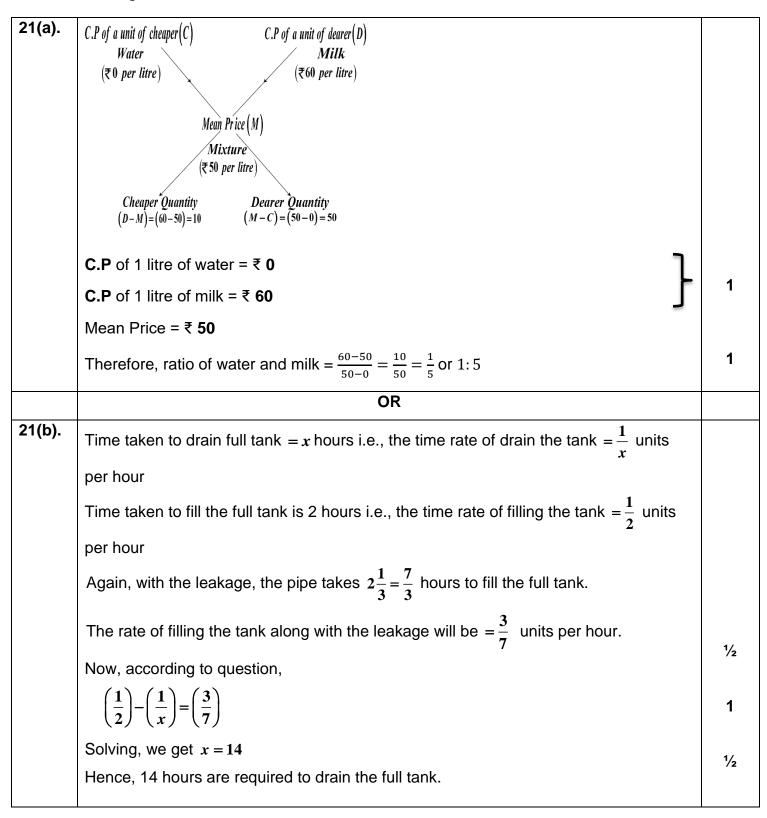
## **MARKING SCHEME**

### **CLASS XII**

# **APPLIED MATHEMATICS (CODE-241) (For Visually Impaired)**


**SECTION:** A (Solution of MCQs of 1 Mark each)

|     | HINTS/SOLUTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ANS |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| (C) | The required area is given by $\left  \int_{1}^{4} (\sqrt{x}) dx \right  = \left  \frac{\frac{3}{2}}{\frac{3}{2}} \right _{1}^{4} = \left  \frac{2}{3} (8-1) \right  = \frac{14}{3} $ squnits.                                                                                                                                                                                                                                                                                                                                                                                                                      |
| (A) | Systematic Sampling as it is a type of probability sampling while others are types of non-probability sampling.  (When selection of objects from the population is random, then objects of the population have an equal probability i.e., has a known non-zero equal chance of selection. In other words, in probability sampling, sample units are selected at random.)                                                                                                                                                                                                                                            |
| (A) | The cost function for a manufacturer is given by $C(x) = \frac{x^3}{3} - x^2 + 2x$ (in rupees). The marginal cost function is given by $MC(x) = \frac{dC}{dx} = x^2 - 2x + 2$ $MC'(x) = 2x - 2$ So, the marginal cost decreases from 0 to 1 and then increases onwards                                                                                                                                                                                                                                                                                                                                              |
| (C) | Being a polynomial function $f(x)$ is differentiable $\forall x \in \left(-2, \frac{9}{2}\right)$ $f'(x) = 4 - x .$ $f'(x) = 4 - x = 0 \Rightarrow x = 4 .$ For the function $f(x) = 4x - \frac{1}{2}x^2$ in the interval $\left[-2, \frac{9}{2}\right]$ , the end points are $x = -2 & x = \frac{9}{2}$ $\therefore \text{The absolute minimum value of the function } f(x) = 4x - \frac{1}{2}x^2 \text{ in the interval } \left[-2, \frac{9}{2}\right] \text{ is}$ $\text{Min}\left\{f\left(-2\right), f\left(4\right), f\left(\frac{9}{2}\right)\right\} = \text{Min}\left\{-10, 8, \frac{63}{8}\right\} = -10.$ |
|     | (C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

| 5.  | (D) | Here $n = 2025$                                                                    |                                                                                     |                                      |                                    |  |  |  |  |
|-----|-----|------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|--------------------------------------|------------------------------------|--|--|--|--|
|     |     | ∴ Degree of freedom = $2025 - 1 = 2024$ .                                          |                                                                                     |                                      |                                    |  |  |  |  |
| 6.  | (B) | Half plane neither containing the origin nor the points on the line $2x + 5y = 10$ |                                                                                     |                                      |                                    |  |  |  |  |
| 7.  | (C) |                                                                                    |                                                                                     |                                      |                                    |  |  |  |  |
|     | (C) | Number on the                                                                      | $x_i$                                                                               | $p_i$                                | $p_i x_i$                          |  |  |  |  |
|     |     | die                                                                                |                                                                                     |                                      |                                    |  |  |  |  |
|     |     | 1                                                                                  | 1                                                                                   | $\frac{1}{6}$                        | $\frac{1}{6}$                      |  |  |  |  |
|     |     | 2                                                                                  | -1                                                                                  | $\frac{1}{6}$                        | $-\frac{1}{6}$                     |  |  |  |  |
|     |     | 3                                                                                  | 3                                                                                   | $\frac{1}{6}$                        | $\frac{3}{6}$                      |  |  |  |  |
|     |     | 4                                                                                  | -2                                                                                  | 1                                    | 2                                  |  |  |  |  |
|     |     |                                                                                    |                                                                                     | <del>-</del> 6                       | <u>- <del>-</del> 6</u>            |  |  |  |  |
|     |     | 5                                                                                  | 5                                                                                   | $\frac{1}{6}$                        | <u>5</u><br>6                      |  |  |  |  |
|     |     | 6                                                                                  | -3                                                                                  | 1                                    | 3                                  |  |  |  |  |
|     |     | 6                                                                                  | -3                                                                                  | $\frac{1}{6}$                        | $-\frac{3}{6}$                     |  |  |  |  |
| 8.  | (C) | Annual depreciation                                                                | $=\frac{1200000-3000}{3}$                                                           | <u>00</u> =₹ 300000                  |                                    |  |  |  |  |
|     |     | ∴ Book value of the a                                                              | _                                                                                   | of <b>2 vears</b> –₹ (120000         | $00 - 2 \times 300000) = 7600000.$ |  |  |  |  |
| 9.  | (A) | The equation of the p                                                              |                                                                                     |                                      |                                    |  |  |  |  |
|     |     |                                                                                    |                                                                                     | ,                                    |                                    |  |  |  |  |
|     |     | $\frac{dy}{dx} = 6 - 2x$                                                           |                                                                                     |                                      |                                    |  |  |  |  |
|     |     | $\Rightarrow \frac{dy}{dx}_{x=3} = 6 - 2 \times 3 = 0$                             |                                                                                     |                                      |                                    |  |  |  |  |
| 10. | (B) | This is a binomial dis                                                             | tribution with $n =$                                                                | $= 80, p = 5\% = \frac{1}{20}.$ If X | is the binomial random             |  |  |  |  |
|     |     | variable for the numb                                                              | variable for the number of defectives then $X$ is $B\left(80,\frac{1}{20}\right)$ . |                                      |                                    |  |  |  |  |
|     |     | So, $\sigma^2 = npq = 80 \times \frac{1}{20}$                                      | $\times \frac{19}{20} = \frac{19}{5}.$                                              |                                      |                                    |  |  |  |  |
| 11. | (C) | $375 \text{ hours} = (24 \times 15 + 1)$                                           | 15)hours                                                                            |                                      |                                    |  |  |  |  |
|     |     | $\therefore 375 \pmod{24} = 15$                                                    |                                                                                     |                                      |                                    |  |  |  |  |
|     |     | Therefore, it will be 9                                                            | am after 375h                                                                       | ours.                                |                                    |  |  |  |  |
|     |     |                                                                                    |                                                                                     |                                      | Dago 2 of 17                       |  |  |  |  |

| 12. | (B) | $x \in (-1,3)-\{0\} \Rightarrow x \in (-1,0)\cup(0,3)$                                                                                                                                                      |
|-----|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     |     | When $x \in (-1,0)$ then $\frac{1}{x} \in (-\infty,-1)$ $(i)$                                                                                                                                               |
|     |     | When $x \in (0,3)$ then $\frac{1}{x} \in \left(\frac{1}{3}, \infty\right)$ $(ii)$                                                                                                                           |
|     |     | From $(i)$ & $(ii)$ , we have $\frac{1}{x} \in (-\infty, -1) \cup \left(\frac{1}{3}, \infty\right)$ .                                                                                                       |
| 13. | (C) | Secular trend variations are considered as long-term variation, attributable to factor                                                                                                                      |
|     |     | such as population change, technological progress and large –scale shifts in consumer                                                                                                                       |
|     |     | tastes.                                                                                                                                                                                                     |
| 14. | (B) | $R = 7800. \qquad i = \frac{4}{200} = 0.02$                                                                                                                                                                 |
|     |     | $P = \frac{R}{i} = \frac{800}{0.02} = \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $                                                                                                                                 |
| 15. | (D) | $y = ae^{bx}$                                                                                                                                                                                               |
|     |     | $\Rightarrow y' = abe^{bx}$                                                                                                                                                                                 |
|     |     | $\Rightarrow y' = by$                                                                                                                                                                                       |
|     |     | $\Rightarrow y' = abe^{bx}$ $\Rightarrow y' = by$ $\Rightarrow y'' = by' = \frac{y'}{y}y'$ $\therefore y'' = \frac{1}{y}(y')^2$                                                                             |
|     |     | $\therefore y'' = \frac{1}{y}(y')^2$                                                                                                                                                                        |
| 16. | (A) | $adj A = 2A^{-1} \implies A^{-1} = \frac{1}{2}(adj A)$                                                                                                                                                      |
|     |     | :  A  = 2                                                                                                                                                                                                   |
|     |     | Now, $ 3AA^{T}  = 3^3 \times  A ^2 = 108$                                                                                                                                                                   |
| 17. | (B) | We have, $P = \begin{bmatrix} 3 & 4 \\ -1 & 2 \\ 0 & 1 \end{bmatrix} \& Q^T = \begin{bmatrix} -1 & 2 & 1 \\ 1 & 2 & 3 \end{bmatrix} \Rightarrow Q = \begin{bmatrix} -1 & 1 \\ 2 & 2 \\ 1 & 3 \end{bmatrix}$ |
|     |     | So, $P - Q = \begin{bmatrix} 3 & 4 \\ -1 & 2 \\ 0 & 1 \end{bmatrix} - \begin{bmatrix} -1 & 1 \\ 2 & 2 \\ 1 & 3 \end{bmatrix} = \begin{bmatrix} 4 & 3 \\ -3 & 0 \\ -1 & -2 \end{bmatrix}$ .                  |
| 18. | (B) | order is 2 and degree is 1.                                                                                                                                                                                 |
| 19. | (A) | Both (A) and (R) are true and (R) is the correct explanation of (A).                                                                                                                                        |
| 20. | (C) | (A) is true but (R) is false.                                                                                                                                                                               |
|     |     |                                                                                                                                                                                                             |

# [This section comprises of solution of very short answer type questions (VSA) of 2 marks each]



| In a 200m race, when A covers 200m                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| then <i>B</i> covers $(200-18)=182m$                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| and <i>C</i> covers $(200-31)=169m$                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| $\Rightarrow A : C = 200 : 169$                                                                                                                                                                                           | 1/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| $\frac{B}{C} = \frac{A}{C} \times \frac{B}{A} = \frac{200}{169} \times \frac{182}{200} = \frac{182}{169}$                                                                                                                 | 1/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| When $B$ covers $182m$ then $C$ covers $169m$                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| When B covers $350m$ then C covers $\frac{169}{182} \times 350 = 325m$                                                                                                                                                    | 1/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Therefore, B can give a start of $(350-325)=25m$ to C.                                                                                                                                                                    | 1/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Let the total distance be $d$ km and the speed of boat in still water be $x$ km/h                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Speed of stream = 5 km/h                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Speed upstream = $(x - 5)$ km/h                                                                                                                                                                                           | 1/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Speed downstream = $(x + 5)$ km/h                                                                                                                                                                                         | 1/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| According to question, $\frac{d}{x-5} = 3 \times \frac{d}{x+5}$                                                                                                                                                           | 1/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Solving, we get $x = 10$                                                                                                                                                                                                  | 1/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Hence, the speed of boat in still water is 10 km/h                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Let X be the random variable denoting the number of workers who catch the                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| disease.                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Given, $p = \frac{20}{100} = \frac{1}{5} \Rightarrow q = \frac{4}{5}$ and $n = 6$                                                                                                                                         | 1/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Now, $P(X = x) = {}^{6}C_{x} \left(\frac{1}{5}\right)^{x} \left(\frac{4}{5}\right)^{6-x}, x = 0,1,,6$                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| So, the required probability that out of six workers 4 or more will catch the disease is                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| $P(X \ge 4) = P(X = 4) + P(X = 5) + P(X = 6)$                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| $= {}^{6}C_{4} \left(\frac{1}{5}\right)^{4} \left(\frac{4}{5}\right)^{2} + {}^{6}C_{5} \left(\frac{1}{5}\right)^{5} \left(\frac{4}{5}\right)^{1} + {}^{6}C_{6} \left(\frac{1}{5}\right)^{6} \left(\frac{4}{5}\right)^{0}$ | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| $=\frac{265}{5^6} \text{ or } 0.017.$                                                                                                                                                                                     | 1/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| OR                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                           | then $B$ covers $(200-18)=182m$ and $C$ covers $(200-31)=169m$ $\Rightarrow A:C=200:169$ $\frac{B}{C}=\frac{A}{C}\times\frac{B}{A}=\frac{200}{169}\times\frac{182}{200}=\frac{182}{169}$ When $B$ covers $182m$ then $C$ covers $169m$ When $B$ covers $350m$ then $C$ covers $\frac{169}{182}\times350=325m$ Therefore, $B$ can give a start of $(350-325)=25m$ to $C$ .  Let the total distance be $d$ km and the speed of boat in still water be $x$ km/h Speed of stream $=5$ km/h Speed upstream $=(x-5)$ km/h According to question, $\frac{d}{x-5}=3\times\frac{d}{x+5}$ Solving, we get $x=10$ Hence, the speed of boat in still water is $10$ km/h  Let $X$ be the random variable denoting the number of workers who catch the disease.  Given, $P=\frac{20}{100}=\frac{1}{5}\Rightarrow q=\frac{4}{5}$ and $n=6$ Now, $P(X=x)={}^6C_x\left(\frac{1}{5}\right)^x\left(\frac{4}{5}\right)^{6-x}$ , $x=0,1,,6$ So, the required probability that out of six workers $4$ or more will catch the disease is $P(X \ge 4)=P(X=4)+P(X=5)+P(X=6)$ $={}^6C_4\left(\frac{1}{5}\right)^4\left(\frac{4}{5}\right)^3+{}^6C_5\left(\frac{1}{5}\right)^5\left(\frac{4}{5}\right)^1+{}^6C_6\left(\frac{1}{5}\right)^6\left(\frac{4}{5}\right)^0$ $=\frac{265}{5^6}$ or $0.017$ . |

| 24(b). | We have, mean $\mu = 12$ and standard deviation $\sigma = 2$ , i.e., $X \sim N(\mu, \sigma^2)$                                                                   |     |
|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
|        | (i) Let X denote the count of the months for which this machine lasts.                                                                                           |     |
|        | The probability of an item produced by this machine will last less than 7 months is                                                                              |     |
|        | P(X < 7)                                                                                                                                                         |     |
|        | For $X = 7$ , $Z = \frac{7 - 12}{2} = -\frac{5}{2}$                                                                                                              | 1/2 |
|        | Now,                                                                                                                                                             |     |
|        | $P(X<7) = P\left(Z<-\frac{5}{2}\right) = P\left(Z>\frac{5}{2}\right)$                                                                                            |     |
|        | $=1-P\left(Z<\frac{5}{2}\right)=1-0.9938=0.0062$                                                                                                                 | 1/2 |
|        | (ii) The probability of an item produced by this machine will last more than 7 months and less than 14 months is $P(7 < X < 14)$                                 |     |
|        | For $X = 7$ , $Z = \frac{7-12}{2} = -\frac{5}{2}$                                                                                                                |     |
|        | and for $X = 14$ , $Z = \frac{14-12}{2} = 1$                                                                                                                     | 1/2 |
|        | $P\left(7 < X < 14\right) = P\left(-\frac{5}{2} < Z < 1\right)$                                                                                                  |     |
|        | $=P(Z<1)-P(Z<-\frac{5}{2})$                                                                                                                                      |     |
|        | = 0.8413 - 0.0062 = 0.8351                                                                                                                                       | 1/2 |
| 25.    | Given, $A^2 = B$                                                                                                                                                 |     |
|        | $\Rightarrow \begin{bmatrix} \alpha & 0 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} \alpha & 0 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 5 & 1 \end{bmatrix}$ |     |
|        |                                                                                                                                                                  | 1   |
|        | $\Rightarrow \begin{bmatrix} \alpha^2 & 0 \\ \alpha + 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 5 & 1 \end{bmatrix}$                                        |     |
|        | $\Rightarrow \alpha^2 = 1 \text{ and } \alpha + 1 = 5.$                                                                                                          | 1/2 |
|        | Hence, no real value of $\alpha$ exists.                                                                                                                         | 1/2 |
|        | Section –C                                                                                                                                                       |     |

[This section comprises of solution short answer type questions (SA) of 3 marks each]

**26.** 
$$5 \equiv 5 \pmod{7}$$

|        | $\Rightarrow 5^2 \equiv 25 \pmod{7}$                                                                            |     |
|--------|-----------------------------------------------------------------------------------------------------------------|-----|
|        | $\Rightarrow 5^2 \equiv 4 \pmod{7}$                                                                             | 1   |
|        | $\Rightarrow 5^4 \equiv 4^2 \pmod{7}$                                                                           |     |
|        | $\Rightarrow 5^4 \equiv 2 \pmod{7}$                                                                             |     |
|        | $\Rightarrow 5^{20} \equiv 32 \pmod{7}$                                                                         |     |
|        | $\Rightarrow 5^{20} \equiv 4 \pmod{7}$                                                                          | 1   |
|        | $\Rightarrow 5^{60} \equiv 1 \pmod{7}$                                                                          |     |
|        | $\Rightarrow 5^{61} \equiv 5 \pmod{7}$                                                                          | 1   |
|        | Hence, the remainder when 5 <sup>61</sup> is divided by 7 is 5                                                  |     |
| 27(a). | Given,                                                                                                          |     |
|        | $n_1 = 10, n_2 = 8, \overline{x_1} = 750, \overline{x_2} = 820, s_1 = 12 \& s_2 = 14$                           |     |
|        | Consider, Null hypothesis $\mathbf{H}_0$ : Mean life is same for both the batches i.e., $(\mu_1 = \mu_2)$ .     |     |
|        | Alternate hypothesis $\mathbf{H}_{\alpha}$ : Two batches have different mean lives i.e., $(\mu_1 \neq \mu_2)$ . |     |
|        | Test Statistics,                                                                                                |     |
|        | $t = \frac{\overline{x_1} - \overline{x_2}}{S} \times \sqrt{\frac{n_1 n_2}{n_1 + n_2}},$                        |     |
|        | Where $S = \sqrt{\frac{(n_1 - I)s_1^2 + (n_2 - I)s_2^2}{n_1 + n_2 - 2}}$                                        |     |
|        | $\Rightarrow S = \sqrt{\frac{9 \times 144 + 7 \times 196}{10 + 8 - 2}}$                                         | 1   |
|        | $=\sqrt{\frac{2668}{16}}=12.91$                                                                                 | 1/2 |
|        | $\therefore t = \frac{750 - 820}{12.91} \times \sqrt{\frac{10 \times 8}{10 + 8}}$                               |     |
|        | $= \frac{-70}{12.91} \times 2.1081$<br>= -11.430                                                                | 1   |
|        | Since, calculated value $ t =11.430>$ tabulated value $t_{16}(0.05)=2.120$                                      |     |
|        | So, rejected the null hypothesis at 5% level of significance.                                                   | 1/2 |
|        | Hence, the mean life for both the batches is not the same.                                                      |     |
|        | OR                                                                                                              |     |

| 27(b). | Here, population mean $(\mu) = 25$                                                                                     |      |
|--------|------------------------------------------------------------------------------------------------------------------------|------|
|        | Sample mean $(\bar{x}) = \frac{\sum x_i}{n} = \frac{138}{6} = 23$                                                      | 1/2  |
|        | Sample size $(n) = 6$                                                                                                  |      |
|        | Consider, Null hypothesis $\mathbf{H}_{\scriptscriptstyle{0}}$ : There is no significant difference between the sample |      |
|        | mean and the population mean i.e., $(\mu_1 = \mu_2)$ .                                                                 |      |
|        | Alternate hypothesis $\mathbf{H}_{\alpha}$ : There is no significant difference between the sample mean                |      |
|        | and the population mean i.e., $(\mu_1 \neq \mu_2)$ .                                                                   |      |
|        | Values of $(x_i - \bar{x})^2$ are 1, 9, 49, 9, 9 and 25                                                                |      |
|        | $\therefore s = \sqrt{\frac{102}{5}} = 4.52$                                                                           | 1    |
|        | Now, $t = \frac{\bar{x} - \mu}{\frac{S}{\sqrt{n}}} = \frac{23 - 25}{\frac{4.52}{\sqrt{6}}}$                            |      |
|        | =-1.09                                                                                                                 | 1    |
|        | $\Rightarrow  t  = 1.09$                                                                                               |      |
|        | Since, calculated value $ t  = 10.763 <$ tabulated value $t_5(0.01) = 4.132$                                           |      |
|        | So, the null hypothesis is accepted.                                                                                   | 1/2  |
|        | Hence, the manufacturer's claim is valid at 1% level of significance.                                                  |      |
| 28.    | Given, mean = $\lambda = 3.2$                                                                                          | 1/2  |
|        | Let X be the number of bicycle riders which use the cycle track.                                                       |      |
|        | Required probability = $P(X \le 2) = P(X = 0) + P(X = 1) + P(X = 2)$                                                   |      |
|        | $= \frac{e^{-3.2}(3.2)^0}{0!} + \frac{e^{-3.2}(3.2)^1}{1!} + \frac{e^{-3.2}(3.2)^2}{2!}$                               |      |
|        | 0! 1! 2!                                                                                                               | 11/2 |
|        | $= e^{-3.2}(1+3.2+5.12)$                                                                                               |      |
|        | $= 0.041 \times 9.32 = 0.618$                                                                                          | 1/2  |
|        | Also, mean expectation = variance of $X = \lambda = 3.2$                                                               | 1/2  |
| 29.    | Here, Initial investment value (IV) =₹5000                                                                             | 1/2  |
|        | Final investment value $(FV) = ₹10500$                                                                                 | 1/2  |
|        | No of period $(n) = 3$ (starting from 2021 to 2023)                                                                    |      |
|        |                                                                                                                        |      |

|        | $\Rightarrow r = \left(\frac{FV}{IV}\right)^{\frac{1}{n}} - 1 = \left(\frac{10500}{5000}\right)^{\frac{1}{3}} - 1$ | 1   |
|--------|--------------------------------------------------------------------------------------------------------------------|-----|
|        | =1.2805-1=0.2805                                                                                                   | 1/2 |
|        | CAGR = 28.05%                                                                                                      | 1/2 |
| 30.    | Let the number of necklaces manufactured be $x$ , and the number of bracelets                                      |     |
|        | manufactured be $y$ .                                                                                              |     |
|        | According to question,                                                                                             |     |
|        | $x + y \le 25$ and                                                                                                 |     |
|        |                                                                                                                    |     |
|        | $\frac{x}{2} + y \le 14$                                                                                           |     |
|        | The profit on one necklace is ₹ 100 and the profit on one bracelet is ₹ 300.                                       |     |
|        | Let the profit (the objective function) be Z, which has to be maximized.                                           |     |
|        | Therefore, required LPP is                                                                                         |     |
|        | Maximize $Z = 100x + 300y$                                                                                         | 1   |
|        | Subject to the constraints                                                                                         |     |
|        | $x + y \le 25$                                                                                                     | 1/2 |
|        | x 14                                                                                                               |     |
|        | $\frac{x}{2} + y \le 14$                                                                                           | 1   |
|        | $x, y \ge 0$                                                                                                       | 1/2 |
| 31(a). | (i) We have, $\sum_{i=1}^{4} P(X=i) = 1$                                                                           |     |
|        | $\Rightarrow 0+k+4k+2k+k=1$                                                                                        |     |
|        | $\Rightarrow 8k = 1$                                                                                               |     |
|        | $\therefore k = \frac{1}{8}$                                                                                       | 1   |
|        |                                                                                                                    |     |
|        | Required probability = $P(X = 2)$<br>= $4 \times \frac{1}{8}$                                                      |     |
|        | $=\frac{1}{2}$                                                                                                     | 1/  |
|        | (ii) <sup>2</sup>                                                                                                  | 1/2 |
|        | Mean, $E(X) = \sum_{i=1}^{4} i P(X=i)$                                                                             |     |
|        | $=0+1\times\frac{1}{8}+2\times\frac{4}{8}+3\times\frac{2}{8}+4\times\frac{1}{8}$                                   | 1   |
|        | $=\frac{19}{8}$                                                                                                    | 1/2 |
|        |                                                                                                                    |     |

|        | OR                                                                                                                                                   |     |
|--------|------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 31(b). | We have, $p = 0.01 = \frac{1}{100} \Rightarrow q = \frac{99}{100}$                                                                                   | 1/2 |
|        | Let number of Bernoulli trials be $n$ .                                                                                                              |     |
|        | Now, the binomial distribution formula is for any random variable $(X)$ is given by                                                                  |     |
|        | $P(X = x) = {}^{n} C_{x} \left(\frac{1}{100}\right)^{x} \left(\frac{99}{100}\right)^{n-x}$                                                           |     |
|        | So, the probability of at least one success is                                                                                                       |     |
|        | $P(X \ge 1) = 1 - P(X = 0) = 1 - {n \choose 0} \left(\frac{1}{100}\right)^{0} \left(\frac{99}{100}\right)^{n} = 1 - \left(\frac{99}{100}\right)^{n}$ | 1   |
|        | According to condition, $P(X \ge 1) \ge 0.5 \Rightarrow 1 - \left(\frac{99}{100}\right)^n \ge 0.5 \Rightarrow \left(\frac{99}{100}\right)^n \le 0.5$ | 1/2 |
|        | $\Rightarrow n \log_{10} \frac{99}{100} \le \log_{10} 0.5 \Rightarrow n \ge \frac{\log_{10} 0.5}{\log_{10} 0.99}; \qquad (as \log_{10} 0.99 < 0)$    | 1/2 |
|        | [Using $\log_{10} 2 = 0.3010$ and $\log_{10} 99 = 1.9956$ ] $\Rightarrow n \ge 68.409 \Rightarrow n = 69$ [:: $n \in \mathbb{N}$ ].                  | 1/2 |
|        | Section -D                                                                                                                                           |     |

### Section -D

# [This section comprises of solution of long answer type questions (LA) of 5 marks each]

| Year (t) | Production | $x = t_i - 1967$ | $\chi^2$ | xy  |  |
|----------|------------|------------------|----------|-----|--|
|          | (y)        |                  |          |     |  |
| 1962     | 2          | -5               | 25       | -10 |  |
| 1963     | 4          | -4               | 16       | -16 |  |
| 1964     | 3          | -3               | 9        | -9  |  |
| 1965     | 4          | -2               | 4        | -8  |  |
| 1966     | 4          | -1               | 1        | -4  |  |
| 1967     | 2          | 0                | 0        | 0   |  |
| 1968     | 4          | 1                | 1        | 4   |  |
| 1969     | 9          | 2                | 4        | 18  |  |

|        | 1970            | )                     | 7                                          | 3                                                   | 9                                                          | 21                    | 2 marks                                                                               |
|--------|-----------------|-----------------------|--------------------------------------------|-----------------------------------------------------|------------------------------------------------------------|-----------------------|---------------------------------------------------------------------------------------|
|        | 1971            | 1                     | 10                                         | 4                                                   | 16                                                         | 40                    | for                                                                                   |
|        | 1972            | 2                     | 8                                          | 5                                                   | 25                                                         | 40                    | correct                                                                               |
|        | Tota            | I                     | $\sum y = 57$                              | $\sum x = 0$                                        | $\sum x^2 = 110$                                           | $\sum xy = 76$        | table                                                                                 |
|        | Year            | <b>1967</b> is        | s taken as year                            | of origin.                                          |                                                            |                       |                                                                                       |
|        | The n           | ormal                 | equations are                              | $\sum y = na + b \sum x$                            | and $\sum xy = a$                                          | $\sum x + b \sum x^2$ |                                                                                       |
|        | Since           | $\sum x$              | = 0 i.e., deviati                          | ion from actual r                                   | nean is zero,                                              |                       |                                                                                       |
|        | we ha           | ave a                 | $= \frac{\sum y}{n} = \frac{57}{11} = 5.1$ | $18, b = \frac{\sum xy}{\sum x^2} = \frac{76}{110}$ | $\frac{6}{0} = 0.69$                                       |                       |                                                                                       |
|        | Therefore       | , the r               | equired equation                           | on of the trend lir                                 | ne $y = 5.18 + 0.69$                                       | $\mathbf{O}_{X}$      | 1                                                                                     |
|        | The trend       | value                 | es are                                     |                                                     |                                                            |                       |                                                                                       |
|        | 1.73, 2         | .42, 3.               | 11, 3.8, 4.49, 5.1                         | 8, 5.87, 6.56, 7.25                                 | , 7.94, 8.63                                               |                       | 2                                                                                     |
|        |                 |                       |                                            | OR                                                  |                                                            |                       |                                                                                       |
| 32(b). | Yearl<br>Quarte | •                     | Small scale industry                       | 4-quarterly moving total                            | 4-quarterly moving                                         | 4-year cer            |                                                                                       |
|        |                 |                       | _                                          |                                                     |                                                            |                       |                                                                                       |
|        |                 | I                     | 39                                         |                                                     | average                                                    |                       |                                                                                       |
|        |                 | I                     | 39                                         |                                                     |                                                            |                       |                                                                                       |
|        | 2020            | II                    | 47                                         | 162                                                 |                                                            |                       | 11/2                                                                                  |
|        | 2020            | II<br>III             | 47<br>20                                   | 162<br>191                                          | average                                                    | 44.12                 | 1½<br>marks<br>each for                                                               |
|        | 2020            | II                    | 47<br>20<br>56                             |                                                     | average<br>40.5                                            | 44.12                 | 1½<br>marks<br>each for<br>3 <sup>rd</sup> and<br>4 <sup>th</sup>                     |
|        | 2020            | II<br>III             | 47<br>20                                   | 191                                                 | 40.5<br>47.75                                              | 44.12                 | 1½<br>marks<br>each for<br>3 <sup>rd</sup> and<br>4 <sup>th</sup>                     |
|        |                 | III IV II             | 47<br>20<br>56<br>68                       | 191<br>203                                          | 40.5<br>47.75<br>50.75                                     |                       | 1½ marks each for 3 <sup>rd</sup> and 4 <sup>th</sup> column  5 2 marks for last      |
|        | 2020            | II III                | 47<br>20<br>56<br>68                       | 191<br>203<br>249                                   | 40.5<br>47.75<br>50.75                                     |                       | 1½ marks each for 3 <sup>rd</sup> and 4 <sup>th</sup> column  2 marks                 |
|        |                 | III IV II             | 47<br>20<br>56<br>68                       | 191<br>203<br>249<br>265                            | 40.5<br>47.75<br>50.75<br>62.25<br>66.25                   |                       | 1½ marks each for 3 <sup>rd</sup> and 4 <sup>th</sup> column  2 marks for last column |
|        |                 | III IV III III IV     | 47 20 56 68 72 88                          | 191<br>203<br>249<br>265<br>285                     | 40.5<br>47.75<br>50.75<br>62.25                            |                       | 1½ marks each for 3 <sup>rd</sup> and 4 <sup>th</sup> column  2 marks for last column |
|        | 2021            | III IV III IV III III | 47 20 56 68 72 88                          | 191<br>203<br>249<br>265<br>285                     | 40.5<br>47.75<br>50.75<br>62.25<br>71.25                   |                       | 1½ marks each for 3 <sup>rd</sup> and 4 <sup>th</sup> column  2 marks for last column |
|        |                 | III IV III III IV     | 47 20 56 68 72 88                          | 203<br>249<br>265<br>285<br>286                     | 40.5<br>47.75<br>50.75<br>62.25<br>66.25<br>71.25<br>70.00 |                       | 1½ marks each for 3 <sup>rd</sup> and 4 <sup>th</sup> column  2 marks for last column |
|        | 2021            | III IV III IV III III | 47 20 56 68 72 88                          | 203<br>249<br>265<br>285<br>286                     | 40.5<br>47.75<br>50.75<br>62.25<br>66.25<br>71.25<br>70.00 |                       | 1½ marks each for 3 <sup>rd</sup> and 4 <sup>th</sup> column  2 marks for last column |

| 33(a). | $y = ax^2 + bx + c$                                                                                                                                                                               |     |
|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
|        | Owl passes through the points $(1,2)$ , $(2,1)$ and $(4,5)$ . So, it must satisfy the given                                                                                                       |     |
|        | equation                                                                                                                                                                                          |     |
|        | Therefore,                                                                                                                                                                                        |     |
|        | 2 = a + b + c                                                                                                                                                                                     |     |
|        | 1 = 4a + 2b + c                                                                                                                                                                                   | 1   |
|        | 5 = 16a + 4b + c                                                                                                                                                                                  |     |
|        | Now, $D = \begin{vmatrix} 1 & 1 & 1 \\ 4 & 2 & 1 \\ 16 & 4 & 1 \end{vmatrix} = 1(2-4)-1(4-16)+1(16-32) = -6 \neq 0$                                                                               | 1/2 |
|        | $D_a = \begin{vmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 5 & 4 & 1 \end{vmatrix} = 2(2-4)-1(1-5)+1(4-10) = -6$                                                                                            | 1/2 |
|        | $D_b = \begin{vmatrix} 1 & 2 & 1 \\ 4 & 1 & 1 \\ 16 & 5 & 1 \end{vmatrix} = 1(1-5) - 2(4-16) + 1(20-16) = 24$                                                                                     | 1/2 |
|        | and $D_c = \begin{vmatrix} 1 & 1 & 2 \\ 4 & 2 & 1 \\ 16 & 4 & 5 \end{vmatrix} = 1(10-4)-1(20-16)+2(16-32)=-30$                                                                                    | 1/2 |
|        | $\therefore a = \frac{D_a}{D} = \frac{-6}{-6} = 1; , b = \frac{D_b}{D} = \frac{24}{-6} = -4, c = \frac{D_c}{D} = \frac{-30}{-6} = 5$                                                              | 1½  |
|        | Therefore, equation of the curve is $y = x^2 - 4x + 5$                                                                                                                                            |     |
|        | When owl is sitting at $(0,k)$ then $x = 0 \Rightarrow k = 5$                                                                                                                                     | 1/2 |
|        | OR                                                                                                                                                                                                |     |
| 33(b). | (i) $s(t) = at^2 + bt + c$ ; $t \ge 0$                                                                                                                                                            |     |
|        | Clearly, $(10,16)$ , $(20,22)$ , $(30,25)$ lie on the curve of $s(t)$ .                                                                                                                           |     |
|        | Then, $100a + 10b + c = 16$                                                                                                                                                                       |     |
|        | 400a + 20b + c = 22                                                                                                                                                                               | 1   |
|        | 900a + 30b + c = 25                                                                                                                                                                               |     |
|        | (ii) Let, $A = \begin{pmatrix} 100 & 10 & 1 \\ 400 & 20 & 1 \\ 900 & 30 & 1 \end{pmatrix}$ ; $X = \begin{pmatrix} a \\ b \\ c \end{pmatrix}$ ; $B = \begin{pmatrix} 16 \\ 22 \\ 25 \end{pmatrix}$ | 1/2 |
|        |                                                                                                                                                                                                   |     |

|                                                                                                                                                                             | Then, the system becomes, $AX = B$                                                                                                                                                                    |      |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|--|
|                                                                                                                                                                             | A   = $100(-10) - 400(-20) + 900(-10)$                                                                                                                                                                |      |  |
|                                                                                                                                                                             |                                                                                                                                                                                                       |      |  |
|                                                                                                                                                                             | = -1000 + 8000 - 9000                                                                                                                                                                                 | 1/2  |  |
|                                                                                                                                                                             | = -2000≠0                                                                                                                                                                                             |      |  |
|                                                                                                                                                                             | $(-10  500  -6000)^T  (-10  20  -10)$                                                                                                                                                                 |      |  |
|                                                                                                                                                                             | 1                                                                                                                                                                                                     |      |  |
|                                                                                                                                                                             | Now, $adjA = \begin{pmatrix} -10 & 500 & -6000 \\ 20 & -800 & 6000 \\ -10 & 300 & -2000 \end{pmatrix}^{T} = \begin{pmatrix} -10 & 20 & -10 \\ 500 & -800 & 300 \\ -6000 & 6000 & -2000 \end{pmatrix}$ |      |  |
|                                                                                                                                                                             | ( -10 20 -10 )                                                                                                                                                                                        |      |  |
|                                                                                                                                                                             | Therefore, $A^{-1} = \frac{1}{ A } (adjA) = \frac{1}{-2000} \begin{pmatrix} -10 & 20 & -10 \\ 500 & -800 & 300 \\ -6000 & 6000 & -2000 \end{pmatrix}$                                                 | 1/2  |  |
|                                                                                                                                                                             | $A = \begin{bmatrix} -2000 \\ -6000 & 6000 & -2000 \end{bmatrix}$                                                                                                                                     |      |  |
|                                                                                                                                                                             | ( 10 20 10 )(10)                                                                                                                                                                                      |      |  |
| Then, $X = A^{-1}B = \frac{1}{-2000} \begin{pmatrix} -10 & 20 & -10 \\ 500 & -800 & 300 \\ -6000 & 6000 & -2000 \end{pmatrix} \begin{pmatrix} 16 \\ 22 \\ 25 \end{pmatrix}$ |                                                                                                                                                                                                       |      |  |
|                                                                                                                                                                             | Then, $A = A$ $B = \frac{300}{-2000} \begin{vmatrix} 300 & -800 & 300 \\ -6000 & 6000 & -2000 \end{vmatrix} \begin{vmatrix} 22 \\ 25 \end{vmatrix}$                                                   |      |  |
|                                                                                                                                                                             |                                                                                                                                                                                                       |      |  |
|                                                                                                                                                                             | $=\frac{1}{-2100}$                                                                                                                                                                                    |      |  |
|                                                                                                                                                                             | $=\frac{1}{-2000} \begin{pmatrix} 30\\ -2100\\ -14000 \end{pmatrix}$                                                                                                                                  |      |  |
|                                                                                                                                                                             |                                                                                                                                                                                                       |      |  |
|                                                                                                                                                                             | $= \begin{pmatrix} -\frac{3}{200} \\ \frac{21}{20} \\ 7 \end{pmatrix}$                                                                                                                                | 11/2 |  |
|                                                                                                                                                                             | $=$ $\frac{21}{21}$                                                                                                                                                                                   |      |  |
|                                                                                                                                                                             |                                                                                                                                                                                                       |      |  |
|                                                                                                                                                                             |                                                                                                                                                                                                       |      |  |
|                                                                                                                                                                             |                                                                                                                                                                                                       |      |  |
|                                                                                                                                                                             | Therefore, $a = -\frac{3}{200}$ , $b = \frac{21}{20}$ , $c = 7$ .                                                                                                                                     |      |  |
|                                                                                                                                                                             | Therefore, $u = -\frac{1}{200}$ , $v = \frac{1}{20}$ , $c = 7$ .                                                                                                                                      |      |  |
| 34.                                                                                                                                                                         | Let us consider demand function be $p = D(x) = ax + b$ (i)                                                                                                                                            |      |  |
|                                                                                                                                                                             | When $x = 25$ then $p = 20000$                                                                                                                                                                        |      |  |
|                                                                                                                                                                             | From equation (i), we have $20000 = 25a + b$ (ii)                                                                                                                                                     | 1/2  |  |
|                                                                                                                                                                             | And when $x = 125$ then $p = 15000$                                                                                                                                                                   |      |  |
|                                                                                                                                                                             | From equation $(i)$ , we have $15000 = 125a + b$ $(ii)$                                                                                                                                               |      |  |
|                                                                                                                                                                             | On solving equations (i) and (ii), we get $a = -50$ and $b = 21250$                                                                                                                                   | 1    |  |
|                                                                                                                                                                             | Therefore, demand function, $p = D(x) = -50x + 21250$                                                                                                                                                 | 1/2  |  |
|                                                                                                                                                                             |                                                                                                                                                                                                       |      |  |
|                                                                                                                                                                             | For equilibrium point $D(x_0) = S(x_0)$                                                                                                                                                               |      |  |
|                                                                                                                                                                             |                                                                                                                                                                                                       |      |  |

| $\Rightarrow -50x_0 + 21250 = 100x_0 + 7000$                                                                                            |          |
|-----------------------------------------------------------------------------------------------------------------------------------------|----------|
| $\Rightarrow -150x_0 = -14250$                                                                                                          |          |
| $\Rightarrow x_0 = 95$                                                                                                                  | 1/2      |
| On putting value of $x_0$ in demand function and supply function, we get                                                                |          |
| $p_0 = 16500$                                                                                                                           | 1/2      |
| ∴ Consumer surplus (CS)                                                                                                                 |          |
| $=\int_0^{x_0} D(x)dx - p_0 x_0$                                                                                                        |          |
| $= \int_0^{95} \left( -50x + 21250 \right) dx - 16500 \times 95$                                                                        | 1        |
| $= \left(-50\frac{x^2}{2} + 2150x\right)_0^{95} - 1567500$                                                                              |          |
| = 1793125 - 1567500                                                                                                                     |          |
| =₹ 225625                                                                                                                               | 1/2      |
| 35. Amount needed after 4 years                                                                                                         |          |
| = Replacement Cost - Salvage Cost = ₹ (55,200 – 7200) = ₹ 48,000                                                                        | 1        |
| The payments into sinking fund consisting of 10 annual payments at the rate 7% per                                                      |          |
| year is given by                                                                                                                        |          |
| $A = RS_{\overline{n} i} = R\left[\frac{\left(1+i\right)^n - 1}{i}\right]$                                                              |          |
| $\Rightarrow 48000 = R \left[ \frac{\left(1 + 0.07\right)^4 - 1}{0.07} \right] = R \left[ \frac{\left(1.07\right)^4 - 1}{0.07} \right]$ |          |
| $\Rightarrow R = \frac{48000}{4.4385} = ₹10814.5$                                                                                       | 2        |
| Раде                                                                                                                                    | 14 of 17 |

| Amount of Annual Depreciation $=$ $\frac{36000-7200}{4}$ $=$ $\frac{28800}{4}$ $=$ ₹7200 | 1 |
|------------------------------------------------------------------------------------------|---|
| and rate of Depreciation = $\frac{7200}{36000 - 7200} \times 100 = 25\%$                 | 1 |

### Section -E

[This section comprises solution of 3 case- study/passage-based questions of 4 marks each with two sub parts. Solution of the first two case study questions have three sub parts (i),(ii),(iii) of marks 1,1,2 respectively. Solution of the third case study question has two sub parts of 2 marks each.]

| •   | •                                                                                   |           |
|-----|-------------------------------------------------------------------------------------|-----------|
| 36. | (i) For all values of $x, y = x^2 + 7$                                              |           |
|     | ∴ Shivam's position at any point of $x$ will be $(x, x^2 + 7)$                      |           |
|     | The measure of the distance between Shivam and Manita, i.e., D                      |           |
|     | $D = \sqrt{(x-3)^2 + (x^2 + 7 - 7)^2} = \sqrt{(x-3)^2 + x^4}$                       | 1/2 + 1/2 |
|     | (ii) We have,                                                                       |           |
|     | $D = \sqrt{\left(x-3\right)^2 + x^4}$                                               |           |
|     | Let $\Delta = D^2 = (x-3)^2 + x^4$                                                  |           |
|     | Now,                                                                                |           |
|     | $\frac{d}{dx}(\Delta) = 2(x-3) + 4x^3 = 4x^3 + 2x - 6$                              | 1/2       |
|     | $\frac{d}{dx}(\Delta) = 0 \Rightarrow x = 1$                                        | 1/2       |
|     | (iii) (a): $\Delta''(x) = 8x^2 + 2$                                                 |           |
|     | Clearly, $\Delta''(x) = 8x^2 + 2 > 0$ at $x = 1$                                    | 1         |
|     | $\therefore$ Value of $x$ for which $D$ will be minimum is 1.                       |           |
|     | For $x = 1, y = 8$ .                                                                |           |
|     | Therefore, required distance = $D = \sqrt{(1-3)^2 + (1)^4} = \sqrt{4+1} = \sqrt{5}$ | 1         |
|     | OR                                                                                  |           |
|     | (iii) (b): $\Delta''(x) = 8x^2 + 2$                                                 | 1         |
|     | Clearly, $\Delta''(x) = 8x^2 + 2 > 0$ at $x = 1$                                    | -         |
|     | ∴ Value of <i>x</i> for which <b>D</b> will be minimum is 1.                        |           |

|     | For $x = 1, y = 8$ .                                                                       | 1     |  |
|-----|--------------------------------------------------------------------------------------------|-------|--|
|     | Thus, the required position for Shivam is $(1,8)$ when he is closest to Manita.            |       |  |
| 37. | (i) Here, time = 25 years                                                                  |       |  |
|     | ∴ Total number of payments = 25×12 = 300                                                   | 1/2   |  |
|     | R = 9% per annum.                                                                          | /2    |  |
|     | Rate of interest per month = $\frac{9}{1200}$ = 0.0075                                     | 1/2   |  |
|     | (ii) (a) Cost of house = ₹2500000                                                          |       |  |
|     | Down Payment = ₹500000                                                                     |       |  |
|     | ∴ Principal amount = ₹(2500000 – 500000)                                                   |       |  |
|     | =₹2000000                                                                                  | 1/2   |  |
|     | <b>EMI</b> (using <i>reducing balance method</i> ) = $\frac{P \times i}{1 - (1 + i)^{-n}}$ |       |  |
|     | 2000000×0.0075                                                                             |       |  |
|     | $=\frac{2000000 \times 0.0075}{1 - \left(1 + 0.0075\right)^{-300}}$                        | 1     |  |
|     | 15000                                                                                      |       |  |
|     | $=\frac{15000}{1-\left(1.0075\right)^{-300}}$                                              |       |  |
|     | 15000                                                                                      |       |  |
|     | $=\frac{15000}{1-(0.1062)}$                                                                |       |  |
|     | $=\frac{15000}{0.8938}=16782.27$                                                           | 1/2   |  |
|     | Hence, monthly payment is ₹16782.27  OR                                                    |       |  |
|     | (ii) (b) Cost of house =₹2500000                                                           |       |  |
|     | Down Payment = ₹500000                                                                     |       |  |
|     | ∴ Principal amount = ₹(2500000 – 500000)                                                   |       |  |
|     | = ₹ 2000000                                                                                | 1/2   |  |
|     | <b>EMI</b> (using <i>flat rate method</i> ) = $P\left(i + \frac{1}{n}\right)$              |       |  |
|     | $=2000000 \left(0.0075 + \frac{1}{300}\right) = 2000000 \left(0.0108333\right)$            | 1     |  |
|     | = ₹21666.66                                                                                | 1/2   |  |
|     | (iii) EMI (using <i>reducing balance method</i> ) = ₹16782.27                              |       |  |
|     | $\therefore  \text{Total interest} = n \times \text{EMI} - P$                              |       |  |
|     | $= 300 \times 16782.27 - 2000000$                                                          | 1/2   |  |
|     | = 3034681                                                                                  | 1/2   |  |
|     | Hence, total interest is ₹3034681                                                          |       |  |
|     | When <b>EMI</b> is calculated by (using <i>flat rate method</i> ), then                    |       |  |
|     | Page 16                                                                                    | of 17 |  |

|     | Total int   | $terest = n \times EMI -$ | $-P = 300 \times 21666.6 - 20000000$ |                                                                   | 1/2 |
|-----|-------------|---------------------------|--------------------------------------|-------------------------------------------------------------------|-----|
|     |             |                           | = ₹4499980                           |                                                                   | 1/  |
| 38. | (i) Let the | e factory P supp          | ply $x$ units per week to depo       | ot <b>A</b> and y units to depot <b>B</b>                         |     |
|     | so that it  | supplies 8-x-             | y units to depot <b>C</b> . Obvious  | $\text{ly } 0 \le x \le 5, 0 \le y \le 5, 0 \le 8 - x - y \le 4.$ |     |
|     | Total tra   | nsportation cost          | (in ₹)                               |                                                                   |     |
|     | =160x       | +100y+150(8-x)            | (x-y)+100(5-x)+120(5-y)              | +100(x+y-4)=10(x-7y+190).                                         | 1   |
|     |             | ·                         | lem can be formulated as a           |                                                                   | •   |
|     |             | linimize  Z = 10(x - x)   |                                      |                                                                   |     |
|     |             | ubject to the cons        | •                                    |                                                                   |     |
|     |             | $x + y \ge 0$             |                                      | ٦                                                                 |     |
|     |             | $x + y \le 3$             | 8,                                   |                                                                   |     |
|     |             | $x \leq 5$ ,              |                                      | <b>-</b>                                                          | 1   |
|     |             | $y \le 5$                 |                                      |                                                                   |     |
|     |             | $x \ge 0, y$              | ≥ 0                                  | J                                                                 |     |
|     | (ii)        |                           |                                      |                                                                   |     |
|     |             | Corner                    | Value of                             |                                                                   |     |
|     |             | Points                    | $Z = 10\left(x - 7y + 190\right)$    |                                                                   |     |
|     |             | A (4,0)                   | 1940                                 |                                                                   |     |
|     |             | B (5,0)                   | 1950                                 |                                                                   | 2   |
|     |             | C (5,3)                   | 1740                                 |                                                                   |     |
|     |             | D (3,5)                   | 1580                                 |                                                                   |     |
|     |             | E (0,5)                   | 1550 →Minimum                        |                                                                   |     |
|     |             | F (0,3)                   | 1690                                 |                                                                   |     |
|     | We obs      | erve that $Z$ is m        | inimum at point $E(0, 5)$ and        | minimum value is ₹ 1550.                                          |     |