीं, 77 वीं तथा 47 वीं इकाइयाँ
В	10 th , 20 th , 30 th , 40 th and 50 th units of the population	समष्टि की 10 वीं, 20 वीं, 30 वीं, 40 वीं तथा 50 वीं इकाइयाँ
С	1st, 2 nd , 3 rd , 4 th , and 5 th units of the population	समष्टि की पहली,दूसरी,तीसरी,चौथी तथा पाँचवीं इकाइयाँ
D	Any five units of the population	समष्टि की कोई भी पाँच इकाइयाँ
Q.No: 175	Let X be uniformly distributed over the interval [1, 3], then value of x_0 such that Pr [X<2 + x_0] = 3/4, is	मान लीजिये कि \times अन्तराल [1, 3] में समरूप से बंदित हैं, तो x_0 का मान इस प्रकार कि Pr [X<2 + x_0] = 3/4 होगा
A	3/4	3/4
В	3/2	3/2
c	1/2	1/2
D	None of these	इनमें से कोई नहीं
Q.No: 176	A distribution has variance 15, γ_1 = 1 and β_2 = 4. Then, third and fourth central moments are respectively	किसी बंटन का प्रसरण 16, $\gamma_1 = 1$ तथा $\beta_2 = 4$ है तो तीसरा तथा चौथा आपूर्ण क्रमशः है:
A	(64, 1020)	(64, 1020)
В	(60, 1024)	(60, 1024)
С	(65, 1024)	(65, 1024)
D	(64, 1024)	(64, 1024)
Q.No: 177	The standard deviation of two variables are $\sigma_1=2$ and $\sigma_2=3$ and the correlation. Coefficient between them is 1/2. If θ is the acute angle between the lines of regression for these variables, then values of $\tan \theta$ is:	दो वरों के मानक विचलन $\sigma_1=2$ तथा $\sigma_2=3$ हैं तथा उनके मध्य सहसम्बंध गुणांक $1/2$ है। यदि इन वरों की समाश्रयण रेखाओं के बीच का न्यून कीण θ हैं, तो $\tan\theta$ का मान हैं:
A	7/13	7/13
В	9/19	9/19
c	9/13	9/13
D	6/19	6/19

Q.No: 178 Let X and Y be two random variables such that Y = (X-a)/b where a and b (> 0) are मान लेंजिये X तथा Y दो यादृक्किक चर इस प्रकार है कि Y = (X-a)/b जहाँ a तथा b (> 0) स्थिरांक हैं। तो constants. Then, which of the following is true?

A	Mean(X) = b Mean(Y)	माध्य (X)= b माध्य (Y)	
В	Standard Deviation (X) = Standard Deviation (Y)	मानक विचलन (X) = मानक विचलन (Y)	
С	Mean (X) = Mean (Y)	माध्य (X) = माध्य (Y)	
D	Standard Deviation (X) = b Standard Deviation (Y)	मानक विवलन (X) = मानक विवलन (Y)	

Q.No:	179 Index numbers measure	सूचकांक मापते है	
A	Relative Change Only	सापेक्ष परिवर्तन मात्र	
В	Absolute Change only	पूर्णं परिवर्तन मात्र	
c	Both (Relative Change Only) and (Absolute Change only)	(सापेक्ष परिवर्तन मात्र) तथा (पूर्ण परिवर्तन मात्र) दोनों	
D	None of these	इनमें से कोई नहीं	

Q.No: 180	Loss of working days due fire in a factory is associated to whom in the following?	किसी कारखाने के कार्य दिवसों में आग लगने के कारण हुयी हानि निम्न में किससे सम्बन्धित है
A	Trend	उपनित
В	Seasonal component	मौसमी संघटक
С	Cyclical component	चक्रीय संघटक
D	Random component	अनियमित संघटक

Q.No: 1	81 Irregular variations in a time series are caused by	काल श्रेणी में अनियत विचरणें का कारण होते हैं	
A	Strikes	हड़ताल	
В	Epidemics	महामारी	
C	Floods	बाढ़	
D	All of these	सभी सही है	

