306 E/A The total number of ions produced from the complex $[Cr(NH_3)_6]Cl_3$ in aqueous solution will be 1. (1)2 ₩(2) 3 (3) 4 ®₍₄₎ 5 2. Arrange the following in decreasing order of number of molecules contained in : (A) 16 g of O₂ (B) 16 g of CO₂. (C) 16 g of CO 5 (D) 16 g of H₂ ංත ංත Choose the correct order from the options given below : (1) (A), (B), (C), (D) (2) (D), (C), (A), (B) (3) (B), (A), (D), (C) \cdot (4) (C), (B), (D), (A) 3. A molecule X associates in a given solvent as per the following equation : $X \rightleftharpoons (X)_n$ For a given concentration of X, the van't Hoff factor was found to be 0.80 and the fraction of association (1) 2(2) 3 (3) 1 (4) 5 The oxidation number of Co in complex $[Co(H_2NH_2CH_2NH_2)_3]_2(SO_4)_3$ is 4. (2) 4 (1) 3 (4) 5 (3) 2 The correct structure of dipeptide, Gly-Ala (glycyl alanine) is 5. (1) $H_2N - CH_2 - CO - NH - CH(CH_3) - COOH$ ٢ $HOOC - CH_2 - NH - CO - CH(CH_3) - NH_2$ (2)(3) $HOOC - CH(CH_3) - NH - CO - CH_2 - NH_2$ (4) $H_2N - CH(CH_3) - CO - NH - CH_2 - COOH$ SPACE FOR ROUGH WORK or wholey

306 E/A The total number of ions produced from the complex $[Cr(NH_3)_6]Cl_3$ in aqueous solution will be (1) -2 1. \$(2) 3 (1) 2 **(**4) 5 (3) 4 Arrange the following in decreasing order of number of molecules contained in : 2. (A) 16 g of O₂ (B) $16 \text{ g of } \text{CO}_2$ (C) 16 g of CO 5 oð (D) 16 g of H₂ ంర Choose the correct order from the options given below : (1) (A), (B), (C), (D) 3 (2) (D), (C), (A), (B) 0 (3) (B), (A), (D), (C) \cdot (4) (C), (B), (D), (A) 3. A molecule X associates in a given solvent as per the following equation : $X \rightleftharpoons (X)_n$ 5 For a given concentration of X, the van't Hoff factor was found to be 0.80 and the fraction of associate molecules was 0.3. The correct value of 'n' is : ංති (2) 3 (1) 2 53(4) 5 (3) 1 The oxidation number of Co in complex $[Co(H_2NH_2CH_2NH_2)_3]_2(SO_4)_3$ is 4. (1) 3 (4) 5 (3) 2 The correct structure of dipeptide, Gly-Ala (glycyl alanine) is 5. $H_2N - CH_2 - CO - NH - CH(CH_3) - COOH$ (1)٢ $HOOC - CH_2 - NH - CO - CH(CH_3) - NH_2$ (2) $HOOC - CH(CH_3) - NH - CO - CH_2 - NH_2$ (3)(4) $H_2N - CH(CH_3) - CO - NH - CH_2 - COOH$ SPACE FOR ROUGH WORK NPI s wholds

306	E/A	ත් තේ
1. ¢	The total number of ions produced from the (1)	complex $[Cr(NH_3)_6]Cl_3$ in aqueous solution will be
/	(3) 4	(2) 3 (3) $(4) 5$
2. /	Arrange the following in decreasing order of (A) 16 g of O_2	number of molecules contained in :
	(B) $16 \operatorname{g of CO}_2$	
	 (C) 16 g of CO (D) 16 g of H₂ 	ମ ସୁ
	Choose the correct order from the options giv (1) (A), (B), (C), (D) (2) (D), (C), (A), (B) (3) (B), (A), (D), (C) - (4) (C), (B), (D), (A)	ven berow :
3.	A molecule X associates in a given solvent of	a por the fall-
	$X \rightleftharpoons (X)$	is per the following equation :
	For a given concentration of X, the van't H molecules was 0.3. The correct value of 'n' i (1) 2 (3) 1	loff factor was found to be 0.80 and the fraction of association is: (2) (2) (3) (4) (5)
4.	The oxidation number of Co in complex [Co	$(H_2 N H_2 C H_2 N H_2)_3]_2 (SO_4)_3$ is
1	(1) 3 (3) 2	(2) 4 (4) 5
5.	The correct structure of dipeptide, Gly-Ala ((glycyl alanine) is
1	(1) $H_2N - CH_2 - CO - NH - CH(CH_3)$ (2) $HOOC - CH_2 - NH - CO - CH(CH_3)$	-NH ₂
	(3) $HOOC - CH(CH_3) - NH - CO - CH_2$ (4) $H_2N - CH(CH_3) - CO - NH - CH_2 - CH_2$	COOH
.1 6	space space	FUR HOUGH WORK

