

HPSC

Previous Year Paper Assistant Professor 2018 Chemistry

Test Prime

ALL EXAMS, ONE SUBSCRIPTION

70,000+ Mock Tests

600+ Exam Covered

Personalised Report Card

Previous Year Papers

Unlimited Re-Attempt

500% Refund

ATTEMPT FREE MOCK NOW

समय / Time: 2.00 घंटे / Hours

पूर्णांक / Maximum Marks: 100

पुस्तिका में पृष्ठों की संख्या / Number of Pages in Booklet: 24

पुस्तिका में प्रश्नों की संख्या / Number of Questions in Booklet : 100

इस परीक्षण पुस्तिका को तब तक न खोलें जब तक कहा न जाए । / Do not open this test booklet until you are told to do so.

INSTRUCTIONS

- 1. IMMEDIATELY AFTER THE COMMENCEMENT OF THE EXAMINATION, YOU SHOULD CHECK THAT THIS TEST BOOKLET DOES *NOT* HAVE ANY UNPRINTED OR TORN OR MISSING PAGES OR ITEMS, ETC. IF SO, GET IT REPLACED BY A COMPLETE TEST BOOKLET.
- 2. Please note that it is the candidate's responsibility to encode and fill in the Roll Number and Test Booklet Series Code A, B, C or D carefully and without any omission or discrepancy at the appropriate places in the OMR Answer Sheet. Any omission/discrepancy will render the OMR Answer Sheet liable for rejection.
- **3.** You have to enter your Roll Number on the Test Booklet in the Box provided alongside. *DO NOT* write *anything else* on the Test Booklet.
- 4. This Test Booklet contains 100 items (questions). Each item is printed both in Hindi and English. Each item comprises four responses (answers). You will select the response which you want to mark on the OMR Answer Sheet. In case you feel that there is more than one correct response, mark the response which you consider the best. In any case, choose *ONLY ONE* response for each item.

अनुदेश

- परीक्षा प्रारम्भ होने के तुरन्त बाद, आप इस परीक्षण पुस्तिका की पड़ताल अवश्य कर लें कि इसमें कोई बिना छपा, फटा या छूटा हुआ पृष्ठ अथवा प्रश्नांश, आदि न हो । यदि ऐसा है, तो इसे सही परीक्षण पुस्तिका से बदल लीजिए ।
- 2. कृपया ध्यान रखें कि OMR उत्तर-पत्रक में, उचित स्थान पर, रोल नम्बर और परीक्षण पुस्तिका शृंखला कोड A, B, C या D को, ध्यान से एवं बिना किसी चूक या विसंगति के भरने और कूटबद्ध करने की जिम्मेदारी उम्मीदवार की है । किसी भी प्रकार की चूक/विसंगति की स्थिति में उत्तर-पत्रक निरस्त कर दिया जाएगा ।
- 3. इस परीक्षण पुस्तिका पर साथ में दिए गए कोष्ठक में आपको अपना अनुक्रमांक लिखना है । परीक्षण पुस्तिका पर *और कुछ न* लिखें ।

4. इस परीक्षण पुस्तिका में 100 प्रश्नांश (प्रश्न) दिए गए हैं । प्रत्येक प्रश्नांश हिन्दी और अंग्रेजी दोनों में छपा है । प्रत्येक प्रश्नांश में चार प्रत्युत्तर (उत्तर) दिए गए हैं । इनमें से एक प्रत्युत्तर को चुन लें, जिसे आप उत्तर-पत्रक पर अंकित करना चाहते हैं । यदि आपको ऐसा लगे कि एक से अधिक प्रत्युत्तर सही हैं, तो उस प्रत्युत्तर को अंकित करें जो आपको सर्वोत्तम लगे । प्रत्येक प्रश्नांश के लिए केवल एक ही प्रत्युत्तर चुनना है ।

In case of any ambiguity in translation of any question, English version shall be treated as final. प्रश्नों के अनुवाद में किसी अस्पष्टता की स्थित में, अंग्रेजी संस्करण को ही अंतिम माना जायेगा ।

Note : Remaining Instructions are printed on the back cover of this Booklet. **ध्यान दें :** बाकी सूचनाएँ इस पुस्तिका के अंतिम पृष्ठ पर छपी हैं ।

PD-10-CAP 0

Contd..

1

	m VBT के अनुसार अणु का कुल वेव फंक्सन	निम्न हो	गा
	(A) $\psi = \psi_{A \times B}$	(B)	$\psi = \psi_{A+B}$
	(C) $\psi = \psi_A \psi_B$	(D)	$\psi = \psi_A + \psi_B$
2	Which of the following electronic tra- largest amount of energy ?	ansitions	in a hydrogen atom will require the
	(A) From $n=0$ to $n=1$	(B)	From $n=1$ to $n=2$
	(C) From $n=2$ to $n=1$	(D)	From $n=3$ to $n=4$
	हाइड्रोजन परमाणु में किन इलेक्ट्रानिक पारगम	न में सब	से ज्यादा ऊर्जा की जरूरत होगी?
	(A) n=0 से n=1	(B)	n=1 से n=2
	(C) n=2 से n=1		n=3 से n=4
2	The invaluation of the invaluation		
3	The isoelectronic set of ions is -	(D)	E I:+ N-+1 M-2+
	(A) Li^+ , Na^+ , O^{2-} and F^-		F^- , Li ⁺ , Na ⁺ and Mg ²⁺
	(C) N^{3-} , O^{2-} , F^{-} and Na^{+}	` `	N^{3-} , Li ⁺ , Mg ²⁺ and O ²⁻
	निम्न में कौन सा सेट आइसोइलेक्ट्रोनिक है		T 1:+ N + N 2+
	(A) Li ⁺ , Na ⁺ , O ²⁻ तथा F		F ⁻ , Li ⁺ , Na ⁺ तथा Mg ²⁺
	(C) N ³⁻ , O ²⁻ , F ⁻ तथा Na ⁺	(D)	N ³⁻ , Li ⁺ , Mg ²⁺ तथा O ²⁻
4	The ratio of the shortest wavelengths	of two	spectral series of hydrogen spectrum
	is found to be 9 (Nine). The spectr		
	(A) Balmer and Brackett		Lyman and Paschen
	(C) Paschen and Pfund	(D)	Brackett and Pfund
	हाइड्रोजन स्पेक्ट्रम की दो स्पेक्ट्रमी श्रेणियों की श्रेणियाँ हैं –	लघुतम त	रंग–दैर्ध्य का अनुपात 9 पाया गया है। स्पेक्ट्रमी
	(A) बामर एवं ब्रैकेट	(B)	लाइमैन एवं पाशन
	(C) पाशन एवं फुंड	(D)	ब्रैकेट एवं फुंड
5	Two pi and half sigma bonds are p	resent i	n -
	दो पाई तथा आधा सिग्मा बंध उपस्थित है		
	(A) O ₂	(B)	O_2^+
	(C) N_2^+	(D)	N_2
PI	D-10-CAP_0	2	Contd
			, , , , , , , , , , , , , , , , , , ,