25 2 2 2 2	
मात्र दीर्घकालीन उच्चावचनों से	Long term fluctuations only
मात्र अल्पकालीन उच्चावचनों से	Short term fluctuations only
मात्र अनियत विचरणें से	Irregular variations only
सभी सही है	All of these
The state of the s	

	Link relative means the ratio of a value to its:	शृंखलित आपेक्षक का अभिप्राय होता है,मान का अनुपात उसके उत्तरवर्ती मान से
В	Succeeding value Preceding value	उत्तरवर्ता मान स पूर्ववर्ती मान से
-	11.112.79.000	***************************************
С	Both (Succeeding value) and (Preceding value)	(उत्तरवर्ती मान से) तथा (पूर्ववर्ती मान से) दोनों
D	Neither (Succeeding value) nor (Preceding value)	न (उत्तरवर्ती मान से) न (पूर्ववर्ती मान से)
Q.No: 184	Which one of the following is not a vital event?	निम्न में कौन एक जीवन घटना से सम्बन्धि नहीं है ?
A	Birth	जन्म
В	Marriage	विवाह
С	Education	शिक्षा
D	Migration	माइग्रेशन
O.No: 185	Vital rates are expressed as	प्राणभृत दरों को प्रदार्शित किया जाता है:
A	Percentages	प्रतिशत में
В	Per thousand	प्रति हजार में
С	Per million	प्रति दस लाख में
D	None of these	इनमें से कोई नहीं
Q.No: 186	The probability of a death of a person between ages x and (x+1) is called:	x तथा (x+1) वर्ष के बीच में व्यक्ति की मृत्यु की प्रायिकता को कहा जाता है:
A	Age specific death rate	आयु विशिष्ट मृत्यु दर
В	Infant mortality rate	बाल मृत्यु दर
С	Central mortality rate	केन्द्रीय मृत्यु दर
D	None of these	इनमें से कोई नहीं
Q.No: 187	$\overline{\chi}$ and R Chart are used for	रू तथा R चार्ट प्रयुक्त होते है:
A	Production control	उत्पाद नियन्त्रण के लिये
В	Process control	प्रक्रिया नियन्त्रण के लिये

