JEE Mains (12th)

Sample Paper - I

DURATION : 180 Minutes

M. MARKS : 300

General Instructions:

- 1. Immediately fill in the particulars on this page of the test booklet.
- 2. The test is of **3 hours** duration.
- The test booklet consists of 90 questions (75 to attempt). The maximum marks are 300.
- There are three subjects in the question paper, Subject I, II and III consisting of Section-I (Physics), Section-II (Chemistry), Section-III (Mathematics), and having 30 questions in each part.
- 5. There will be a total of **20 MCQs** and **10 Numerical** Value Based Questions **(attempt any 5)**.
- 6. Each correct answer will give 4 marks while 1 Marks will be deducted for a wrong response.
- 7. No student is allowed to carry any textual material, printed or written, bits of papers, pager, mobile phone, any electronic device, etc. inside the examination room/hall.
- 8. On completion of the test, the candidate must hand over the Answer Sheet to the Invigilator on duty in the Room/Hall. However, the candidates are allowed to take away this Test Booklet with them.
- 9. Do not fold or make any stray mark on the Answer Sheet (OMR).

Name of the Student (In CAPITALS):
Roll Number:
Candidate's Signature:

Section-I (PHYSICS)

[Section – A]

- 1. The resultant of two vectors at an angle 150° is 10 units and is perpendicular to one vector. The magnitude of the smaller vector is
 - (1) 10 units
 - (2) $10\sqrt{3}$ units
 - (3) $10\sqrt{2}$ units
 - (4) $5\sqrt{3}$ units

2. A rifle bullets loses $\left(\frac{1}{20}\right)^{\text{th}}$ of its velocity in

passing through a plank. Assuming that the plank exerts a constant retarding force, the least number of such planks required just to stop the bullet is

- (1) 11
- (2) 20
- (3) 21
- (4) Infinite
- **3.** The figure shows P-V diagram of a thermodynamic cycle. Which corresponding curve is correct?

4. A ball is thrown up vertically with a certain velocity so that, it reaches a maximum height *h*. Find the ratio of the times in which it is at height $\frac{h}{3}$ while

going up and coming down respectively

(1)
$$\frac{\sqrt{2}-1}{\sqrt{2}+1}$$
 (2) $\frac{\sqrt{3}-\sqrt{2}}{\sqrt{3}+\sqrt{2}}$
(3) $\frac{\sqrt{3}-1}{\sqrt{3}+1}$ (4) $\frac{1}{3}$

5. By increasing temperature of a gas by 6°C its pressure increases by 0.4 % at constant volume. Then initial temperature of gas is

		-	-
(1)	1000 K	(2)	1500 K
(3)	2000 K	(4)	750 K

6. A plane is inclined at an angle $\alpha = 30^{\circ}$ with respect to the horizontal. A particle is projected with a speed $u = 2 \text{ ms}^{-1}$, from the base of the plane, making an angle $\theta = 15^{\circ}$ with respect to the plane as shown in the figure. The distance from the base, at which the particle hits the plane is close to: (Take $g = 10 \text{ ms}^{-2}$)

- (1) 10 cm(2) 20 cm
- (3) 14 cm
- (4) 26 cm

7.

- The plot of velocity (v) ver
- The plot of velocity (*v*) versus displacement (*x*) of a particle executing simple harmonic motion is shown in figure. The time period of oscillation of particle is

- (3) $2\pi s$ (4) $3\pi s$
- 8. A particle of mass 4 kg moves simple harmonically such that its PE(U) varies with position *x*, as shown. The period of oscillations is

9. If the length of a clock pendulum increases by 0.2% due to atmospheric temperature rise, then the loss in time of clock per day is

(1)	86.4 s	-	(2)	43.2 s
(3)	72.5 s		(4)	32.5 s

10. A block of mass *m* slides along a floor while a force of magnitude *F* is applied to it at an angle θ as shown in figure. The coefficient of kinetic friction is $\mu_{\rm K}$. Then, the block's acceleration 'a' is given by: (*g* is acceleration due to gravity)