The total wave function of molecule according to VBT is written as -

6	The	correct	statement	among	the	following	is	_
U	1110	COLLECT	Statement	among	uic	TOHOWING	13	_

- (A) (SiH₃)₃N is pyramidal and less basic than (CH₃)₃N
- (B) (SiH₃)₃N is pyramidal and more basic than (CH₃)₃N
- (C) (SiH₃)₃N is planar and less basic than (CH₃)₃N
- (D) $(SiH_3)_3N$ is planar and more basic than $(CH_3)_3N$ निम्निलिखित में कौन सा कथन सही है -
- (A) $(SiH_3)_3N$ पिरामिडल है तथा $(CH_3)_3N$ से कम भाष्मीय है ।
- (B) $(SiH_3)_3N$ पिरामिडल है तथा $(CH_3)_3N$ से ज्यादा भाष्मीय है ।
- (C) $(SiH_3)_3N$ प्लेनर है तथा $(CH_3)_3N$ से कम भाष्मीय है ।
- (D) $(SiH_3)_3N$ प्लेनर है तथा $(CH_3)_3N$ से ज्यादा भाष्मीय है ।
- 7 In trigonal planar arrangement the ratio is ट्राइगोनल प्लेनर व्यवस्थापन में निम्न अनुपात होता है -

(A)
$$0.732 - 1.00$$

(B)
$$0.414 - 0.732$$

(C)
$$0.225 - 0.414$$

(D)
$$0.155 - 0.225$$

- 8 An sp³ hybrid orbital contains -
 - (A) 3/4 s character

(B) 2/3 s character

(C) 1/4 s character

- (D) 1/2 s character
- ${
 m sp}^3$ संकर ऑर्बिटल ग्रहण करता है
- (A) 3/4 s कैरेक्टर (गुण)

(B) 2/3 s कैरेक्टर

(C) 1/4 s कैरेक्टर

- (D) 1/2 s कैरेक्टर
- 9 Lowest temperature is reached by using -
 - (A) Ether + Dry Ice

- (B) NH₄Cl
- (C) Acetone + Dry Ice

(D) $CaCl_2 \cdot 2H_2O$

निम्न का उपयोग कर निम्नतम तापक्रम प्राप्त किया जा सकता है –

(A) ईथर + ड्राई आइस

(B) NH₄Cl

(C) एसीटोन + ड्राई आइस

- (D) CaCl₂·2H₂O
- 10 The number of eutectics in the phase diagram of Fe_2Cl_3 water system is Fe_2Cl_3 जल सिस्टम के फेज डाइग्राम में कुल यूटेक्टिक्स होता है ।
 - (A) 3

(B) 4

(C) 5

(D) 6

11 In the following reaction : $xA \rightarrow yB$

$$\log_{10}\left[-\frac{d(A)}{dt}\right] = \log_{10}\left[\frac{d(B)}{dt}\right] + 0.3010$$
, "A" and "B" respectively can be-

(A) N₂O₄ and NO₂

(B) n-Butane and Iso-butane

(C) C_2H_2 and C_6H_6

(D) C_2H_4 and C_4H_8

प्रतिक्रिया
$$xA \rightarrow yB$$
 में $log_{10} \left[-\frac{d(A)}{dt} \right] = log_{10} \left[\frac{d(B)}{dt} \right] + 0.3010,$

"A" तथा "B" क्रमशः हो सकते हैं -

(A) N₂O₄ तथा NO₂

(B) n-Butane तथा Iso-butane

(C) C_2H_2 तथा C_6H_6

- (D) C_2H_4 तथा C_4H_8
- 12 In first order reaction the conc. of reactant decreases from 1.0 M to 0.25 M in 20 minutes, the value of k is -
 - (A) 0.06932

(B) 0.6932

(C) 6.932

(D) None of these

प्रथम आर्डर प्रतिक्रिया में प्रतिकारक की सान्द्रता $1.0~\mathrm{M}$ से $0.25~\mathrm{M},~20~\mathrm{minutes}$ में घटती है तो k का मान है -

(A) 0.06932

(B) 0.6932

(C) 6.932

- (D) इनमें से कोई नहीं
- The one which is a uni-molecular reaction is निम्नलिखित में से कौन सी युनिमोलीकुलर प्रतिक्रिया है
 - (A) $N_2O_5 \rightarrow N_2O_4 + \frac{1}{2}O_2$
- (B) $H_2+Cl_2\rightarrow 2HCl$

(C) $2HI \rightarrow H_2 + I_2$

- (D) $PCl_3+Cl_2 \rightarrow PCl_5$
- 14 The heat of neutralisation is maximum for the reaction -
 - (A) NaOH and CH₃COOH
- (B) HCl and NH₄OH
- (C) NH₄OH and CH₃COOH
- (D) NaOH and HCl

निम्न प्रतिक्रिया का हीट ऑफ न्युट्रेलायजेशन अधिकतम होगा ।

- (A) NaOH तथा CH₃COOH
- (B) HCl तथा NH₄OH
- (C) NH₄OH तथा CH₃COOH
- (D) NaOH तथा HCl
- 15 The heat content of a system is known as -
 - (A) Entropy

