- **3.** 2; $\because \sqrt{24000} \approx 155$ \therefore ? $\approx 155 \times 36 + 175 \times 4 = 5580 + 700 = 6280$
- 4. 3; $\because \sqrt{1935} = 44$ $\therefore ? = \frac{4488}{44} + \frac{172}{4} = 102 + 43 = 145$

5. 3;
$$? = \frac{1884 \times 73}{100} \div 25 \approx \frac{1375}{25} = 55$$

- 6. 5; The series is $+17^2 17$, $+15^2 15$, $+13^2 13$...
- 7. 3; The series is $+8^3$, $+12^3$, $+16^3$, $+20^3$, ...
- **8.** 2; The series is $2^2 + 4^2$, $6^2 + 8^2$, $10^2 + 12^2$, $14^2 + 16^2$...
- **9.** 1; The series is -24^2 , -21^2 , -18^2 , -15^2 ...
- **10.** 3; The series is $+10^3 10$, $9^3 9$, $+8^3 8$...
- **11.** 5; **I.** $x = \sqrt[3]{357911}$ $\therefore x = 71$ **II.** $y = \sqrt{5041}$: y = 71 $\therefore x = y$ **12.** 1; Eqn (I) \times 9 – Eqn (II) \times 5 $\begin{array}{r} 45x + 63y = -387 \\ 45x - 85y = 205 \end{array}$ $\frac{-}{148y = -592}$ \therefore y = -4 and x = -3 $\therefore x > y$ **13.** 4; **I.** $x^2 + 11x + 30 = 0$ or x(x+5) + 6(x+5) = 0or (x + 5) (x + 6) = 0 $\therefore x = -5, -6$ **II.** $y^2 + 4y + 5y + 20 = 0$ or y(y+4) + 5(y+4) = 0or (y+4)(y+5) = 0 $\therefore y = -4, -5$ $\therefore x \leq y$ **14.** 3; **I.** $4x^2 + 4x - x - 1 = 0$
 - or 4x(x + 1) 1(x + 1) = 0or (4x - 1)(x + 1) = 0

$$\therefore x = -1, \frac{1}{4}$$

II. $6y^2 - 3y - 2y + 1 = 0$
or $3y(2y - 1) - 1(2y - 1) = 0$
or $(3y - 1)(2y - 1) = 0$
$$\therefore y = \frac{1}{2}, \frac{1}{3}$$

$$\therefore x < y$$

15. 2; **I.**
$$3x^2 + 9x + 6x + 18 = 0$$

or $3x(x + 3) + 6(x + 3) = 0$
or $(x + 3) (3x + 6) = 0$
∴ $x = -3, -2$
II. $2y^2 + 6y + 9y + 27 = 0$
or $2y(y + 3) + 9(y + 3) = 0$
or $(2y + 9) (y + 3) = 0$
∴ $y = -3, -\frac{9}{2}$
∴ $x \ge y$

16. 2; The total number of selected students in State B = 75 + 72 + 104 + 112 + 60 + 75 = 498

 $\therefore \text{ Average} = \frac{498}{6} = 83$ The total number of selected students in State D = 95 + 84 + 77 + 78 + 64 + 58 = 456 $\therefore \text{ Average} = \frac{456}{6} = 76$

$$\therefore \text{ Difference} = \frac{83 - 76}{6} = 7$$

17. 3; Percentage of candidates passed in

State A = $\frac{780}{5600} \times 100 = 13.92\%$

Percentage of candidates passed in State B = $\frac{480}{7500} \times 100 = 6.4\%$

Percentage of candidates passed in State C = $\frac{800}{4800} \times 100 = 16.66\%$

Percentage of candidates passed in State D = $\frac{700}{7500} \times 100 = 9.33\%$

18. 2; Total number of students selected in State C = 80 + 60 + 66 + 55 + 52 + 60 = 373 Total number of students selected in State A = 80 + 120 + 72 + 96 + 64 + 68 = 500 ∴ Reqd % = 373/500 × 100 = 74.6%

19. 2;