- 11. Two strings of same material are stretched to the same tension. If their radii are in the ratio 1 : 2, then respective wave velocities in them will be in ratio
 (1) 4 : 1
 (2) 2 : 1
 (3) 1 : 2
 (4) 1 : 4
- 12. Two identical spherical balls of mass M and radius R each are stuck on two ends of a rod of length 2R and mass M (see figure). The moment of inertia of the system about the axis passing perpendicularly through the centre of the rod is

13. An electron with kinetic energy K_1 enters between parallel plates of a capacitor at an angle 'a' with the plates. It leaves the plates at angle 'b' with kinetic energy K_2 . Then the ratio of kinetic energies $K_1: K_2$ will be:

(1)	$\frac{\cos\beta}{\sin\alpha}$	(2)	$\frac{\cos\beta}{\cos\alpha}$
(3)	$\frac{\cos^2\beta}{\cos^2\alpha}$	(4)	$\frac{\sin^2\beta}{\cos^2\alpha}$

14. In a Young's double slit experiment, the intensity at the central maximum is I_0 . The intensity at a distance $\beta/4$ from the central maximum is (β is fringe width)

(1)
$$I_0$$
 (2) $\frac{I_0}{2}$

(3)
$$\frac{I_0}{\sqrt{2}}$$
 (4) $\frac{I_0}{4}$

- 15. A parallel beam of monochromatic light of wavelength 5000 Å is incident normally on a single narrow slit of width 0.001 mm. The light is focused by a convex lens on a screen placed on focal plane. The first minimum will be formed for the angle of diffraction equal to
 - (1) 0°
 - (2) 15°
 - (3) 30°
 - (4) 50°
- **16.** Two infinite planes each with uniform surface charge density +s are kept in such a way that the angle between them is 300. The electric field in the region shown between them is given by

17. A beam of light *AO* is incident on a glass slab (m = 1.54) in a direction as shown in the diagram. The reflected ray *OB* is passed through a polariod. On viewing through the polariod, we find that on rotating the polariod

(Given tan $57^\circ = 1.54$)

- (1) The intensity is reduced down to zero and remains zero
- (2) The intensity reduces down some what and rises again
- (3) There is no change in intensity
- (4) The intensity gradually reduces to zero and then again increases
- 18. Two light rays initially in same phase travel through two media of equal length *L* having refractive index μ_1 and μ_2 ($\mu_1 > \mu_2$) as shown in figure. If the wave length of light rays in air is λ , the phase difference of the emerging rays is given by

19. An infinitely long, straight wire carrying current l, one side opened rectangular loop and a conductor C with a sliding connector are located in the same plane, as shown, in the figure. The connector has length ℓ and resistance R. It slides to the right with a velocity v. The resistance of the conductor and the self inductance of the loop are negligible. The induced current in the loop, as a function of separation r, between the connector and the straight wire is

20. The region between y = 0 and y = d contains a magnetic field $\vec{B} = B\hat{z}$. A particle of mass *m* and charge *q* enters the region with a velocity $\vec{v} = v\hat{i}$. If

 $d = \frac{mv}{2qB}$, the acceleration of the charged particle at

the point of its emergence at the other side is

(1)
$$\frac{qvB}{m} \left(\frac{1}{2}\hat{i} - \frac{\sqrt{3}}{2}\hat{j} \right)$$

(2)
$$-\frac{qvB}{m} \left(\frac{\sqrt{3}}{2}\hat{i} + \frac{1}{2}\hat{j} \right)$$

(3)
$$\frac{qvB}{m} \left(\frac{\hat{i} + \hat{j}}{\sqrt{2}} \right)$$

(4)
$$\frac{qvB}{m} \left(\frac{-\hat{j} + \hat{i}}{\sqrt{2}} \right)$$

[Section – B]