(B) Free energy

(C) Internal energy

(D) Enthalpy

किसी सिस्टम का हीट कान्टेन्ट जाना जाता है –

(A) एन्ट्रोपी

(B) मुक्त ऊर्जा

(C) आंतरिक ऊर्जा

(D) इन्थैलपी

16	Best way to prevent rusting of iron is (A) Putting it in saline water (C) Both of these लोहा को जंग से बचाने हेतु निम्न तरीका अपना (A) सलाइन वाटर में डुबा कर रखने से (C) दोनों तरीका	(B) Making iron cathode (D) None of these गाया जा सकता है –
17	The Mg in chemical reaction - (A) will replace Al (C) will not be able to replace Al	Al are +2.37 and +1.66 volt respectively. (B) will be replaced by Al (D) None of these 37 तथा +1.66 वोल्ट है । रसायनिक प्रतिक्रिया में Mg (B) Al के द्वारा प्रतिस्थापित होगा (D) इनमें से कोई नहीं
18	electricity. How many moles of Ni wil	n प्रवाह करते हुए Pt - इलेक्ट्राड के बीच इलेक्ट्रोलायज
19	between the centres of two nearest tetr	–केन्द्रित घन (fcc) संरचना है। जालक (lattice) में
20	Which primitive unit cell has unequal angles different from 90°? (A) Monoclinic (C) Triclinic कौन से प्रिमिटीव युनिट सेल में असमान कोर लंब होते हैं? (A) एकनताक्ष (C) त्रिनताक्ष	edge lengths (a≠b≠c) and all axial (B) Tetragonal (D) Hexagonal बाई (a≠b≠c) तथा सभी अक्षीय कोण 90° से भिन्न (B) द्विसमलंबाक्ष (D) षट्कोणीय
PD	-10-CAP_0 5	

21	For coagulation of arsenious sulphide sol, which one of the following salt solutions will be most effective?							
	आरसेनियस सल्फाइड सॉल के कोगुलेशन के लिए होगा ?	निम्नलिखित में कौन सा लवण का घोल ज्यादा प्रभावी						
	(A) NaCl	(B) AlCl ₃						
	(C) BaCl ₂	(D) Na_3PO_4						
22	AgI is used for producing artificial ra	in because AgI -						
	(A) is soluble in water							
	(B) is easy to synthesise							
	(C) is easy to spray at altitudes							
	(D) has crystal structure similar to ic							
	कृत्रिम वर्षा उत्पन्न करने हेतु AgI का उपयोग	किया जाता ह क्यांकि Agi –						
	(A) जल में आसानी से घुलता है ।							
	(B) आसानी से बनाया जा सकता है ।	_						
		(C) आसानी से ऊँचे स्थान से छिड़काव <mark>किया</mark> जा सकता है ।						
	(D) क्रिस्टल आकृति बर्फ के समान है ।							
23	Which of the following is a thermose							
	(A) PVC	(B) Nylon 6						
	(C) Bakelite	(D) Burn-N						
	निम्न में कौन एक थरमोसेटिंग पॉलिमर है ?							
	(A) पीवीसी	(B) नाइलान 6						
	(C) बैकेलाइट	(D) बर्न-N						
24	Which of the following compour	nds is a constituent of the polymer						
	Q							
	$\begin{bmatrix} -HN-C-NH-CH_2- \end{bmatrix}_n$?							
	(A) Ammonia	(B) N-methyl Urea						
	(C) Formaldehyde	(D) Methylamine						
	(C) Formaidenyde	•						
		O 						
	निम्नलिखित में कौन सा संघटक पॉलिमर $\left[-\mathrm{H} ight]$	$N-C-NH-CH_2-]_n$ का है ?						
	(A) अमोनिया	(B) N-मेथिल यूरिया						
	(C) फॉम्ल्डिहाइड	(D) मेथिलएमिन						
25	Catalyst used for hydrogenation of oil	s is -						
	तेल के हाइड्रोजिनेशन में कौन सा उत्प्रेरक का							
	(A) Ni	(B) Pt						
	(C) Fe	$\begin{array}{ccc} \text{(D)} & \text{I} \text{(D)} \\ \text{(D)} & \text{V}_2 \text{O}_5 \end{array}$						
		(2) 1203						

26	In the reaction KMnO ₄ +H ₂ SO ₄ +H ₂ C ₂ O ₄	$O_4 \rightarrow$	Products. Mn ²⁺ ions act as
	(A) Negative catalyst	(B)	Enzyme catalyst
	(C) Positive catalyst	(D)	Auto catalyst
	अभिक्रिया $KMnO_4 + H_2SO_4 + H_2C_2O_4 \rightarrow 3$ उत	पाद में,	Mn^{2+} कार्य करता है $-$
	(A) नेगेटिव उत्प्रेरक	(B)	एंजायम उत्प्रेरक
	(C) पोजीटीव उत्प्रेरक	(D)	स्वः उत्प्रेरक
27	In the Raman spectrum, the middle lin	ie is o	called -
	(A) Rayleigh line	(B)	Raman line
	(C) Functional group line	(D)	None of these
	रमण स्पेक्ट्रम में मिडल लाइन को कहा जाता है	_	
	(A) रेले लाइन	(B)	रमण लाइन
	(C) फंक्शनल ग्रुप लाइन	(D)	इनमें से कोई नहीं
28	The spectra caused in the IR region by modes of vibrations are called -	transi	tion in vibrational levels in different
	(A) Electronic spectra	(B)	Rotational spectra
	(C) Vibrational spectra	(D)	None of these
	कम्पन की विभिन्न विधियों में कम्पनिक स्तर में	संक्रमण	द्वारा IR क्षेत्र में घटित स्पेक्ट्रा कहलाता है
	(A) इलेक्ट्रॉनिक स्पेक्ट्रा	(B)	घूर्णन स्पेक्ट्रा
	(C) कम्पनिक स्पेक्ट्रा	(D)	इनमें से कोई नहीं
29	The fundamental vibrational frequencies	s in t	he IR spectrum of CO ₂ are -
	CO ₂ का IR स्पेक्ट्रम का मौलिक वाइब्रेशनल फ्री		- 2
	(A) 1	(B)	2
	(C) 3	(D)	4
30	Which of the following diatomic molec	ules v	will not give a rotational spectrum?
	निम्न में से कौन डाइएटोमिक मोलीकुल रोटेशनल	स्पेक्ट्रा	नहीं देगा ?
	(A) CO	(B)	
	(C) HF	(D)	NO
DD	10 CAP 0		Canti

31	The	correct	form	for	a s	imple	e La	angmuir	isotherm	is	-
	सरल	लैंगम्यूर	समतापी	के	लिए	सही	रूप	है -			

(A) $\theta = k_p$

(B) $\theta = (k_p)^{1/2}$

(C) $\theta = k_p / (1 + k_p)$

(D) $\theta = (1+k_p)/k_p$

32 The temperature dependence of a reaction is given by $K=AT^2\exp(-E_0/RT)$. The activation energy (E_a) of the reaction is given by - यदि एक अभिक्रिया की ताप निर्भरता को देता है $K=AT^2\exp(-E_0/RT)$ तो इसी अभिक्रिया की सिक्रयण ऊर्जा (E_a) को देगी ।