Percentage of selected candidates in State D in $2006 \rightarrow \frac{95}{700} \times 100 = 13.57\%$ Percentage of selected candidates in State D in $2007 \rightarrow \frac{84}{540} \times 100 = 15.5\%$ Percentage of selected candidates in State D in $2008 \rightarrow \frac{77}{660} \times 100 = 11.6\%$ Percentage of selected candidates in State D in $2009 \rightarrow \frac{78}{720} \times 100 = 10.83\%$ Percentage of selected candidates in State D in $2010 \rightarrow \frac{64}{640} \times 100 = 10\%$ Percentage of selected candidates in State D in $2011 \rightarrow \frac{58}{500} \times 100 = 11.6\%$

- **20.** 5; Total candidates passed in State A in 2006 = 780 Total candidates passed in State C in 2009 = 500
 - $\therefore \text{ Reqd \%} = \frac{(780 500)}{500} \times 100 = \frac{280}{5} = 56\%$
- 21. 4; Let the sum lent be ₹x. Then, Interest = $\frac{x \times 8 \times 8}{100}$ Now,

$$\therefore x - \frac{64x}{100} = 612$$

or, $36x = 61200$
$$\therefore x = ₹1700$$

22. 3; Let the amount be x.

$$CI = x \left[1 + \frac{15}{100} \right]^2 - x = x \left[\left(\frac{23}{20} \right)^2 - 1 \right] = x \left(\frac{129}{400} \right)$$

$$SI = \frac{x \times 15 \times 2}{100} = \frac{3x}{10}$$

$$\therefore \frac{SI}{CI} = \frac{3x}{10} \times \frac{400}{129x} = \frac{40}{43}$$

$$\therefore SI = \frac{40}{43} \times 193.5 = ₹180$$

23. 2; Area of the park =
$$\frac{(968)^2}{4(\frac{22}{7})}$$
 = 74536 sq m

 \therefore Radius of the park = $\sqrt{\frac{74536 \times 7}{22}} = 154$ m

:. Area of the road = $\pi b (b + 2r)$) = $\frac{22}{7} \times 2.8 \times (2.8 + 308) = 22 \times 0.4 \times 310.8 = 2735.04$ sq m

24. 5; Required number of ways = ${}^{6}C_{1} \times {}^{5}C_{3} = 6 \times 10 = 60$ ways

25. 1; Total balls = 6 + 7 + 8 = 21n(s) = ${}^{21}C_3 = 1330$

Two blue balls can be selected from 7 blue balls in ${}^{7}C_{2} = 21$ ways and the remaining one ball can be selected from the remaining 14 balls in ${}^{14}C_{1} = 14$ ways

 $\therefore n(E) = 21 \times 14 = 294$

$$\therefore P(E) = \frac{294}{1330} = \frac{147}{665}$$

26. 4; Let 10 years ago the ages of A, B and C be x, 3x and 7x respectively. Then the present ages of A, B and C are (x + 10), (3x + 10) and (7x + 10) respectively.

 $\therefore \text{ Sum} = 11x + 30 = 85$ $\therefore 11x = 55 \qquad \therefore x = 5$ Hence, the present ages of A, B and C are 15, 25 and 45 years respectively. $\therefore \text{ Reqd } \% = \frac{45}{25} \times 100 = 180\%$

27. 4; Let the daily earnings of the men and women be x and y respectively.

$$\therefore 13x + 12y = \frac{11120}{8} = 1390 \dots (i)$$

$$\therefore 9x + 11y = \frac{12840}{12} = 1070 \dots (ii)$$

Solving eqn (i) and (ii), we get
 $x = 70 \qquad y = 40$
$$\therefore 8x + 15y = 1160$$

$$\therefore \text{ Required days} = \frac{17400}{1160} = 15 \text{ days}$$

28. 3; Time taken to fill the tank by both the pipes = $\frac{40 \times 10}{40+10}$ = 8 hours. So to fill the tank half, they will take 4 hours. After leakage half of the water leaks out, that is with leakage the pipes will fill the tank in 16 hours.

But here $\frac{1}{2}$ of the tank is already filled in 4 hours. So, the remaining half will be filled in $\frac{16}{2} = 8$ hours.

 \therefore Total time = 4 + 8 = 12 hours.

29. 5; Let the train meet x km from station X. (\therefore 1PM - 11AM = 2h) or, $\frac{x}{40} - \frac{(1040 - x)}{80} = 2$ 2x - 1040 + x = 160, or, 3x = 1200 $\therefore x = 400$ km So, time taken by the first train $= \frac{400}{40} = 10$ hours. So they will meet at 9pm.

30. 2; Let the side of the square ABCD (park) be x. So area = x^2 Side of square $A_1 B_1 C_1 D_1 = x + 2 + 2 = (x + 4)$ metres Area of $A_1 B_1 C_1 D_1 = (x + 4)^2$ Area of path = Area of $A_1 B_1 C_1 D_1$ - Area of ABCD or $(x + 4)^2 - x^2 = 184$ or $x^2 + 8x + 16 - x^2 = 184$ or 8x = 184 - 16 = 168 $\therefore x = 21$ metres \therefore Area of the park = $x^2 = 441$ sq m

31. 2; Income of Company A in 2007

$$I = E \times \frac{(100 + P)}{100}$$

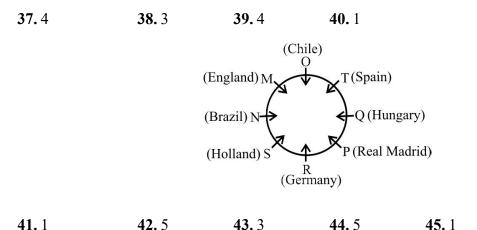
or E = $\frac{100 \times I}{(100 + P)} = \frac{85.8 \times 100}{(100 + 32)} = \frac{8580}{132} = 65$ lakh

32. 4; Company A's income in $2012 = \text{Expenditure} \times \frac{(\% \text{ Profit} + 100)}{100}$

:. I = 90.6 ×
$$\frac{155}{100}$$
 = 140.43 lakh

33. 2; Company B's percentage profits in different years are as follows

% Profit in 2007 $\rightarrow \frac{32-25}{25} \times 100 = 28\%$ % Profit in 2009 $\rightarrow \frac{45-30}{30} \times 100 = 50\%$ % Profit in 2010 $\rightarrow \frac{50-45}{45} \times 100 = 11.11\%$ % Profit in 2011 $\rightarrow \frac{60-50}{50} \times 100 = 20\%$


34. 5; We can't find the exact value of the net profit from the given data.

35. 4; $E_A = I_B = 84$ lakhs Percentage profit of Company A = 30% Percentage

Percentage profit of Company B = 50%

$$I_A = E_A \times \frac{100 + P_A}{100} = 84 \times \frac{130}{100} = 109.2 \text{ lakhs}$$
 $E_B = I_B \times \frac{100}{(100 + P_B)} = 84 \times \frac{100}{150} = 56 \text{ lakhs}$
 \therefore Difference = 109.2 - 56 = 53.2 lakhs

36. 5; 'fo' or 'gm'

46. 5; Conclusion I is inherent in the first statement.

Again,

All dogs are kittens (A) + No kittens are black (E) = A + E = E = No dog is black Hence, conclusion II follows.

47. 1; There is no negative statement. Hence, Conclusion I follows. But conclusion II is a negative conclusion. Hence, II does not follow.

48. 5; All scholar are eccentric (A) + Conversion of No woman is eccentric \rightarrow conversion \rightarrow No woman is a scholar.

Hence, conclusion I follows.

Again, All scholars are eccentric (A) + All eccentrics are studies (A) = A + A = A. All scholars are studies. It means. All studies being scholar is a possibility. Hence, conclusion II follows.

49. 3; Some eggs are hard-boiled \rightarrow conversion \rightarrow Some hard-boiled are eggs (I) + No eggs are uncrackable (E) = I + E = O = Some hard-boiled are not uncrackable.

But, conclusion I and II make a complementary pair (I–E).

50. 1; All perfumes are expensive (A) + All expensive things are unique (A) = A + A = All perfumes are unique.

Hence, All unique thing being perfumes is a possibility. Thus, conclusion I follows. But II does not follow.

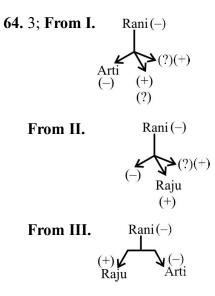
(51-55):

51.2

52. 2; Because P lies between the one who scored 97% marks and the one who scored 80% marks.

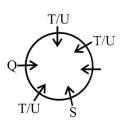
53. 5 **54.** 5 **55.**2 **D**(Butter Cluster) Z(Black Cherry ъ(Mango Bar) ← O(Strawberry) $\leftarrow Z(Vanilla)$ Facing Row 1 \mathbf{t} South ← C (Tutti Frutti) ← A (Kurly Wurly) <hr>
 <h→m (Chocobar)</hr> Row 2 ← H (Butterscotch North Facing **57.**2 **56.** 4 **58.** 5 **59.**2 **60.** 3 **61.**4; From I <u>M</u> ____ <u>R</u> ___ ...(a) <u>M</u>____R ...(b) From II <u>M</u> <u>N</u> <u>R</u> <u>E</u> ...(a) <u>M N _ R E</u> ...(b) AN ...(c) From III. U R E Now, from I and III. M URE Now, combining this with II (c), we get MANURE.

62. 5; Both 'friends' and 'are' are common to all the statements.

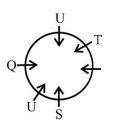

63. 5; From I.

Friend	Pen colour	Class	
М	Yellow / Black / Blue	VII	
N			
0			
Р			
Q			
R	Green	IV	
S	Silver	II	

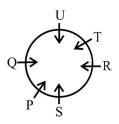
O – Black – does not study in VI or III. **From III.** P – Blue – V Q does not study in III and N does not like Red pen. **From (I), (II) and (III).**


Friend	Pen colour	C la s s
М	Yellow	VII
Ν	P ink	III/VI/VIII
0	Black	III/VIII
Р	Blue	V
Q	Red	V I/V III
R	Green	IV
S	Silver	II

Thus, even (I), (II) and (III) together are not sufficient to answer the question.



65. 4;


From I.

From (I), (II) and (III).

Thus, (I), (II) and (III) are sufficient to answer the question.

66. 2; $D = T \ge M < J$ From the given expression $D = T \ge M < J$

D and J cannot be combined. So, I is not true.

From the given expression

$$D = T \ge M < J$$

combining

 $D \ge M$. So, II is true.

67. 3;
$$8 < K = N \ge R$$

From the given expression

$$8 < K = N \ge R$$

combining
 $R = K$
Which means either I (R = K)
or II (R < K) is true.

68. 1; Given,
$$H \ge F < W = E$$

From the given expression

$$H \ge F < W = F$$

combining

E > F. So, I is true.

From the given expression, $\begin{array}{c} H \ge F < W = E \\ combining \end{array}$

We cannot compare H and W. Thus, II is not true.

69. 4; Given,
$$Z > D \le K > M$$

From the given expression,

$$Z > D \le K > M$$

combining

M and D cannot be compared. Thus, I is not true. From the given expression,

$$Z > D \le K > M$$

combining

Z and K cannot be compared. Thus, II is also not true.

70. 5; Given, $W \le B < N \le F$ From the given expression,

$$W \le B < N \le F$$

combining

F > B. Thus, I is true. From the given expression,

> $W \le B < N \le F$ combining

W < N. Thus, II is also true.

71. 4	72. 3	73. 2	74. 4	75. 5
76. 1	77.3	78. 2	79. 3	80. 2
81. 4	82. 3	83. 5	84. 2	
85. 2; Repla	ce 'from' with 'b	y'		

86. 3; add 'him' after 'stop'

87.2; Replace 'that' with 'those'

88. 3; Add 'of' after 'instead'

89. 2; Add 'own' after 'one's

(90-94): BFDAEC

90.2	91. 4	92. 1	93. 5	94. 3
95. 1 100. 2	96. 3	97. 2	98. 4	99. 1