- **21.** The sound intensity level at a point 4 m from the point source is 10 dB, then the sound level at a distance 2 m from the same source will be
- 22. The equation of standing wave in a stretched string is given by $y = 5 \sin\left(\frac{\pi x}{3}\right) \cos(40\pi t)$, where x and y are in cm and t in second. The separation between two consecutive nodes is (in cm)
- **23.** A wire of length 314 cm carrying current of 14 A is bent to form a circle. The magnetic moment of the coils is _____ A-m². [Given $\pi = 3.14$]
- 24. A wire of length one metre under a certain initial tension emits a sound of fundamental frequency 256 Hz. When the tension is increased by 1 kg wt, the frequency of the fundamental node increases to 320 Hz. The initial tension in kg-wt is (Give your answer in integer with proper rounding off)
- **25.** In resonance tube two successive positions of resonance are obtained at 15 cm and 48 cm. If the frequency of the fork is 500 cps, the velocity of sound is (in m/sec)
- 26. A potentiometer wire of length 300 cm is connected in series with a resistance 780 Ω and a standard cell of emf 4 V. A constant current flows through wire. The length of the null point for cell of emf 20 mV is found to be 60 cm. The resistance of the potentiometer wire is _____ Ω .

- 27. A train moves towards a stationary observer with a speed 34 m/s. The train sounds a whistle and its frequency registered by the observer is f_1 . If the speed of the train is reduced to 17 m/s, the frequency registered is f_2 . If the speed of sound is 340 m/s then the ratio f_1/f_2 is n/18. Find the value of n.
- 28. Two slits separated by a distance of 1 mm are illuminated with red light of wavelength 6.5×10^{-7} m. The interference fringes are observed on a screen placed 1 m from the slits. The distance between the third dark fringe and the fifth bright fringe on the same side of central maxima is (in µm)
- **29.** A particle of mass '*m*' is moving in time '*t*' on a trajectory given by

 $r = 10\alpha t^2 \hat{i} + 5\beta(t-5)\hat{j}$

Where α and β are dimensional constants. The angular momentum of the particle becomes the same as it was for t = 0 at time t =_____ seconds.

30. In YDSE, a thin film ($\mu = 1.6$) of thickness 0.01 mm is introduced in the path of one of the two interfering beams. The central fringe moves to a position occupied by the 10th bright fringe earlier. The wave length of wave is (in nm)

Section-II (CHEMISTRY)

[Section – A]

- **31.** The wave number of a spectral line for a given transition is $x \text{ cm}^{-1}$ for He⁺. Its value for Be³⁺ (isoelectronic species of He⁺) for the same transition is: (1) $x \text{ cm}^{-1}$ (2) $4x \text{ cm}^{-1}$
 - (3) $\frac{x}{4}$ cm⁻¹ (4) 2x cm⁻¹
- **32.** Match the column:

	Col	umn-I	Col	umn-II
	(1)	He	(i)	Highest negative
				electron enthalpy
	(2)	Cl	(ii)	Most electropositive
				element
	(3)	Cs	(iii)	Strongest reducing
				agent
	(4)	Li	(iv)	Highest ionisation
				energy
	(1)	A-(iii), B-(i), C-(ii), D) -(iv)
	(2)	A-(iv), B-(iii), C	-(ii),	D-(i)
	(3)	A-(i), B-(ii), C-(i	ii), D	D- (iv)
	(4)	A-(iv), B-(i), C-(ii), D	0-(iii)
33.	In t	he aluminothermit	e pro	cess Al acts as :-
	(1)	Oxidising agent		
	(2)	Flux		
	(3)	Reducing agent		
	(4)	Solder		
34.	Wh	ich of the followi	ng ca	rbonates decomposes at
	low	est temperature:		
	(1)	MgCO ₃		
	(2)	CaCO ₃		
	(3)	SrCO ₃		
	(4)	BaCO ₃		