(A) E_0

(B) $E_0 + \frac{1}{2}RT$

(C) $2E_0 + RT$

- (D) $E_0 + 2RT$
- 33 The molecule that possesses S_4 symmetry element is -
 - (A) Allene

(B) Ethylene

(C) Benzene

- (D) None of these
- अणु जिसमें S_4 समिमिति तत्व है, वह है
- (B) एथिलीन

(A) ऐलीन(C) बेन्जीन

- (D) इनमें से कोई नहीं
- 34 The total number of symmetry elements in diborane molecule is डाइबोरेन अणु में समिति तत्वों की कुल संख्या है
 - (A) 2

(B) 4

(C) 6

- (D) 8
- 35 Lowest ionisation potential will be of -
 - (A) Inert gases

(B) Alkali metals

(C) Halogens

(D) d-block

सबसे निम्नतम आयनीकरण विभव किसका होगा ?

(A) निष्क्रिय गैस

(B) अलकली मेटल

(C) हैलोजन

(D) d-國面

36	Increasing order of electronegativity of	the elements is -
	तत्वों का विद्युतऋणात्मकता बढ़ते क्रम में है –	
	(A) N, Si, C, P	(B) Si, P, C, N
	(C) C, N, Si, P	(D) P, Si, C, N
37	Based on VSEPR theory, the predicted	shape of $[XeF_5]^-$ is -
	(A) Square pyramidal	(B) Pentagonal planar
	(C) Trigonal bipyramidal	(D) None of these
	$VSEPR$ सिद्धांत के आधार पर $\left[XeF_5 ight]^-$ के	लिए प्रायुक्त आकृति है –
	(A) वर्ग पिरैमिडीय	(B) पंचभुजीय समतलीय
	(C) त्रिसमनताक्ष द्विपिरैमिडल	(D) इनमें से कोई नहीं
38	Which one of the following will have	tetrahedral disposition ?
	किसमें टेटराहेडरल डिसपोजीशन होगा ?	
	(A) SO_3^{2-}	(B) SO ₄ ²⁻
	(C) SO ₂	(D) SO ₃
39	CO ₂ is isostructural with -	
	CO_2 का सम संरचनात्मक होगा $-$	
	(A) NO ₂	(B) C_2H_6
	(C) SnCl ₂	(D) HgCl ₂
40	Which of the following is least ionic	?
	सबसे कम आयनिक होगा –	
	(A) BaCl ₂	(B) CoCl ₂
	(C) AgCl	(D) KCl
PD	9 -10-CAP_0	

41	Which of the following is not a h	nard acid '	?
	(A) Mg^{2+}	(B)	Pd^{2+}
	(C) Ti ⁴⁺	(D)	Na ⁺
	निम्न में कौन हार्ड अम्ल नहीं है ?		
	(A) Mg^{2+}	(B)	Pd^{2+}
	(C) Ti ⁴⁺	(D)	Na ⁺
42	The term hard and soft acid and	base was ş	given by -
	(A) Pearson	(B)	Bransted
	(C) Lewis	(D)	Franklin
	हार्ड एवं सॉफ्ट अम्ल एवं भष्म का संकेत	निम्न द्वारा	दिया गया –
	(A) पियरसन	(B)	ब्रॉस्टेड
	(C) लेविस	(D)	फ्रैंकलीन
43	The expected H-H-H bond angle	in $\left[H_3 \right]^+$	is -
	(A) 60°	(B)	90°
	(C) 120°	(D)	180°
	. ,	` '	
	$\left[\mathrm{H}_{3} ight]^{+}$ में H $-$ H $-$ H $$ आबन्ध कोण का प्र	त्याशित मान	है -
	(A) 60°	(B)	90°
	(C) 120°	(D)	180°

44 The g value for $Ce^{3+}(4f^4)$ is - $Ce^{3+}(4f^4)$ के लिए g का मान है -

(A) $\frac{3}{7}$

(B) $\frac{5}{7}$

(C) $\frac{6}{7}$

(D) $\frac{4}{5}$

45	The lowest	energy	state	of a	n atoı	n with	electronic	configuration	$ns^1np^1 \\$	has	the
	term symbo	01 -									

(A) ${}^{3}P_{0}$

(B) ${}^{3}P_{1}$

(C) ${}^{3}P_{2}$

(D) ${}^{1}P_{1}$

इलेक्ट्रान विन्यास ns^1np^1 के परमाणु की न्यूनतम ऊर्जा अवस्था पद का प्रतीक है -

(A) ${}^{3}P_{0}$

(B) ${}^{3}P_{1}$

(C) ${}^{3}P_{2}$

(D) ${}^{1}P_{1}$

(A) $(FeCl_4)^{2-}$

(B) $[TiF_6]^{3-}$

(C) $[Cr(H_2O)_6]^{3+}$

(D) $[Mn(H_2O)_6]^{2+}$

निम्न में किसका CFSE सबसे अधिक होगा ?

(A) $(FeCl_4)^{2-}$

(B) $[TiF_6]^{3-}$

(C) $[Cr(H_2O)_6]^{3+}$

(D) $[Mn(H_2O)_6]^{2+}$

47 Which of the following systems has maximum number of unpaired electrons?

- (A) d⁶ (Tetrahedral)
- (B) d⁷ (Octahedral, High Spin)
- (C) d⁴ (Octahedral, low spin)
- (D) d⁹ (Octahedral)

निम्न में किस सिस्टम में अयुग्मित इलेक्ट्रॉनों की संख्या अधिकतम होगी ?

