

Identify the reagent(s) 'A' and condition(s) for the reaction

- (1) A = HCI; Anhydrous $AICI_3$
- (2) $A = HCI, ZnCI_2$
- (3) A = Cl_2 , dark, Anhydrous $AlCl_3$
- (4) $A = Cl_2$; UV light

Ans. (4)

Sol.

$$\begin{array}{c|c}
Cl_2 \\
\hline
 & Cl_2 \\
\hline
 & hv
\end{array}$$

- **2.** The INCORRECT statement regarding the structure of C_{60} is:
 - (1) It contains 12 six-membered rings and 24 five-membered rings.
 - (2) Each carbon atom forms three sigma bonds.
 - (3) The five-membered rings are fused only to six-membered rings.
 - (4) The six-membered rings are fused to both six and five-membered rings.

Ans. (1)

Sol. it contain 12 five membered ring & 20 six membered ring

(a)-(iii), (b)-(i), (c)-(ii), (d)-(iv)

(a)-(i), (b)-(ii), (c)-(iv), (d)-(iii)

3. Match List-I with List-II:

Match	LIST-I WITH LIST-II:		
	List-I		List-II
	Test/Reagents/Observation(s)		Species detected
(a)	Lassaigne's Test	(i)	Carbon
(b)	Cu(II) oxide	(ii)	Sulphur
(c)	Silver nitrate	(iii)	N, S, P and halogen
(d)	The sodium fusion extract gives black precipitate with acetic acid & lead acetate	(iv)	Halogen Specifically
The co	orrect match is:		
(1)	(a)-(iii), (b)-(i), (c)-(iv), (d)-(ii)		
(2)	(a)-(i), (b)-(iv), (c)-(iii), (d)-(ii)		

(4) **Ans. (1)**

(3)

Sol. (a)-(iii), (b)-(i), (c)-(iv), (d)-(ii)

4.
$$(i)C_6H_5MgBr Ether (1.0equivalent), dry X Major Product$$

$$OCH_3$$

The structure of X is:

$$(1) \begin{array}{c} O \\ C_6H_5 \\ OCH_3 \end{array} \qquad (2) \begin{array}{c} NH_2 \\ OCH_3 \end{array}$$

(3)
$$C_6H_5$$
 (4) C_6H_5 C_6H_5

Ans. (1) Sol.

$$C = N$$

$$C_{6}H_{5}$$

$$C = NMgBr$$

$$CH-CH_{3}$$

$$OCH_{3}$$

$$C+C_{6}H_{5}$$

$$C+C_{6}H_$$

- 5. Ammonolysis of Alkylhalides followed by the treatment with NaOH solution can be used to prepare primary, secondary and tertiary amines. The purpose of NaOH in the reaction is:
 - (1) to remove basic impurities
 - (2) to activate NH₃used in the reaction
 - (3) to increase the reactivity of alkyl halide
 - (4) to remove acidic impurities

(4) Ans.

Sol.

$$R-X \xrightarrow{NH_3} R-NH_2 \xrightarrow{R-X} R_2NH$$

$$-HX \qquad -HX \qquad R-X$$

$$R-X \xrightarrow{R-X} R_2NH$$

$$R-X \xrightarrow{R-X} R_3N$$

During the reaction HX (acid) is form

Hence, we use NaOH to remove this acidic impurities

6. Arrange the following metal complex/compounds in the increasing order of spin only magnetic moment. Presume all the three, high spin system.

(Atomic numbers Ce = 58, Gd = 64 and Eu = 63)

(a)
$$(NH_4)_2[Ce(NO_3)_6]$$
 (b) $Gd(NO_3)_3$ and

(b)Gd(
$$NO_3$$
)₃ and

Answer is:

Ans. (1)

Sol.
$$(NH_4)_2$$
 [Ce $(NO_3)_6$] $(n = 0) \Rightarrow \mu = 0$ B.M

$$Gd(NO_3)_3$$
 $(n = 7) \Rightarrow \mu = 7.94 B.M$

7.	Identify the elements X and Y using the ionisation energy values given below:
	Ionization energy (kJ/mol)

$$1^{st}$$
 2^{nd}
X 495 4563
Y 731 1450
(1) X = F; Y = Mg (2) X = Mg; Y = F
(3) X = Na; Y = Mg (4) X = Mg; Y = Na

Ans. (3)

Sol. 2^{nd} I. E of Alkali metals is higher than their respective period.

- **8.** The INCORRECT statements below regarding colloidal solutions is:
 - (1) A colloidal solution shows colligative properties.
 - (2) An ordinary filter paper can stop the flow of colloidal particles.
 - (3) A colloidal solution shows Brownian motion of colloidal particles.
 - (4) The flocculating power of Al³⁺ is more than that of Na⁺.

Ans. (2)

- **Sol.** Colloidal solutions can pass through ordinary filter paper but cannot pass through special filter collodial solution coated paper.
- **9.** The characteristics of elements X, Y and Z with atomic numbers, respectively, 33, 53 and 83 are:
 - (1) X and Z are non-metals and Y is a metalloid.
 - (2) X and Y are metalloids and Z is a metal
 - (3) X, Y and Z are metals.
 - (4) X is a metalloid, Y is a non-metal and Z is a metal.

Ans. (4)

Sol. Atomic No. Element $(1) 33 \longrightarrow As (Metalloid)$ $(2) 53 \longrightarrow I (Non metal)$ $(3) 83 \longrightarrow Bi (Metal)$

- 10. The exact volumes of 1 M NaOH solution required to neutralise 50 mL of 1 M H_3PO_3 solution and 100 mL of 2 M H_3PO_2 solution, respectively, are:
 - (1) 100 mL and 50 mL

(2) 50 mL and 50 mL

(3) 100 mL and 100 mL

(4) 100 mL and 200 mL

Ans. (4)

Sol. (1) 2NaOH +
$$H_3PO_3 \longrightarrow Na_2HPO_3$$
 + $2H_2O$
100m mole 50m mole
100m mole = $M \times V_{ml}$
100m mole = $1 \times V_{ml}$
 V_{ml} = 100 ml

(2) NaOH +
$$H_3PO_2 \longrightarrow NaH_2PO_2$$
 + H_2O 200m mole 200m mole 200m mole $V_{ml} = 200 \text{ ml}$

- 11. Which of the following reduction reaction CANNOT be carried out with coke?
 - (1) $Fe_2O_3 \rightarrow Fe$

 $(2)ZnO \rightarrow Zn$

(3) $Al_2O_3 \rightarrow Al$

(4) $Cu_2O \rightarrow Cu$

Ans. (3)

- Sol. Al is extracted by electrolytic reduction of Al₂O₃
- 12. An unsaturated hydrocarbon X on ozonolysis gives A. Compound A when warmed with ammonical silver nitrate forms a bright silver mirror along the sides of the test tube. The unsaturated hydrocarbon X is:
 - (1) $CH_3-C=C-CH_3$

4)
$$CH_3$$
— $C=$

Ans. (3)

Sol.

$$CH_{3}CH_{2}\equiv CH \xrightarrow{\text{(i) } O_{3}} CH_{3}CH_{2}COOH + H-C-OH$$

$$HCOOH \xrightarrow{\text{[Ag(NH_{3})_{2}]}^{+}} CO_{2} + H_{2}O + 2Ag \downarrow$$

$$reagent$$

13. **Statement-I:** Sodium hydride can be used as an oxidising agent.

Statement-II: The lone pair of electrons on nitrogen in pyridine makes it basic:

Choose the CORRECT answer from the options given below:

- (1) Statement I is true but statement II is false
- (2) Both statement I and statement II are false
- (3) Both statement I and statement II are true
- (4) Statement I is false but statement II is true

Ans. (4)

- Sol. ⇒ NaH is used as reducing agent.
 - \Rightarrow The ℓp on nitrogen in pyridine makes it basic

- 14. Which of the following polymer is used in the manufacture of wood laminates?
 - (1) Melamine formaldehyde resin
- (2) cis-poly isoprene
- (3) Phenol and formaldehyde resin
- (4) Urea formaldehyde resin

Ans. **(1)**

Melamine formaldehyde resin is used in the manufacture of wood laminates. Sol.

- **15.** The correct statements about H_2O_2 are:
 - (A) used in the treatment of effluents.
 - (B) used as both oxidising and reducing agents.
 - (C) the two hydroxyl groups lie in the same plane.
 - (D) miscible with water.

Choose the correct answer from the options given below:

(1) (A), (C) and (D) only

(2) (A), (B) and (D) only

(3) (A), (B), (C) and (D)

(4) (B), (C) and (D) only

Ans. (2)

- **Sol.** (1) In H_2O_2 oxidation of oxygen is-1 Therefore acts both as O.A and R.A.
 - (2) H_2O_2 is miscible in water due to inter molecular H-Bonding.
 - (3) H_2O_2 has open book structure in which both -OH group are not in same plane.
- **16.** The green house gas/es is (are):
 - (A) Carbon dioxide

(B) Oxygen

(C) Water vapour

(D) Methane

Choose the most appropriate answer from the options given below:

(1) (A) and (B) only

(2) (A), (C) and (D) only

(3) (A) and (C) only

(4) (A) only

Ans. (2)

Sol. The green house gases are CO₂, CH₄ & H₂O vapour.

17.
$$CH_3$$
 $COOH$ OCH_3 OCH_3

In the above reaction, the reagent "A" is:

(1) NaBH₄, H_3O^+

(2)HCl, Zn-Hg

(3) Alkaline KMnO₄, H⁺

(4) LiAlH₄

Ans. (3)

Sol.

- **18.** Which of the following is least basic?
 - (1) (CH₃CO)₂NH

(2) $(CH_3CO)NHC_2H_5$

(3) $(C_2H_5)_3N$

 $(4) (C_2H_5)_2NH$

Due to higher resonance, ℓp of N is not available for accept H⁺ So it is least basic.

19. Fex₂ and Fey₃ are known when x and y are:

(1)x=Cl, Br, I and y=F, Cl, Br, I

(2) x=F, Cl, Br, I and y=F, Cl, Br

(3)x=F, Cl, Br, I and y=F, Cl, Br, I (4) x=F, Cl, Br and y=F, Cl, Br, I

Ans.

FeI₃, does not react because of I⁻ being very good reducing agent. Sol.

20. The secondary structure of protein is stabilised by:

(1)van der Waals forces

(2) Peptide bond

(3) Hydrogen bonding

(4)glycosidic bond

Ans. (3)

The secondary structure of protein stablised by H-bonding. Sol.

Section-B

At 25°C, 50 g of iron reacts with HCl to form FeCl₂. The evolved hydrogen gas expands against 1. a constant pressure of 1 bar. The work done by the gas during this expansion is ______ J. (Round off to the Nearest Integer).

[Given: $R = 8.14 \text{ J mol}^{-1} \text{ K}^{-1}$. Assume, hydrogen is an ideal gas] [Atomic mass of Fe is 55.85 u]

Ans. 2218

Sol. Fe + 2HCl \longrightarrow FeCl₂ + H₂(g)

Moles of Fe = $\frac{50}{55.85}$ mol = moles of H₂

 $W_{irrev} = -P_{ext}. \Delta V$

= -moles of $H_2 \times RT$

$$= -\frac{50}{55.85} \times 8.314 \times 298$$

= -2218.05 J

Nearest integer = 2218

A 5.0 m moldm⁻³ aqueous solution of KCl has a conductance of 0.55 mS when measured in a 2. cell of cell constant 1.3 cm⁻¹. The molar conductivity of this solution is mSm²mol¹.

(Round off to the Nearest Integer).

Ans.

 $G_{KCI} = 0.55 \text{ mS} = 55 \times 10^{-5} \text{s}$ Sol.

Cell constant = $\ell/A = 1.3 \text{ cm}^{-1}$

$$\begin{split} &\lambda_{\text{M}} = ?? \\ &R = G(\ell/A) = 55 \times 10^{-5} \times 1.3 \text{ Scm}^{-1} \\ &\lambda_{\text{M}} = \frac{K \times 1000}{\text{Molarity}} = \frac{55 \times 1.3 \times 10^{-5} \times 1000}{5 \times 10^{-3}} \\ &\lambda_{\text{M}} = 11 \times 1.3 \times 10 = 11 \times 13 = 143 \text{ S cm}^{+2} \text{mol}^{-1} \\ &\lambda_{\text{M}} = \frac{143 \times 1000 \times 10^{-3} \text{S}}{(10^{-2} \, \text{M})^{-2}} \, \text{mol}^{-1} \\ &\lambda_{\text{M}} = 143 \times 1000 \times 10^{-4} (\text{m.S}) \text{m}^2. \text{mol}^{-1} \\ &= 14.3 \end{split}$$

Ans. $\lambda_M = 14$ Nearest integer

The number of orbitals with n = 5, $m_1 = +2$ is ______. (Round off to the Nearest Integer). 3.

Ans.

Ans. 3
Sol. For n = 5
$$\ell = 0, 1, 2, 3, 4$$
 $\ell = 2 \rightarrow m = -2, -1, 0, +1, +2$
 $\ell = 3 \rightarrow m = -3, -2, -1, 0, +1, +2, +3$
 $\ell = 4 \rightarrow m = -4, -3, -2, -1, 0, +1, +2, +3, +4$
Total no. of orbitals = 3

4. A and B decompose via first order kinetics with half-lives 54.0 min and 18.0 min respectively. Starting from an equimolarnon reactive mixture of A and B, the time taken for the concentration of A to become 16 times that of B is _____ min. (Round off to the Nearest Integer).

Sol. A
$$\xrightarrow{1^{\text{st order}}}$$
 $t_{1/2}(A) = 54$ B $\xrightarrow{1^{\text{st order}}}$ $t_{1/2}(B) = 18$
 $A_0 = B_0 = N_0$
 $A_t = \frac{A_0}{2^t / 54}$ B $B_t = \frac{B_0}{2^t / 18}$
 $A_t = 16.B_t$
 $\frac{A_0}{2^t / 54} = 16 \times \frac{B_0}{2^t / 18}$
 $2^{t/18-t/54} = 16$
 $2^{2t/54} = 16 = 2^4$
 $2^{t/24} = 4$

[Ti(H₂O)₆]³⁺ absorbs light of wavelength 498 nm during a d-d transition. The octahedral 5. splitting energy for the above complex is $____$ × 10^{-19} J. (Round off to the Nearest Integer).

$$h = 6.626 \times 10^{-34} Js; c = 3 \times 10^8 ms^{-1}.$$

Ans. (4)

t = 108 min

Sol.
$$\Delta_0 = \frac{hc}{\lambda_{abs}} = \frac{6.626 \times 10^{-34} \times 3 \times 10^8}{498 \times 10^{-9}}$$

= $\frac{6.626 \times 3}{408} \times 10^{-17} = 0.0399 \times 10^{-17} = 3.99 \times 10^{-19} \simeq 4 \times 10^{-19} \text{ J}$

Sulphurous acid (H_2SO_3) has $Ka_1 = 1.7 \times 10^{-2}$ and $Ka_2 = 6.4 \times 10^{-8}$. The pH of 0.588 M H_2SO_3 is ______. (Round off to the Nearest Integer).

Ans. 5

Sol.
$$H_2SO_3$$
 (aq) \Rightarrow HSO_3^- (aq) + H^+ (aq)
 $0.588M = C$ $C\alpha_1$ $C\alpha_1 + C\alpha_1 \alpha_2$
 HSO_3^- (aq) \Rightarrow H^+ (aq) + $SO_3^{2^-}$ (aq)
 $C\alpha_1$ (1 $-\alpha_2$) $C\alpha_1\alpha_2$ $C\alpha_1\alpha_2$
+
 $C\alpha_1$
 $\alpha_1 = \sqrt{\frac{1.7 \times 10^{-2}}{0.588}} = \sqrt{\frac{17}{289 \times 2}}$

Therefore
$$\frac{\alpha_1 << 1}{(1-\alpha_1) \simeq 1}$$

Hence
$$\alpha_2 << 1 \& (1 - \alpha_2) \approx 1$$

 $\therefore [H^+] = C \alpha_1$
 $= \sqrt{Ka_1 \times C} = \sqrt{17 \times 10^{-3} \times 0.588}$
 $= 99.98 \times 10^{-3}$
pH = 1.99 + 3
 $= 4.99 \approx 5$

7. In Duma's method of estimation of nitrogen, 0.1840 g of an organic compound gave 30 mL of nitrogen collected at 287 K and 758 mm of Hg pressure. The percentage composition of nitrogen in the compound is ______. (Round off to the Nearest Integer).

[Given: Aqueous tension at 287 K = 14 mm of Hg]

Ans. 19

Sol. Moles of
$$N_2 = \frac{(758-14)}{760} \times \frac{30 \times 10^{-3}}{0.0821 \times 287}$$

$$= 1.246 \times 10^{-3} \text{ mol}$$

$$\text{mass of N} = 1.246 \times 10^{-3} \times 28$$

$$\text{mass % of 'N'} = \frac{\text{mass of 'N'}}{\text{total mass}} \times 100$$

$$= \frac{1.246 \times 28 \times 10^{-3}}{0.184} \times 100$$

$$= \frac{124.6 \times 28}{0.184} \% = 18.96\%$$

$$\approx 19\%$$

8. Ga (atomic mass 70 u) crystallizes in a hexagonal close packed structure. The total number of voids in 0.581 g of Ga is _____ \times 10²¹. (Round off to the Nearest Integer). [Given: $N_A = 6.023 \times 10^{23}$]

Ans. 15

Sol. No. of moles of Ga =
$$\frac{0.581}{70}$$

No. of atoms of Ga =
$$\frac{0.581}{70} \times N_A$$

∴ Total number of voids =
$$\frac{0.581}{70} \times N_A \times 3$$

= $0.0249 \times 6 \times 10^{23}$
= 15×10^{21}

(As there are one octahedral void and two tetrahedral voids per atom)

When 35 mL of 0.15 M lead nitrate solution is mixed with 20 mL of 0.12 M chromic sulphate 9. solution, $\underline{}$ × 10⁻⁵ moles of lead sulphate precipitate out. (Round off to the Nearest Integer).

525 Ans.

Sol.
$$3Pb(NO_3)_2 + Cr_2(SO_4)_3$$

 $35ml$ 20 ml
 $0.15M$ 0.12M
= 5.25 m mol = 2.4 m mol

3 PbSO₄
$$\downarrow$$
+ 2Cr(NO₃)₃
Malos of PbSO₄ = malos of Pb

$$= 525 \times 10^{-5} \text{ mol}$$

10. At 363 K, the vapour pressure of A is 21 kPa and that of B is 18 kPa. One mole of A and 2 moles of B are mixed. Assuming that this solution is ideal, the vapour pressure of the mixture is ____ kPa. (Round off to the Nearest Integer).

Ans.

Sol.
$$X_A = \frac{1}{1+2} = \frac{1}{3}$$
 $X_B = \frac{2}{3}$

$$X_B = \frac{2}{3}$$

$$P_A^o = 21 \text{ kPa}$$
 $P_B^o = 18 \text{ kPa}$

$$P_{B}^{\circ} = 18 \text{ kPa}$$

$$P_{total} = P_A^{\circ} X_A + P_B^{\circ} X_B$$

$$= 21 \times \frac{1}{3} + 18 \times \frac{2}{3}$$

$$= 7 + 12$$