35.	The compound	that	is	both	paramagnetic	and
	coloured is:-					
	(1) $K_2Cr_2O_7$		(2)	(NF	I4)2[TiC]6]	

- (1) $K_2C_12C_7$ (2) $(K_1K_4)_2[R_1C_16]$ (3) $VOSO_4$ (4) $K_3[Cu(CN)_4]$
- 36. Statement I: Decomposition of H₂O₂ can be retarded in the presence of acetanilide.
 Statement II: D₂O has greater dielectric constant than H₂O.
 (1) Both statement (I) and (II) are true
 (2) Both statement (I) and (II) are false.
 - (2) Both statement (I) and (II) are false
 - (3) Statement (I) is true but statement (II) is false
 - (4) Statement (I) is false but statement (II) is true
- **37.** (1) Ozone is colourless gas having characteristics smell
 - (2) Wet NH₃ is dried by using anhydrous CaO
 - (3) Cl₂ reacts with cold and dilute NaOH to from sodium chloride and sodium hypochlorite
 Select correct statements:
 - (1) (1), (2), (3) (2) Only (1)
 - (3) Only (2) and (3) (4) Only (3)
- **38.** In which pair, both species have bond order 2.5?
 - (1) N_2, O_2 (2) NO, O_2^+ (3) CN, N_2^+ (4) O_2, N_2^-
- **39.** Which of the following is correctly match:-

COIL	ipound	1	U	valuation numbe
(A)	AlF ₃		(I	P) +2.5
(B)	P_4O_{10}		((Q) +7
(C)	HClO	1	(H	R) +5
(D)	$S_4O_6^{2-}$		(5	5) +3
	(A)	(B)	(C)	(D)
(1)	Р	Q	R	S
(2)	S	R	Q	Р
(3)	S	R	Р	Q
(4)	Р	Q	S	R

- **40.** X ml of H₂ gas effuses through a hole in a container in 5 seconds. The time taken for the effusion of the same volume of gas specified below under identical condition is :-
 - (1) 10 seconds, helium
 - (2) 20 seconds, oxygen
 - (3) 25 seconds, carbon monoxide
 - (4) 55 seconds, carbon dioxide
- **41.** The equilibrium constant for the reaction $H_2(g) + S(s) \rightleftharpoons H_2S(g)$; is 18.5 at 925 K and 9.25 at 1000 K respectively. The enthalpy of the reaction will be:
 - (1) $-68000.05 \text{ J mol}^{-1}$
 - (2) $-71080.57 \text{ J mol}^{-1}$
 - (3) $-80071.75 \text{ J mol}^{-1}$
 - (4) 57080.75 $J \text{ mol}^{-1}$
- **42.** Find out formula of compound having spheres A, B and C. A is present at each element of ccp, B occupies 50% of octahedral voids and C occupies 50% of tetrahedral voids:-
 - (1) AB_3C
 - $(2) \quad A_2BC_4$
 - $(3) AB_4C$
 - $(4) \quad A_2BC_2$
- **43.** An ideal mixture of liquids A and B with 2 moles of A and 2 moles of B has a total vapour pressure of 1 atm at a certain temperature. Another mixture with 1 mole of A and 3 moles of B has a vapour pressure greater than 1 atm. But if 4 moles of C are added to the second mixture, the vapour pressure of C, $P_c^0 = 0.8$ atm. Calculate the vapour pressures of pure A and pure B:-
 - (1) $P_A{}^0 = 1.4$ atm, $P_B{}^0 = 0.7$ atm
 - (2) $P_A{}^0 = 1.2 \text{ atm}, P_B{}^0 = 0.6 \text{ atm}$
 - (3) $P_A{}^0 = 1.4$ atm, $P_B{}^0 = 0.6$ atm
 - (4) $P_A{}^0 = 0.6 \text{ atm}, P_B{}^0 = 1.4 \text{ atm}$
- 44. Efficiency of the following cell is 84%. $A(s) + B^{2+} (aq) \rightleftharpoons A^{2+} (aq) + B(s); \quad \Delta H^{\circ} = -285$

 $A(s) + B^{-s}(aq) \rightleftharpoons A^{-s}(aq) + B(s); \quad \Delta H^{s} = -283$ kJ

Then the standard electrode potential of the cell will be:-

- (1) 1.20 V
- (2) 2.40 V
- (3) 1.10 V
- (4) 1.24 V

45. A hydrocarbon $X(C_{14}H_{22})$ on treatment with H_2/Pt gives $C_{14}H_{26}$. Also X on treatment with alkaline KMnO₄ followed by hydrolysis of products yields $C_7H_{12}O_2$ which on further heating with soda lime gives cyclohexane. Hence, X is:-

- **48.** The best reaction sequence to convert 2-methyl-1-bromopropane into 4-methyl-2-bromopentane is:
 - (1) (i) Mg in ether (ii) Acetaldehyde/NH₄Cl(iii) HBr
 - (2) (i) NaC=CH in ether (ii) $H_3O^+ + HgSO_4$ (iii) HBr, heat
 - (3) (i) Alcoholic KOH (ii) CH₃COOOH(iii) H₂/Pt (iv) HBr, heat
 - (4) (i) NaC≡CH in ether (ii) H₂, Lindlar catalyst(iii) HCl, peroxide
- **49.** The compound(s) that will react(s) with hot concentrated aqueous alkali at atmospheric pressure is/are:-

61.