- (A) d^6 (चतुष्फलकीय)
- (B) d^7 (अष्टफलकीय, उच्च स्पीन)
- (C) d^4 (अष्टफलकीय, निम्न स्पीन)
- (D) d^9 (अष्टफलकीय)

48	Nun	iber of microstates available for a	ı p ³ co	nfiguration is -
	(A)	15	(B)	20
	(C)	45	(D)	6
	р ³ з	भिविन्यास के लिए कुल माइक्रोस्टेट होगा	_	
	(A)	15	(B)	20
	(C)	45	(D)	6
49	Whi	ch one does not form mononucle	ar carb	onyl?
	(A)	Fe	(B)	Ni
	(C)	Mn	(D)	None of these
	कौन	मोनोन्युक्लियर कार्बोनिल नहीं बनायेगा ?		
	(A)	Fe	(B)	Ni
	(C)	Mn	(D)	इनमें से कोई नहीं
50	Coo	rdination number of Cr in potassi	um tric	exalatochromate (III) is -
	(A)	12	(B)	9
	(C)	6	(D)	3
	पोटैशि	ायम ट्राइआक्जेलेटोक्रोमेट (III) में Cr की	कोआर्डि	नेशन संख्या है –
	(A)	12	(B)	9
	(C)	6	(D)	3
PD)-10-C	CAP_0 1	2	Contd

51	Strongest ligand in spectrochemical	l series is	-				
	स्पेक्ट्रोकेमिकल श्रृंखला में सबसे मजबूत लिग्	ोंड है –					
	(A) CN	(B)	Cl ⁻				
	(C) Br	(D)	I ⁻				
52	Thermodynamic stability is determine	ined by -					
	(A) Activation energy	(B)	Stability constant				
	(C) Reaction rate	(D)	All				
	थर्मोडायनामिक स्थायित्व ज्ञात किया जाता है	5 –					
	(A) एक्टीवेसन ऊर्जा द्वारा	(B)	स्टेबीलीटी स्थिरांक द्वारा				
	(C) प्रतिक्रिया दर द्वारा	(D)	सभी				
53	lanthanide ion are 0 and -3.5 resp एक लैन्थेनाइड आयन के एक्वा संकुल के	oectively. ा लिए परिकलि	nts (in B.M.) of aqua complex of a The lanthanide ion is - ात तथा अवलोकित चुम्बकीय आधूर्ण (B.M.				
	में) क्रमशः 0 तथा -3.5 हैं, लैन्थेनाइड अ		- 21				
	(A) Pm ³⁺	(B)	Pr ³⁺				
	(C) Eu ³⁺	(D)	Sm^{3+}				
54	Chelate effect is - (A) Predominantly due to enthalpy (B) Predominantly due to entropy (C) Independent of ring size (D) Due to equal contribution of	change	nd enthalpy change				
	कीलेट प्रभाव -						
	(A) मुख्यरुप से एन्थैल्पी में परिवर्तन के कारण है ।						
	(B) मुख्यरूप से एन्ट्रॉपी में परिवर्तन के कारण है ।						
	(C) वलय साइज से स्वतंत्र है ।						
	(D) एन्थैल्पी एवं एन्ट्रॉपी में परिवर्तन के समान योगदान से होता है ।						
55	Oxidation state of metal in metal carbonyl is -						
	मेटल क्रार्बोनिल में मेटल की आक्सीकरण	-					
	(A) 0	(B)					
	(C) 2	(D)					
РΓ	0-10-CAP 0	13	Contd				
	1		001110111				

56	Which of the following is Zeise's sa	dt ?
	निम्नलिखित में से कौन Zeise लवण है ?	
	(A) $K_2[PtCl_4]$	(B) $Fe(CO)_5$
	(C) $K[PtCl_3(C_2H_4)]$	(D) $K_4[Fe(CN)_6]$
57	According to Wade's theory the anic	on $[B_{12}H_{12}]^{2-}$ adopts -
	(A) Closo - structure	(B) Arachno - structure
	(C) Hypo - structure	(D) Nido - structure
	वेड सिद्धान्त के अनुसार $[\mathrm{B}_{12}\mathrm{H}_{12}]^{2-}$ अप	नाता है —
	(A) Closo - संरचना	(B) Arachno - संरचना
	(C) Hypo - संरचना	(D) Nido - संरचना
58	The metallic radii are abnormally hi	gh for which of the following pairs?
	निम्नलिखित युग्मों में से किसमें धा <mark>त्विक त्रिज्य</mark>	<mark>गयें असमा</mark> न रूप से उच्च है ?
	(A) Sm, Tm	(B) Eu, Yb
	(C) Nd, Ho	(D) Gd, Lu
59	The number of 3C – 2e bonds pres	ent in $Al(BH_4)_3$ is -
	$Al(BH_4)_3$ में उपस्थित $3C-2e$ आबन्धों	की संख्या है –
	(A) 0	(B) 3
	(C) 4	(D) 6
60	The ${}^2E_g \leftarrow {}^2A_{2g}$ transition in the elements at -	ectronic spectrum of [Cr(NH ₃) ₆] ³⁺ occurs
	$[{ m Cr}({ m NH_3})_6]^{3+}$ के इलेक्ट्रानिक स्पेक्ट्रम में 2	${}^{2}\mathrm{E}_{\mathrm{g}}{\leftarrow}^{2}\mathrm{A}_{2\mathrm{g}}$ संक्रमण घटित होता है लगभग
	(A) 200 nm	(B) 350 nm
	(C) 450 nm	(D) 650 nm
		N

61	Which element is essential for blood clotting?		
	खून के जमने के लिए कौन सा तत्व आवश्यक है ?		
	(A) Ca	(B) Ba	
	(C) Sr	(D) Ra	
62	Protein present in haemoglobin is -		
	हिमोग्लोबिन में निम्न प्रोटीन उपस्थित है –		
	(A) Iron	(B) Haem	
	(C) Myoglobin	(D) Globin	
<i>(</i> 2	The December of the Control of the C	('	
63	The reasonance Raman stretching frequency $(v_{0-0}, \text{ in cm}^{-1})$ of O_2 is 1580. The v_{0-0} for O_2 in bound oxy-hemoglobin is close to -		
	(A) 800	(B) 1100	
	(C) 1600	(D) 1900	
	${ m O_2}$ की अनुनाद रमण तनन आवृत्ति (${ m v_{0=0}}, { m c}$	$ m cm^{-1})$ 1580 है । ऑक्सी $-$ हीमोग्लोबिन में आबंधित	
	O_2 के लिए $\mathrm{v}_{0\!-\!0}$ जिसके निकट है वह है $-$		
	(A) 800	(B) 1100	
	(C) 1600	(D) 1900	
64			
	यौगिक जो 3314 तथा 2126 cm ⁻¹ पर IR	•	
	(A) $CH_3(CH_2)_4CH_2SH$	(B) $CH_3(CH_2)_4CH_2C \equiv N$	
	(C) $CH_3(CH_2)_4CH_2C \equiv CH$	(D) $CH_3(CH_2)_2C = C(CH_2)_2CH_3$	
65	The number of unpaired electrons for the complex ion $[VF_6]^{3-}$ is		
03	(A) 0	(B) 1	
	(C) 3	(D) 2	
	$[{ m VF}_6]^{3-}$ में अयुग्मित इलेक्ट्रानों की संख्या निम्		
	(A) 0	(B) 1	
	(C) 3	(D) 2	
DE			
PL	D-10-CAP_0 1:	Contd	