С	Material control	सामग्री नियन्त्रण के लियें
D	None of these	इनमें से कोई नहीं
Q.No: 188	Quality of a manufactured product is measured by	निर्मित उत्पाद की गुणता नापी जाती है:
A	Numerical measurement only	मात्र संख्यात्मक मापन द्वारा
В	Attribute measurement only	मात्र गुणता मापन द्वारा
С	Both (Numerical measurement only) and (Attribute measurement only)	दोनों (मात्र संख्यात्मक मापन द्वारा) तथा (मात्र गुणता मापन द्वारा)
D	Neither (Numerical measurement only) nor (Attribute measurement only)	न (मात्र संख्यात्मक मापन द्वारा) न (मात्र गुणता मापन द्वारा)
Q.No: 189	np chart is a control chart for	किसके लिये np चित्र एक नियन्त्रण चित्र है ?
A	Number of defects per unit	प्रति इकाई दोषों की संख्या
	Fraction defectives	दोषपूर्ण का अंश
В	Traction acreetives	
	Number of defectives	दोषपूर्ण की संख्या
С	Property of the Artist	
C D Q.No: 190	Number of defectives	दोषपूर्ण की संख्या
c D Q.No: 190 A	Number of defectives All of these A typical control chart consists of	दोषपूर्ण की संख्या सभी सही है एक विशिष्ट नियन्त्रण चित्र में होती है:
B C D Q.No: 190 A B	Number of defectives All of these A typical control chart consists of Two horizontal lines	दोषपूर्ण की संख्या सभी सही है एक विशिष्ट नियन्त्रण चित्र में होती है: दो क्षैतिज रेखायें
C D Q.No: 190 A B	Number of defectives All of these A typical control chart consists of Two horizontal lines Three horizontal lines	दोषपूर्ण की संख्या सभी सही है एक विशिष्ट नियन्त्रण चित्र में होती है: दो क्षैतिज रेखायें तीन क्षैतिज रेखायें
Q.No: 190 A B C	Number of defectives All of these A typical control chart consists of Two horizontal lines Three horizontal lines Five horizontal lines None of these	दोषपूर्ण की संख्या सभी सही है एक विथिष्ट नियन्त्रण चित्र में होती है: दो क्षेतिज रेखायें तीन क्षेतिज रेखायें पाँच क्षेतिज रेखायें इनमें से कोई नहीं
C Q.No: 190 A B C D	Number of defectives All of these A typical control chart consists of Two horizontal lines Three horizontal lines Five horizontal lines None of these If the lower control limit is negative in control Charts for attributes , it is taken as:	दोषपूर्ण की संख्या सभी सही है एक विशिष्ट नियन्त्रण चित्र में होती है: दो क्षैतिज रेखायें तीन क्षैतिज रेखायें पाँच क्षैतिज रेखायें इनमें से कोई नहीं यदि गुणों के चित्र में न्यूनतम नियन्त्रण सीमा ऋणात्मक है तो इसको लिया जाता है
C D Q.No: 190 A B C D Q.No: 191 A	Number of defectives All of these A typical control chart consists of Two horizontal lines Three horizontal lines Five horizontal lines None of these If the lower control limit is negative in control Charts for attributes , it is taken as:	दोषपूर्ण की संख्या सभी सही है एक विशिष्ट नियन्त्रण चित्र में होती है: दो क्षैतिज रेखायें तीन क्षैतिज रेखायें पाँच क्षैतिज रेखायें इनमें से कोई नहीं यदि गुणों के चित्र में न्यूनतम नियन्त्रण सीमा ऋणात्मक है तो इसको दिया जाता है
C D Q.No: 190 A B C D Q.No: 191 A B	Number of defectives All of these A typical control chart consists of Two horizontal lines Three horizontal lines Five horizontal lines None of these If the lower control limit is negative in control Charts for attributes , it is taken as: 1 As it is	दोषपूर्ण की संख्या सभी सही है एक विशिष्ट नियन्त्रण चित्र में होती है: दो क्षैतिज रेखायें तीन क्षैतिज रेखायें पाँच क्षैतिज रेखायें पाँच क्षैतिज रेखायें इनमें से कोई नहीं यदि गुणों के चित्र में न्यूनतम नियन्त्रण सीमा ऋणात्मक है तो इसको लिया जाता है 1 जेसी है वैसी ही
C D Q.No: 190 A B C D Q.No: 191 A	Number of defectives All of these A typical control chart consists of Two horizontal lines Three horizontal lines Five horizontal lines None of these If the lower control limit is negative in control Charts for attributes , it is taken as:	दोषपूर्ण की संख्या सभी सही है एक विशिष्ट नियन्त्रण चित्र में होती है: दो क्षैतिज रेखायें तीन क्षैतिज रेखायें पाँच क्षैतिज रेखायें इनमें से कोई नहीं यदि गुणों के चित्र में न्यूनतम नियन्त्रण सीमा ऋणात्मक है तो इसको दिया जाता है