306	E/A		(3)					
6.	The	e Cu metal crystallises into fcc latti	ice with a unificall	adaption of 361 m	m The radius of Cu atom is :			
1	(1)	127 pm		181 nm	(1) 1 10 1 10 10 10 10 10 10 10 10 10 10 10			
	(3)	157 pm		108 pm				
7.	If this	75% of a first order reaction ge s reaction is	ets completed in	32 minutes, time ta	ken for 50% completion of			
	(1)	16 minutes	$\langle $	78 minutes				
	(3)	8 minutes	(4)	4 minutes	BRANDAN			
8.	Wh	hich of the following compounds wi	ill be repelled whe	n placed in an externa	I magnetic field ?			
	(1)	Na ₂ [CuCl ₄]	(2)	Na ₂ [CdCl ₄]	in magnetic nord			
	(3)	$K_4[Fe(CN)_6]$	(4)	$K_3[Fe(CN)_6]$				
9.	The	e spin only magnetic moment of He	xacyanidomangan	ate(II) ion is	BM.			
	(1)	5.90	(2)	1.73	C.F. NH			
	(3)	4.90	(4)	3.87				
10.	The	e correct order of increasing boiling	\leq	owing compounds is .	A CO COLORAD			
1	Pen	Pentan-1-ol, n-Butane, Pentanal, Ethoxyethane						
	(1)	Ethoxyethane, Pentanal, n-Butane	e, Pentan-1-ol					
	(2)	(2) Pentanal, n-Butane, Ethoxyethane, Pentan-1 ol						
	(3)	n-Butane, Pentanal, Ethoxyethane	e, Pentan-1-of	svie luv ebanognios	and the second states of the			
	(4)	n-Butane, Ethoxyethane, Pentana	l, Pentan-1		100054 AS9 8 (1)			
11.	In th	the following reaction, identify the r	product D.					
		$C_6H_5 - OH \xrightarrow{Zn \text{ dust}} A \xrightarrow{Cl}$	$H_3Cl + anhyAlCl$	$\xrightarrow{3} B$ $\xrightarrow{Cr_2O_7 + H_2SO_4} C$	$H_2SO_4 + HNO_3$			
	(1)	o-Nitrobenzoic acid						
	(2)	p-Nitrobenzoic acid		$CH_{2}COOH < CIUM$	(over en en (a) (a) (a)			
	(3)	o,p-Dinitrobenzoic acid			Min Marine (R)			
	(4)	m-Nitrobenzoic acid		0, 10, 10, 20, 20, 20, 20, 20, 20, 20, 20, 20, 2	Chief NOCON I			
		SP	ACE FOR ROUGH	WORK				