66			
	rule is -	(D) 1	
	(A) 0	(B) 1	
	(C) 2	(D) 3	0 . 3
	18 e नियम का पालन करने वाले [CpNi(की सख्या है –
	(A) 0	(B) 1	
	(C) 2	(D) 3	
67	The co-ordination number of Gd in GdCl ₃ •6H ₂ O is		
	(A) 3	(B) 6	
	(C) 8	(D) 9	
	GdCl ₃ ·6H ₂ O में Gd की समन्वय संख्या	है –	
	(A) 3	(B) 6	
	(C) 8	(D) 9	
68	8 The character of LUMO of CN and O ₂ respectively are -		
	(A) σ_g and π_u	(B) $\pi_{\rm u}$ and $\sigma_{\rm u}$	
	(C) π_g and σ_u	(D) σ_u and π_g	
	CN^- तथा O_2 के LUMO के लक्षण हैं	क्रमशः —	
	(A) σ_g और π_u	(B) π_{u} और σ_{u}	
	(C) π_g और σ_u	(D) $\sigma_{ m u}$ और $\pi_{ m g}$	
69	Noradrenaline is a/an -		
	(A) Antihistamine	(B) Antacid	
	(C) Neurotransmitter	(D) Antidepressant	
	नोराड्रीनालीन है -		
	(A) ऐन्टी हिस्टमाइन	(B) एन्टासीड	
	(C) न्युरोट्रान्समीटर	(D) एन्टीडिपरेसैंट	
70 The concentration of dissolved oxygen (DO) in cold water can go up			upto -
	ठंडा जल में घुलनशील आक्सीजन की सान्द्रत	ता अधिकतम जा सकता है –	
	(A) 8 ppm	(B) 10 ppm	
	(C) 14 ppm	(D) 16 ppm	
PD	-10-CAP_0	16	Contd

71	Taj Mahal is being slowly distigured an	id discoloured. This is primarily due to -
	(A) Global warming	(B) Soil pollution
	(C) Water pollution	(D) Acid rain
	ताज महल धीरे-धीरे डिसफिगर तथा फीका होता	जा रहा है । यह मुख्यतः निम्न कारण से है –
	(A) विश्वव्यापी गर्मी	(B) मिही प्रदूषण
	(C) जल प्रदूषण	(D) अम्ल वर्षा

- 72 The IUPAC name of the compound $CH_2 = C CH_2 C = CH$ is CH_3
 - (A) 4-methyl-4-penten-1-yne (B) 4-methyl-2-penten-1-yne (C) 2-methyl-1-penten-4-yne (D) 2-methyl-2-penten-4-yne यौगिक $CH_2 = C CH_2 C = CH$ का IUPAC नाम है CH_3
 - (A) 4-मेथिल-4-पेन्टीन-1-yne(B) 4-मेथिल-2-पेन्टीन-1-yne(C) 2-मेथिल-1-पेन्टीन-4-yne(D) 2-मेथिल-2-पेन्टीन-4-yne
- 73 The IUPAC name of the given structure **फ** is (A) 3, 3-Dimethyl pentane
 (C) 3-Ethyl-3-methyl pentane
 संरचना **फ** का IUPAC नाम है (A) 3, 3-डाईमेथिल पेंटेन
 (B) 3, 3-डाईएथिल पेंटेन
 - (C) 3-एथिल-3-मेथिल पेंटेन (D) 3-एथिल-3-एथिलपेंटेन
- 74 Which among the following compounds will give Cannizzaro reaction? निम्नलिखित में से कौन सा कम्पाउण्ड केनीजारो प्रतिक्रिया देगा ?

(i)
$$C_6H_5 - CHO$$
 (ii) $CH_3 - C - CHO$ CH_3

- (iii) CCl₃ CHO (iv) HCHO (A) (i), (ii) and (तथा) (iv) (B) (i), (ii) and (तथा) (iii) (C) (i), (ii), (iii) and (तथा) (iv) (D) (iii) and (तथा) (iv)
- In aldol condensation, product of the reaction is

 (A) α -hydroxy ketone
 (B) α -hydroxy acid
 (C) β -hydroxy acid
 (D) β -hydroxy aldehyde

 एलडोल संघनन में प्रतिक्रिया का प्रतिफल है –

 (A) α -हाइड्रोक्सी कीटोन
 (B) α -हाइड्रोक्सी एसिड
 (C) β -हाइड्रोक्सी एसिड
 (D) β -हाइड्रोक्सी एल्डिहाइड

76 In the reaction sequence

$$CH_3$$
 $C=CH-CH_3 \xrightarrow{(i)O_3} [X]+[Y]$

- [X] and [Y] will respectively be -
- (A) Acetone and ethanol
- (B) Acetone and acetaldehyde
- (C) Propanol and ethanol
- (D) 2-Propanol and ethanol

अभिक्रिया अनुक्रम
$$CH_3$$
 $C=CH-CH_3$ $(i)O_3$ $(i)O_3$ $(i)Zn/HCl/HOH$ $(X]+[Y]$ में $[X]$ एवं $[Y]$ क्रमशः होंगे

(A) ऐसीटोन एवं एथानॉल

(B) एसीटोन एवं एसीटएल्डिहाइड

(C) प्रोपेनॉल एवं एथानॉल

(D) 2-प्रोपेनॉल एवं एथानॉल

77 The given reaction

$$C_6H_5$$
— $\stackrel{\oplus}{N} \equiv NC1$ $\stackrel{\ominus}{=} \stackrel{Cu_2Cl_2/HCl}{\longrightarrow} C_6H_5Cl+N_2$ is known as

(A) Glaser reaction

- (B) Schiemann reaction
- (C) Sandmeyer reaction
- (D) Chlorination

दिये गये प्रतिक्रिया

$$C_6H_5$$
— $\stackrel{\oplus}{N}\equiv NC1^{\ominus}$ — $\stackrel{Cu_2Cl_2/HCl}{\longrightarrow} C_6H_5Cl+N_2$ जाना जाता है

(A) ग्लेसर प्रतिक्रिया

(B) सीमान प्रतिक्रिया

(C) सेंडमेयर प्रतिक्रिया

- (D) क्लोरीनेशन
- Benzoylation of amines can be carried out in presence of -
 - (A) Only aqueous medium
- (B) Only non-aqueous medium
- (C) Both aquous and non-aqueous medium (D) HOH/MeOH only
- एमीन का बेन्जॉयलेशन निम्न की उपस्थिति में की जाती है (A) सिर्फ जलीय माध्यम
- (C) दोनों जलीय और बिना जलीय माध्यम
- (B) सिर्फ बिना जलीय माध्यम (D) HOH/MeOH सिर्फ
- If a proton is linked to some electronegative atom in the form of hydrogen bond, absorption will occur -
 - (A) up field

(B) down field

(C) unchanged

(D) can not say

यदि एक प्रोटोन किसी विद्युतऋणात्मक परमाणु से हाइड्रोजन बंध के रूप में जुड़ा हो तो, अवशोषण होगा

(A) अप फिल्ड

(B) डाउन फिल्ड

(C) कोई बदलाव नही

- (D) नहीं कह सकते
- How many ¹HNMR signals are expected from the following compound-80 दिये गये यौगिक में कितना सभावित ¹HNMR सिग्नल होगा

$$H_3C$$
 \longrightarrow CH_3 CH_3 CH_3 CH_3

(A) 2

(B) 3

(C) 4

(D) 5

PD-10-CAP 0

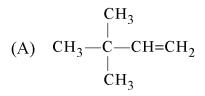
18

81	The N-atom of pyridine is -		
	(A) sp-hybridised	(B)	sp ³ -hybridised
	(C) sp ² -hybridised	(D)	Can not be predicted
	पिरीडीन का N $-$ परमाणु है $-$		
	(A) sp-संकरित	(B)	sp^3 -संकरित
	(C) sp²-संकरित	(D)	संभावना नहीं कर सकते
82	Pyridine has a delocalized π -molecular	orbit	tal containing -
	(A) 4-electrons	(B)	6-electrons
	(C) 8-electrons	(D)	12-electrons
	पिरीडिन का डिलोकेलाइजड π-मोलीकुलर ऑर्बिटल	न रख	ता है —
	(A) 4-इलेक्ट्रॉन	(B)	6-इलेक्ट्रॉन
	(C) 8-इलेक्ट्रॉन	` ′	 12-इलेक्ट्रॉन
		()	V. C. A. C.
83	Which of the following cannot be detecte	d wit	h the help of UV absorption spectra?
-	(A) Functional group		Conjugation
	(C) Optical isomerism		Geometrical isomerism
	निम्नलिखित में किसका पता UV ए <mark>बस</mark> ॉर्पशन स्पे		
	(A) फंक्शनल ग्रुप		कांजुगेशन
	(C) आप्टिकल समयावता		ज्योमेट्रिकल समयावता
	(0) 311 347(1 (11414))	(15)	- 11 11 2 11 11 11 11 11 11 11 11 11 11 1
84	The bond length in CN ⁺ is 0.129 nm. Th	e nos	ition of second line in the microwave
	spectrum is -	Сроб	ition of second line in the interowave
	(A) 9.396 cm^{-1}	(B)	6.264 cm ⁻¹
	(C) 12.528 cm^{-1}	()	3.132 cm^{-1}
	${ m CN^+}$ में बंध लंबाई $0.129~{ m nm}$ है । सूक्ष्म तर		
	(A) 9.396 cm^{-1}		6.264 cm^{-1}
	(C) 12.528 cm^{-1}	` /	3.132 cm^{-1}
	· /		
85	The Carbon – Carbon bond length is r	naxim	num in -
	(A) $CH_2=CH_2$	(B)	HC≡CH
		(-)	110-011
	(C)	(D)	CH ₃ CH ₃
		(-)	01130113
	अधिकतम $\mathrm{C-C}$ बंध लंबाई होगी $-$		
	(A) $CH_2 = CH_2$	(B)	HC≡CH
	(C) []	(D)	CH ₃ CH ₃

86	How many structural isomers are possible for C ₄ H ₉ C1 ?		
	$\mathrm{C_4H_9Cl}$ का संभवित स्ट्रकचरल आइसोमर होगा $-$		
	(A) 2	(B) 3	
	(C) 4	(D) 5	
87	It is possible to distinguish between	optical isomers by -	
	(A) Polarimetry	(B) Using chemical tests	
	(C) IR spectroscopy	(D) Mass spectroscopy	
	आपटिकल आइसोमर्स की पहचान संभव है –		
	(A) पोलेरीमेट्री द्वारा	(B) रसायनिक जाँच द्वारा	
	(C) IR स्पेक्ट्रोस्कोपी द्वारा	(D) मास स्पेक्ट्रोस्कोपी द्वारा	
88	Which of the following compounds	is aromatic?	
	निम्नलिखित में कौन सा यौगिक एरोमेटिक है	?	
	(A)	(B) //	
	(C) N	(D)	
89	Which of the following will undergo	substitution in the ortho and para position	ons
	rather than in the meta position ?		
	(A) Nitrobenzene	(B) Acetanilide	
	(C) Benzaldehyde	(D) Benzoic acid	
	निम्न में से कौन मेटा स्थिति के बजाय ऑर्थो	एवं पैरा स्थिति में प्रतिस्थापन करेगा ?	
	(A) नाइट्रोबेन्जीन	(B) एसिटेनिलाइड	
	(C) बैन्जेलडिहाइड	(D) बेन्जोइक ऐसिड	
90	Toluene can be converted into benza	ldehyde by -	
	$(A) MnO_2$	(B) $Ac_2O/AcOH$	
	(C) Chromyl Chloride	(D) All of these	
	टॉलूईन को बेन्जलडिहाइड में परिवर्तित किया	जा सकता है —	
	(A) MnO ₂ द्वारा	(B) Ac ₂ O/AcOH द्वारा	
	(C) क्रोमाइल क्लोराइड द्वारा	(D) उपरोक्त सभी	<u> </u>
PD	0-10-CAP_0	20 Contd	

- 91 Acid can be reduced into ketone by -
 - (A) NaBH₄

(B) LiAlH₄


(C) R₂CuLi

- (D) R-Li
- अम्ल को कीटोन से अपचियत किया जा सकता है
- (A) NaBH₄ द्वारा

(B) LiAlH₄ द्वारा

(C) R2CuLi द्वारा

- (D) R-Li द्वारा
- 92 Which among the following compounds will react with NBS $|CC1_4|h\vartheta$? निम्निलिखित में किससे NBS $|CC1_4|h\vartheta$ प्रतिक्रिया करेगा ?

- (B) $C_6H_5 C CH_2 CH_3$ CH_3
- (C) C_6H_5 — CH_2 — $CH=CH_2$
- (D) CH₃—CH—CH₃ CH₃
- 93 Which among the following groups is not reduced by BH_3 निम्निलिखित में कौन सा ग्रुप का अपचयन BH_3 द्वारा नहीं होगा ?
 - (A) \supset C=C<

(B) $-NO_2$

(C) – COOH

- (D) -C-O-C-
- 94 Acetic anhydride is used as -
 - (i) Acetylating agent

- (ii) Dehydrating agent
- (iii) Reagent in Perkin reaction
- (iv) Methylating agent

(A) only (i)

- (B) only (i) and (ii)
- (C) only (i), (ii) and (iii)
- (D) only (i), (ii) and (iv)
- ऐसिटिक एनहाईड्राइड का उपयोग निम्न रुप किया जाता है -
- (i) एसिटाइलेशन एजेन्ट के रुप में
- (ii) डिहाइड्रेसन एजेन्ट के रुप में
- (iii) परकीन अभिक्रिया में रीएजेन्ट के रुप में
- (iv) मेथिलेटींग एजेन्ट के रुप में

(A) सिर्फ (i) में

- (B) सिर्फ (i) एवं (ii) में
- (C) सिर्फ (i), (ii) एवं (iii) में
- (D) सिर्फ (i), (ii) एवं (iv) में
- 95 The frequency shift of the carbonyl absorption in the cyclohexane carboxaldehyde is साइक्लोहेक्सेन कार्बोक्साल्डिहाइड में कार्बोनिल अवशोषण का आवृत्ति विस्थापन है -
 - (A) 1600 cm^{-1}

(B) 1700 cm^{-1}

(C) 1835 cm^{-1}

(D) 1730 cm^{-1}

96	The frontier orbital interactions involved in the formation of Carbocation intermediate in the reaction of isobutylene with HCl are -		
	(A) π of olefin and σ of HCl	(B)	π of olefin and σ^* of HCl
	(C) π^* of olefin and σ of HCl आइसोब्यूटिलीन की HCl से अभिक्रिया में कार्बोधना अन्योन्य क्रियाएँ सिम्मिलित होती है, वह है $-$, ,	
	(A) ओलिफीन का π तथा HCl का σ	(B)	ओलिफीन का π तथा HCl का σ^*
	(C) ओलिफीन का π^* तथा HCl का σ	(D)	ओलिफीन का π^* तथा HCl का σ^*
97	Which base is present in RNA but not (A) Uracil (C) Thymine RNA में कौन सा भष्म होता है जो DNA में	(B) (D)	Cytosine Guanine
	(A) युरासील	(B)	साइटोसीन
	(C) थाइमीन	(D)	गुवानीन
98	α -D(+)-glucose and β -D-(+)-glucose	are	
	(A) Epimers	(B)	
	(C) Enantiomers $\alpha-D(+)$ -ग्लूकोज तथा $\beta-D-(+)$ -ग्लूकोज हैं (A) इपीमर	(D) (B)	Anomers कॉनफारमर
	(C) इनान्सीयोमर	(D)	एनोमर
99	Biuret test is not given by -		
	(A) Proteins	(B)	Carbohydrates
	(C) Polypeptides	(D)	Urea
	बाइयूरेट टेस्ट नहीं देता है –		
	(A) प्रोटीन	` ′	कार्बोहाइड्रेट
	(C) पॉलीपेप्टाइड	(D)	यूरिया
100	The compound which acts both as anti	pyreti	c and analgesic is -
	(A) Aspirin	(B)	Paracetamol
	(C) Sulphadrugs	(D)	Phenacetin
	यौगिक जो ज्वरनाशक तथा दर्दनाशक दोनों की		
	(A) ऐस्पिरिन	(B)	पैरासिटामोल
	(C) सल्फाड्रग	(D)	फीनासीटीन
PD	0-10-CAP_0		Contd

SPACE FOR ROUGH WORK / कच्चे काम के लिए जगह

- **5.** You have to mark all your responses *ONLY* on the separate OMR Answer Sheet provided. See directions in the OMR Answer Sheet.
- 6. All items carry equal marks.
- 7. Before you proceed to mark in the OMR Answer Sheet the response to various items in the Test Booklet, you have to fill in some particulars in the OMR Answer Sheet as per instructions mentioned on the OMR Answer Sheet.
- 8. After you have completed filling in all your responses on the OMR Answer Sheet and the examination has concluded, you should hand over to the Invigilator only the OMR Answer Sheet. You are permitted to take away with you the Test Booklet, along with candidate copy of OMR Answer Sheet.
- **9.** Sheets for rough work are appended in the Test Booklet at the end.
- 10. THERE WILL BE NO PENALTY FOR WRONG ANSWERS MARKED BY A CANDIDATE.

- 5. आपको अपने सभी प्रत्युत्तर अलग से दिए गए उत्तर-पत्रक पर *ही* अंकित करने हैं । उत्तर-पत्रक में दिए गए निर्देश देखिए ।
- **6. सभी** प्रश्नांशों के अंक समान हैं ।
- 7. इससे पहले कि आप परीक्षण पुस्तिका के विभिन्न प्रश्नांशों के प्रत्युत्तर उत्तर-पत्रक पर अंकित करना शुरू करें, आपको प्रवेश प्रमाण-पत्र के साथ प्रेषित अनुदेशों के अनुसार कुछ विवरण उत्तर-पत्रक में देने हैं।
- 8. आप अपने सभी प्रत्युत्तरों को उत्तर-पत्रक में भरने के बाद तथा परीक्षा के समापन पर केवल उत्तर-पत्रक अधीक्षक को सौंप दें । आपको अपने साथ परीक्षण पुस्तिका एवं उत्तर-पत्रक की अभ्यर्थी कोपी ले जाने की अनुमति है ।
- 9. कच्चे काम के लिए पत्रक परीक्षण पुस्तिका के अंत में संलग्न है।
- 10. वस्तुनिष्ठ प्रश्न-पत्रों में उम्मीदवार द्वारा दिए गए ग़लत उत्तरों के लिए कोई दंड नहीं दिया जाएगा ।

SPACE FOR ROUGH WORK / कच्चे काम के लिए जगह