[Section – B]

- **51.** How many stereoisomers are possible for [Co(en)(NH₃)₂Cl₂]⁺?
- **52.** Number of oxygen atoms shared per SiO_4^{4-} tetrahedron in single chain silicates are _____.
- 53. How many of the following compounds are paramagnetic?KO₂, H₂O₂, BaO₂, O₃, O₂, K₃ [Co(OX)₃]
- **54.** Total number of nitrogen atoms in one molecule of melamine are-
- 55. Count the paramagnetic species among the following: B₂, NO₂, NO, CO, N₂⁺, O_2^- , O_2^{2-} , CN⁻, O_2^{+2} , O₂, N₂.
- 56. XeF₆ + H₂O → X + 2HF
 If number of ionic pair at central atom of
 X = A and d-orbital used in the hybridization of X
 = B, find (4A + B).
- **57.** How many numbers of monochlorinated products are obtained by 3-ethylpentane
- **58.** When 2-ethyl-3-methyl-1-pentene is treated with CH₃OH in H₂SO₄, how many different methoxy ethers would be formed in significant amount?
- **59.** An organic compound $A(C_{10}H_{18}O_8)$ on treatment with excess of CH_3COCl gives a fully acetylated product whose molar mass is found to be 518 g/mol. How many hydroxyl functional groups are present in A?
- **60.** How many different alcohol isomers with molecular formula C₅H₁₂O can oxidised to ketones using K₂Cr₂O₇-H₂SO₄?

Section-III (MATHEMATICS)					
[Section – A]	62. The following statement				
If <i>S</i> is the set of distinct values of ' <i>b</i> ' for which the	$(p \rightarrow q) \rightarrow [(\neg p \rightarrow q) \rightarrow q]$ is:				
following system of linear equations	(1) a tautology				
x + y + z = 1	(2) equivalent to $\neg p \rightarrow q$				
x + ay + z = 1	(3) equivalent to $p \rightarrow \neg q$				
ax + by + z = 0	(4) a fallacy				
has no solution, then <i>S</i> is:	63. If $5(\tan^2 x - \cos^2 x) = 2\cos 2x + 9$, then the value of $\cos 4x$ is:				
(1) an empty set	(1) $-\frac{3}{5}$				
(2) an infinite set	(2) $\frac{1}{3}$				
(3) a finite set containing two or more elements	(3) $\frac{2}{9}$				
(4) a singleton	(4) $-\frac{7}{9}$				

64. For three events *A*, *B* and *C*, *P* (Exactly one of *A* or *B* occurs) = *P*(Exactly one of *B* or *C* occurs) = *P* (Exactly one of *C* or *A* occurs) = $\frac{1}{4}$ and *P*(All the three events occur simultaneously) = $\frac{1}{16}$. Then the probability that at least one of the events occurs, is: (1) $\frac{7}{32}$ (2) $\frac{7}{16}$ (3) $\frac{7}{64}$ (4) $\frac{3}{16}$ 65. Let ω be a complex number such that $2\omega + 1 = z$ where $z = \sqrt{-3}$. If $\begin{vmatrix} 1 & 1 & 1 \\ 1 & -\omega^2 - 1 & \omega^2 \\ 1 & \omega^2 & \omega^7 \end{vmatrix} = 3k$, then *k* is

equal to:

- 66. Let k be an integer such that the triangle with vertices (k, -3k), (5, k) and (-k, 2) has area 28 sq. units. Then the orthocentre of this triangle is at the point:

$$(1)\left(2,-\frac{1}{2}\right) \qquad (2)\left(1,\frac{3}{4}\right)$$
$$(3)\left(1,-\frac{3}{4}\right) \qquad (4)\left(2,\frac{1}{2}\right)$$