A	Chance causes only	संबोग मात्र		
3	Assignable causes only	निर्धारणीय मात्र		
2	Both (Chance causes only) and (Assignable causes only)	(संयोग मात्र) तथा (निर्धारणीय मात्र) दोनो		
D	Neither (Chance causes only)nor (Assignable causes only)	नहीं (संयोग मात्र) नहीं (निर्धारणीय मात्र)		
Q.No: 193	A group of moving average consists of	चल औसत का एक समृह होता है		
A	5 years period	5 वर्ष की अवधि का		
В	3 years period	3 वर्ष की अवधि का		
C	A period which form a cycle	एक अवधि जो एक चक्र बनाता है		
D	None of these	इनमें से कोई नहीं		
Q.No: 194	In which of give following conditions, Poison's distribution would be a good approximation of binominal distribution $b(x; n,p)$?	निम्न में किसकी परिस्थिति में र्जांसा बंदन द्विपद बंदन b(x; n,p) का एक अच्छा सत्रिकट होगा ?		
A	n = 200, q = 0.98	n = 200, q = 0.98		
В	n = 400, p = 0.52	n = 400, p = 0.52		
С	n = 10, p = 0.03	n = 10, p = 0.03		
D	n = 40, q = 0.79	n = 40, q = 0.79		
Q.No: 195	If E1 and E2 are two independent events such that P(E1)=E(E2)=0.8, then P(E1) E2) is equal to	यदि E1 तथा E2 दो खतंत्र घटनायँ इस प्रकार है कि P(E1)=E(E2)=0.8 तो P(E1∪E2) का मान है		
A	0.64	0.64		
В	0.80	0.80		
С	0.96	0.96		
D	None of these इनमें से कोई नहीं			
Q.No: 196	Let X and Y be two random variables such that mean of each is 10 and variances are 1 and 10 respectively. If correlation coefficient between them is $1/4$, then the covariance between 3X and 5Y is	माना X तथा Y , जिनमें प्रत्येक का माध्य 10 तथा प्रसरण क्रमण: 1 तथा 9 है,दो यादृच्छिक चर हैं। इन चरों व सहसम्बंध गुणांक 1/4 है। तब 3X तथा 5Y का सहप्रसरण होना:		
A	34	34		
_	15.75	15.75		
В				

D	None of these	इनमें से कोई नहीं
Q.No: 197	In case of SRS-wor if $S^2 = \sum_i^n \! \left(y_i - \overline{Y}\right)^2 / (N-1)$ then $V\left(\overline{y}\right)$ will be	SRSwor के लिए यदि $S^2 = \sum_i^n (y_i - \overline{Y})^2 / (N-1)$ है तो \vee (\overline{y}) होगा
i.	$\frac{N-n}{N}\frac{S^2}{n}$	$\frac{N-n}{N}\frac{S^2}{n}$
($\frac{N-1}{N}\frac{S^2}{n}$	$\frac{N-1}{N}\frac{5^2}{n}$
С	$\frac{N-1}{n-1}\frac{S^2}{N}$	$\frac{N-1}{n-1}\frac{S^2}{N}$
D	$\frac{N-n}{n-1} \frac{S^2}{N}$	$\frac{N-n}{n-1} \frac{S^2}{N}$

Q.No: 198 A spelling test was conducted on 30 students. All of them spelled 8 outof 10 words correctly. Then this distribution has

correctly. There all a distribution mas	
Zero standard deviation	मानक विचलन शून्य है
Zero mean	माध्य शून्य है
Both mean and standard deviation are zero	माध्य तथा मानक विकास दोनों शून्य है
None of these	इनमें से कोई नहीं
	Zero standard deviation Zero mean Both mean and standard deviation are zero

Q.No: 199 The mean of 15 observations is 3 and their range is zero. Then, maximum observation is 15 प्रेक्षकों का माध्य 3 है तथा इनका परास शून्य है तो इनमें महत्तम प्रेक्षक है: 0 A 0 C More than 3 3 से अधिक None of these इनमें से कोई नहीं

Q.No: 200 If $r_{12} = r_{13} = r_{23} = r$, the value of multiple correlation coefficient $R_{1(23)}$ is:

यदि $r_{12}=r_{13}=r_{23}=r$ है तो बहुसहसम्बंध गुणांक $R_{1(23)}$ का मान है:

0

В	1	1	
C	1+r/2r	1+r/2r	
D	$r\sqrt{2}/\sqrt{1+r}$	$r\sqrt{2}/\sqrt{1+r}$	