306 E/A (4) 12. The gold number range of some of the lyophilic colloids is given below : A : 0 002 A : 0.005 - 0.01, B : 0.15 - 0.25, C : 0.04 - 1.0 and D : 15 - 25. Which among these can be used as a better protective colloid ? (1) A (2) B 0 (3) C (4) D Reaction of aniline with conc. HNO_3 and conc. H_2SO_4 at 298 K will produce 47% of 13. (1) p-Nitroaniline (2)o-Nitroaniline (3) m-Nitroaniline (4) 2,4-Dinitroaniline oð 14. What will be increasing order of basic strength the following compounds ? 1 $C_2H_5NH_2$, $(C_2H_5)_2NH$, $(C_2H_5)_3N$, $C_5H_5NH_2$ (1) $C_2H_5NH_2 < (C_2H_5)_2NH < (C_2H_5)_3N < C_6H_5NH_2$ (2) $C_6H_5NH_2 < C_2H_5NH_2 < (C_2H_5)_3N < C_2H_5)_2NH$ (3) $(C_2H_5)_3N < (C_2H_5)_2NH < C_6H_5NH_2 < C_2H_5NH_2$ (4) $(C_2H_5)_2NH < (C_2H_5)_3N < C_2H_5NH_2 < C_6H_5NH_2$ Which of the following compounds will give Hell-Volhard-Zelinsky reaction ? 15. (1) $R - CH_2 - COOH$ (2) $R_3C - CHO$ 20 (C)

100

7.

3.

Arrange the following acids in increasing order of their acidic strengths : 16. HCOOH, FCH2COOH, NO2CH2COOH CICH2COOH (1) $HCOOH < FCH_2COOH < NO_2CH_2COOH < ClCH_2COOH$ $HCOOH < NO_2CH_2COOH < CICH_2COOH < FCH_2COOH$ (2) $NO_2CH_2COOH < HCOOH < CICH_2COOH < FCH_2COOH$ (3) $HCOOH < CICH_2COOH < FCH_2COOH < NO_2CH_2COOH$ (4) SPACE FOR ROUGH WORK

 $(3) R_2 CO$

(4) H – COOH

(5)

- In the following compounds, what is the increasing order of their reactivity towards nucleophilic addition 17. reactions?
 - Benzaldehyde, p-Tolualdehyde, p-Nitrobenzaldehyde, Acetophenone
 - (1) Benzaldehyde < p-Tolualdehyde < p-Nitrobenzaldehyde < Acetophenone
 - Acetophenone < Benzaldehyde < p-Tolualdehyde < p-Nitrobenzaldehyde (2)
 - (3) Acetophenone < p-Tolualdehyde < Benzaldehytle < p-Nitrobenzaldehyde
 - Benzaldehyde < Acetophenone < p-Tolualdehyde < p-Nitrobenzaldehyde (4)
- The Gatterman-Koch reaction is used in the industrial preparation of benzaldehyde. The electrophile 18. involved in this reaction is (\mathbf{O})

60

00

- (2) HCl + CO₂ + anhydrous AlCl₃ (1) CO^+ (3) HCO⁺ (4) $CO + anhydrous AlCl_3$
- 19. Formaldehyde undergoes Cannizzaro reaction because
 - (A) It has alpha-hydrogen atom.
 - (B) It does not have alpha-hydrogen atom.
 - (C) It does not undergo self-oxidation and reduction on heating with concentrated alkali.

(D) It undergo self-oxidation and reduction on heating with concentrated alkali.

Choose the correct answer from the options given below :

- (2) (A) and (C) only. (1) (B) and (D) only (A) and (D) only (3) (B) and (C) only
- In the reaction, $(CH_3)_3C O CH_3 + HI \rightarrow Products$ 20.

 CH_3OH and $(CH_3)_3CI$ are the products and not CH_3I and $(CH_3)_3C - OH$. It is because.

- (A) in step 2 of the reaction the departure of leaving group $(HO CH_3)$ creates less stable carbocation.
- (B) in step 2 of the reaction the departure of leaving group $(HO CH_3)$ creates more stable carbocation.
- (C) the reaction follows $S_N 1$ mechanism.
- (D) the reaction follows S_N^2 mechanism.

Choose the correct answer from the options given below :

- (B) and (C) only (2) (1) (B) and (D) only
- (3) (A) and (D) only

(A) and (C) only (4)

SPACE FOR ROUGH WORK

0.0				
306	E/A	(6)		
21.	Aniline does not undergo Friedel-Cra	fts reaction because		
1	(A) It forms salt with the Lewis acid	catalyst. AlCl ₃ .		
	(B) Nitrogen of aniline acquires neg	ative charge.		
	(C) Nitrogen of aniline acquires posi	itive charge.		
	(D) Nitrogen acts as a strong deactiv	ating group in the further reaction	n. 🦲	
	Choose the correct answer from the op	ptions given below :		
	(1) (A), (B) and (D) only.	60		
	(2) (A), (B) and (C) only	6)		
	(3) (A), (C) and (D) only (Ō		
	(4) (B), (C) and (D) only	57		
			and the second sec	
22.	Although chlorine is an electron wit	thdrawing group, yet it is ortho	- and para-directing in	electrophilic
٢	aromatic substitution reaction because			
	(A) Chlorine withdraws electrons through the second	ough inductive effect.		
	(B) Chlorine destabilises the intermed	diate carbocation formed during e	electrophilic substitution	1.
	(C) Chlorine accepts electrons throug	gh resonance 4		
	(D) Chlorine releases electrons through	gh resonance		
	Choose the correct answer from the op	ptions given below :		
	(1) (A), (B) and (D) only	(B)		
	(2) (A), (B) and (C) only	$\overline{\triangleleft}$		
	(3) (A), (C) and (D) only -			
	(4) (B), (C) and (D) only $+$	an an san san san san san san san san sa		
	Press Higs of Jelly Story Construction			
23.	In Etard reaction, the final product is	6 3 03		
1	(1) Aromatic aldehyde •/	50		
1	(2) Aromatic chloride	0		
	(3) Aromatic amine	ŭ.		
	(4) Aromatic alcohol	(3)		
	0.0	ACE FOD DOLLA		

SPACE FOR ROUGH WORK

24. Match List-I with List-II :

Level .	List-I	1	List-II
(A)	Amino acids linked in a specific sequence	(1)	Primary structure of proteins
(B)	Regular folding of a specific sequence of amino acids due to H-bonding	(II)	Secondary structure of proteins
(C)	Fibrous proteins	(III)	Quaternary structure of proteins
(D)	Spatial arrangement of two or more polypeptide chains	(BØ)	Tertiary structure of proteins

Choose the correct answer from the options given below :

(1) (A) - (I), (B) - (II), (C) - (III), (D) - (IV) \bigwedge

(2) (A) - (I), (B) - (III), (C) - (II), (D) - (IV) · (B)

(3) (A) - (I), (B) - (II), (C) - (IV), (D) - (III)

(4) (A) - (III), (B) - (IV), (C) - (I), (D) - (II)

25. Match List-I with List-II :

1

	List-I	8es) (List
(A)	Tollen's reagent	(I)	Rochelle salt
(B)	Jones reagent	(II)	Conci HCl and ZnCl ₂
(C)	Lucas reagent	(III)	Ammoniacal silver nitrate
(D)	Fehling solution	(IV)	Chromium trioxide-sulphuric acid

 \langle

HA

Choose the correct answer from the options given below :

(1) (A) - (III), (B) - (IV), (C) - (II), (D) - (I),
$$(A) = (A) + (A) +$$

(2) (A) - (IV), (B) - (III), (C) - (I), (D) - (II)
$$r$$

- (3) (A) (I), (B) (IV), (C) (II), (D) (III)
- (4) (A) (III), (B) (I), (C) (IV), (D) (II) \bigcirc

SPACE FOR ROUGH WORK

ð

26. Match List-I with List-II :

	List-I		List-II
(A)	Swarts Reaction	(I)	$C_6H_5NH_2 + NaNO_2 + HX + Cu_2X_2 \rightarrow C_6H_5X + N_2$
(B)	Finkelstein reaction	(II)	$2RX + 2Na \rightarrow R - R + 2NaX$
(C)	Sandmeyer's reaction	(III)	$RX + AgF \rightarrow R - F + AgX$
(D)	Wurtz reaction	(IV)	$RX + NaI \rightarrow R - I + NaX$

わ 08 00

Choose the correct answer from the options given below :

- (1) (A) (I), (B) (II), (C) (III), (D) (IV) 4. mg
- (2) (A) (I), (B) (III), (C) (II), (D) (IV)
- (3) (A) (I), (B) (II), (C) (IV), (D) (III)
- (4) (A) (III), (B) (IV), (C) (I), (D) (II)

Match List-I with List-II : 27.

1

	List-I (Biomolecule)		List-II (Function/Diseases)
(A)	Vitamin A	(I)	Menstrual cycle
(B)	Thiamine	(II)	Xerophthalmia
C)	Glucocorticoids	(III)	Beri-Beri
	Estradiol	(IV)	Addison's disease

(ces (8)

- (1) (A) (III), (B) (II), (C) (I), (D) (IV) (2) (A) - (II), (B) - (III), (C) - (I), (D) - (IV) () they be
- (3). (A) (III), (B) (II), (C) (IV), (D) (I) (Q)
- (4) (A) (II), (B) (III), (C) (IV), (D) (I)

SPACE FOR ROUGH WORK

<

28. In the following table, match the reactants given in List-I with the correct product in List-II as per the reaction of hydration of alkene under acidic condition.

31. For S_N2 reaction, the increasing order of the reactivity of the following alkyl halides is :
 (A) CU CV

- (A) CH₃CH₂CH₂CH₂Br
- (B) CH₃CH₂CH(Br)CH₃
- (C) (CH₃)₃CBr
- (D) (CH₃)₂CHCH₂Br

Choose the correct answer from the options given below :

- (1) (A) < (B) < (C) < (D)
- (3) (B) < (A) < (D) < (C)

(2) (A) < (C) < (B) < (D) (4) (C) < (B) < (D) < (A)

Read the following passage and answer the next five questions based on it.

Battery or cell converts chemical energy of the redox reaction to electrical energy. In fuel cell (a galvanic cell), the chemical energy of combustion of fuels like H_2 , ethanol, etc. are directly converted to electrica energy. In a fuel cell, H_2 and O_2 react to produce electricity, where H_2 gas is oxidised at anode and oxyger

is reduced at cathode and the reactions involved are

Anode reaction : $H_2 + 2OH^- \rightarrow 2H_2O + 2e^-$ Cathode reaction : $O_2 + 2H_2O + 4e^{-47}$ 40H⁻ ෂී 67.2 L of H₂ at STP reacts in 15 minutes. The number of moles of hydrogen oxidised is (4) 1.33 moles (3) 3.0 moles (3) (2) 33.3 moles 32. (1) 0.33 moles The number of moles of electrons produced in the oxidation of 67.2 L of H_2 at STP is : (4) 6 moles (2) 4 moles 33. The quantity of electricity produced in the oxidation of 67.2 L of H_2 at STP is : (4) 48250 C (2) 579000 C If the entire current produced is used for the electrodeposition of Silver (at.wt. 108 g mol⁻¹) from Silver (I) 34. solution, the amount of silver deposited will be 35. SPACE FOR ROUGH WORK 324 g (1)

1

1

(11)

36. The source of electrical energy on the Apollo moon flight was :

- (1) Lead storage battery (2) A generator set
- (3) Ni-Cd cells (4) H_2-O_2 Fuel cell.
- Read the following passage and answer the next five questions based on it.
 - Sc Ti V Cr Mn Fe Co Ni Cu Zn
 - Y Zr Nb Mo Tc Ru Rh Pd Ag Cd
 - La Hf Ta W Re Os Ir Pt At Hg

In any transition series, as we move from left to right the d-orbitals are progressively filled and their properties vary accordingly.

- Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu
- Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr

The above are the two series of f-block elements in which the chemical properties won't change much. The 5f-series elements are radioactive in nature and mostly are artificially synthesized in laboratories and thus much is not known about their chemical properties.

37. Identify the *incorrect* statement.

- (1) Second ionisation enthalpy of Ag is greater than second ionisation enthalpy of Pd.
- (2) Zr and Hf shares almost identical nuclear properties. -
- (3) Melting point of Mn is lower than that of Cro
- (4) Interstitial compounds are non-stoichiometric and neither ionic nor covalent in nature.

38. Which of the following is the correct order of second ionisation enthalpy ?

- (1) V > Cr > Mn (2) V < Cr < Mn (3) V < Cr > Mn / (4) V > Cr < Mn
- 39. Which of the following pair of compounds exhibits same colour in aqueous solution ?
 - (1) FeCl_2 , CuCl_2 , CuCl_2 , CuCl_2 .
 - (3) VOCl_2 , FeCl_2 (4) VOCl_2 , MnCl_2

40. Which metal has the highest oxidation state in the first row transition series ?

- ¹ (1) Cr. (2) Fe (3) Mn
- 41. Why do the actinoids exhibit higher number of exidation states than lanthanoids ?
 - (1) 4f orbitals are more diffused than the 5f orbitals.
 - (2) Energy difference between 5f and 6d is less with respect to the energy difference between 4f and 5d.
 - (3) Energy difference between 5f and 6d is more with respect to the energy difference between 4f and 5d.

(4)

(4) Actinoids are more reactive in nature than the lanthanoids.

SPACE FOR ROUGH WORK

42.

1

1

(12)

- Camphor in nitrogen gas is a type of solution
- (1) Gas-Gas (2) Solid – Gas
 - (3) Liquid Gas (4) Solid – Liquid
- 43.

Identify the correct order of organic compounds in the following chemical reaction :

	$\underline{?} + Mg \xrightarrow{\text{Dry Ether}} \underline{?} \xrightarrow{\text{H}_2\text{O}} \underline{?} \xrightarrow{\text{Cl}_2, \Delta} \underline{?}$
(A)	CH ₃ MgBr
(B)	CH ₃ Br
(C)	CH ₃ Cl
(D)	CH ₄

Choose the correct answer from the options given below :

- (1) (B), (A), (D), (C) (2) (A), (C), (B), (D)
- (3) (B), (A), (C), (D)

(4) (C), (B), (D), (A)

Consider the following statements regarding osmotic pressure : 44.

- (A) Molar mass of a protein can be determined using motic pressure method.
- (B) The osmotic pressure is proportional to the molarity.
- (C) Reverse osmosis occurs when a pressure larger than osmotic pressure is applied to the concentrated (\mathbf{C}) solution side.
- (D) Edema occurs due to retention of water in tissue cells as a result of osmosis.

Choose the correct statements with reference to osmotic pressure :

- (1) (A), (B) and (D) only
- (3) (A), (B), (C) and (D)

(2) (A), (B) and (C) only

66.67 mole percent

(4) (B), (C) and (D) only

Vapour pressures of part of 'A' and 'D' boils at 50°C and 700 the Hg pressure. The mole percentage of 'D' in the 45.

- (1) 33.33 mole percent
- (3) 25.75 mole percent

75.25 mole percent SPACE FOR ROUGH WORK

46. For the following reaction :

$$2A_2(g) + \frac{1}{4}X(g) \rightarrow 2A_2X(g)$$

volume is increased to double its value by decreasing the pressure on it. If the reaction is first order with respect to X and second order with respect to A_2 , the rate of reaction will :

(2) 7

(4) 17

(13)

6

- (1) Decrease by eight times of its initial value
- (2) Increase by eight times of its initial value
- (3) Increase by four times of its initial value
- (4) Remain unchanged

47. The total number of sigma bonds present in $\frac{3}{10}$ are :

- (1) 6,
- (3) 16

48. In the electrolysis of alumina to obtain Aluminium metal, the cryolite is added mainly to

- (1) lower the melting point of alumina.
- (2) dissolve the alumina in the molten cryolite.
- (3) remove the impurities of alumina.
- (4) increase the electrical conductivity.
- 49. Identify the order of reaction if its rate constant is $k = 2 \times 10^{-2} s^{-1}$.
 - (1) Zero order

2

- (2) First order
- (3) Second order
- (4) Half order

50. For a complex reaction, the order of reaction is equal to

- (1) Sum of stoichiometric coefficients in balanced chemical reaction
- (2) The molecularity of overall reaction
- (3) Order of fastest step of the reaction
- (4) The molecularity of slowest step of reaction

SPACE FOR ROUGH WORK