67. Twenty meters of wire is available for fencing off a flower-bed in the form of a circular sector. Then the maximum area (in sq. m) of the flower-bed, is:

(1)	12.5	(2)	10
(3)	25	(4)	30

68. If for $x \in \left(0, \frac{1}{4}\right)$, the derivative of $\tan^{-1}\left(\frac{6x\sqrt{x}}{1-9x^3}\right)$ is \sqrt{x} . g(x), then g(x) equals:

(1)
$$\frac{9}{1+9x^3}$$
 (2) $\frac{3x\sqrt{x}}{1+9x^3}$
(3) $\frac{3x}{1-9x^3}$ (4) $\frac{3}{1+9x^3}$

69. If
$$(2 + \sin x) \frac{dy}{dx} + (y + 1)\cos x = 0$$
 and $y(0) = 1$, then
 $y\left(\frac{\pi}{2}\right)$ is equal to:
(1) $\frac{1}{3}$ (2) $-\frac{2}{3}$
(3) $-\frac{1}{3}$ (4) $\frac{4}{3}$

70. If
$$A = \begin{bmatrix} 2 & -3 \\ -4 & 1 \end{bmatrix}$$
, then adj $(3A^2 + 12A)$ is equal to:
(1) $\begin{bmatrix} 72 & -84 \\ -63 & 51 \end{bmatrix}$ (2) $\begin{bmatrix} 51 & 63 \\ 84 & 72 \end{bmatrix}$
(3) $\begin{bmatrix} 51 & 84 \\ 63 & 72 \end{bmatrix}$ (4) $\begin{bmatrix} 72 & -63 \\ -84 & 51 \end{bmatrix}$

- 71. For any three positive real numbers a, b and c, $9(25a^2 + b^2) + 25(c^2 - 3ac) = 15b(3a + c)$. Then:
 - (1) b, c and a are in G.P.
 - (2) b, c and a are in A.P.
 - (3) a, b and c are in A.P.
 - (4) a, b and c are in G.P.
- 72. The eccentricity of an ellipse whose centre is at the origin is $\frac{1}{2}$. If one of its directrices is x = -4, then the equation of the normal to it at $\left(1, \frac{3}{2}\right)$ is: (1) 2y - x = 2 (2) 4x - 2y = 1(3) 4x + 2y = 7 (4) x + 2y = 4
- **73.** A hyperbola passes through the point $P(\sqrt{2}, \sqrt{3})$ and has foci at $(\pm 2, 0)$. Then the tangent to this hyperbola at P also passes through the point:
 - (1) $(3\sqrt{2}, 2\sqrt{3})$ (2) $(2\sqrt{2}, 3\sqrt{3})$ (3) $(\sqrt{3}, \sqrt{2})$ (4) $(-\sqrt{2}, -\sqrt{3})$

74. The function $f : R \rightarrow \left[-\frac{1}{2}, \frac{1}{2}\right]$ defined as

$$f(x) = \frac{x}{1+x^2}$$
, is:

- (1) invertible
- (2) injective but not surjective.
- (3) surjective but not injective.
- (4) neither injective nor surjective.

75.
$$\lim_{x \to \frac{\pi}{2}} \frac{\cot x - \cos x}{(\pi - 2x)^3} \text{ equals:}$$
(1) $\frac{1}{24}$ (2) $\frac{1}{16}$
(3) $\frac{1}{8}$ (4) $\frac{1}{4}$

76. The normal to the curve y(x - 2) (x - 3) = x + 6 at the point where the curve intersects the *y*-axis passes through the point:

(1)
$$\left(-\frac{1}{2}, -\frac{1}{2}\right)$$
 (2) $\left(\frac{1}{2}, \frac{1}{2}\right)$
(3) $\left(\frac{1}{2}, -\frac{1}{3}\right)$ (4) $\left(\frac{1}{2}, \frac{1}{3}\right)$

77. If two different numbers are taken from the set {0, 1, 2, 3, ..., 10}; then the probability that their sum as well as absolute difference are both multiple of 4, is:

(1)	$\frac{6}{55}$	(2)	$\frac{12}{55}$
(3)	$\frac{14}{45}$	(4)	$\frac{7}{55}$

- **78.** The value of $({}^{21}C_1 {}^{10}C_1) + ({}^{21}C_2 {}^{10}C_2) + ({}^{21}C_3 {}^{10}C_3) + ({}^{21}C_4 {}^{10}C_4) + \dots + ({}^{21}C_{10} {}^{10}C_{10})$ (1) $2{}^{21} - 2{}^{11}$ (2) $2{}^{21} - 2{}^{10}$ (3) $2{}^{20} - 2{}^{9}$ (4) $2{}^{20} - 2{}^{10}$
- 79. A box contains 15 green and 10 yellow balls. If 10 balls are randomly drawn, one-by-one, with replacement, then the variance of the number of green balls drawn is:
 - (1) $\frac{12}{5}$ (2) 6 (3) 4 (4) $\frac{6}{25}$
- 80. The radius of a circle, having minimum area, which touches the curve $y = 4 x^2$ and the lines, y = |x| is:
 - (1) $2(\sqrt{2}+1)$ (2) $2(\sqrt{2}-1)$ (3) $4(\sqrt{2}-1)$ (4) $4(\sqrt{2}+1)$

[Section – B]

- 81. The area (in sq. units) of the region $\{(x, y) : x \ge 0, x + y \le 3, x^2 \le 4y \text{ and } y \le 1 + \sqrt{x} \}$ is *A* then 2*A* is equal to
- 82. If the image of the point P(1, -2, 3) in the plane, 2x + 3y 4z + 22 = 0 measured parallel to the line, $\frac{x}{1} = \frac{y}{4} = \frac{z}{5}$ is Q, then PQ is β then $2\beta^2$ is equal to:

- 83. Let a vertical tower *AB* have its end *A* on the level ground. Let *C* be the mid-point of *AB* and *P* be a point on the ground such that AP = 2AB. If $\tan \beta = A$ then $81A^2$ is equal to
- **84.** The distance of the point (1, 3, -7) from the plane passing through the point (1, -1, -1), having normal perpendicular to both the lines

$$\frac{x-1}{1} = \frac{y+2}{-2} = \frac{z-4}{3}$$
 and
$$\frac{x-2}{2} = \frac{y+1}{-1} = \frac{z+7}{-1}, \text{ is } \frac{\alpha}{\sqrt{\beta}} \text{ then } \beta - \alpha \text{ is equal}$$
to

- 85. Let $I_n = \int \tan^n x \, dx$, (n > 1). If $I_4 + I_6 = a \tan^5 x + bx^5 + C$, where C is a constant of integration, then 5a + b is equal to:
- 86. Let $\vec{a} = 2\hat{i} + \hat{j} 2\hat{k}$ and $\vec{b} = \hat{i} + \hat{j}$. Let \vec{c} be a vector such that $|\vec{c} \vec{a}| = 3$, $|(\vec{a} \times \vec{b}) \times \vec{c}| = 3$ and the angle between \vec{c} and $\vec{a} \times \vec{b}$ be 30°. Then $\vec{a} \cdot \vec{c}$ is equal to:
- 87. A man X has 7 friends, 4 of them are ladies and 3 are men. His wife Y also has 7 friends, 3 of them are ladies and 4 are men. Assume X and Y have no common friends. Then the total number of ways in which X and Y together can throw a party inviting 3 ladies and 3 men, so that 3 friends of each of X and Y are in this party, is:
- 88. Let $a, b, c \in R$. If $f(x) = ax^2 + bx + c$ is such that a + b + c = 3 and f(x + y) = f(x) + f(y) + xy, $\forall x, y \in R$, then $\sum_{n=1}^{10} f(n)$ is equal to:
- 89. If, for a positive integer *n*, the quadratic equation, $x(x + 1) + (x + 1)(x + 2) + ... + (x + \overline{n-1})(x + n)$ = 10 n has two consecutive integral solutions, then *n* is equal to:

90. The integral
$$\int_{\frac{\pi}{4}}^{\frac{3\pi}{4}} \frac{dx}{1+\cos x}$$
 is equal to: