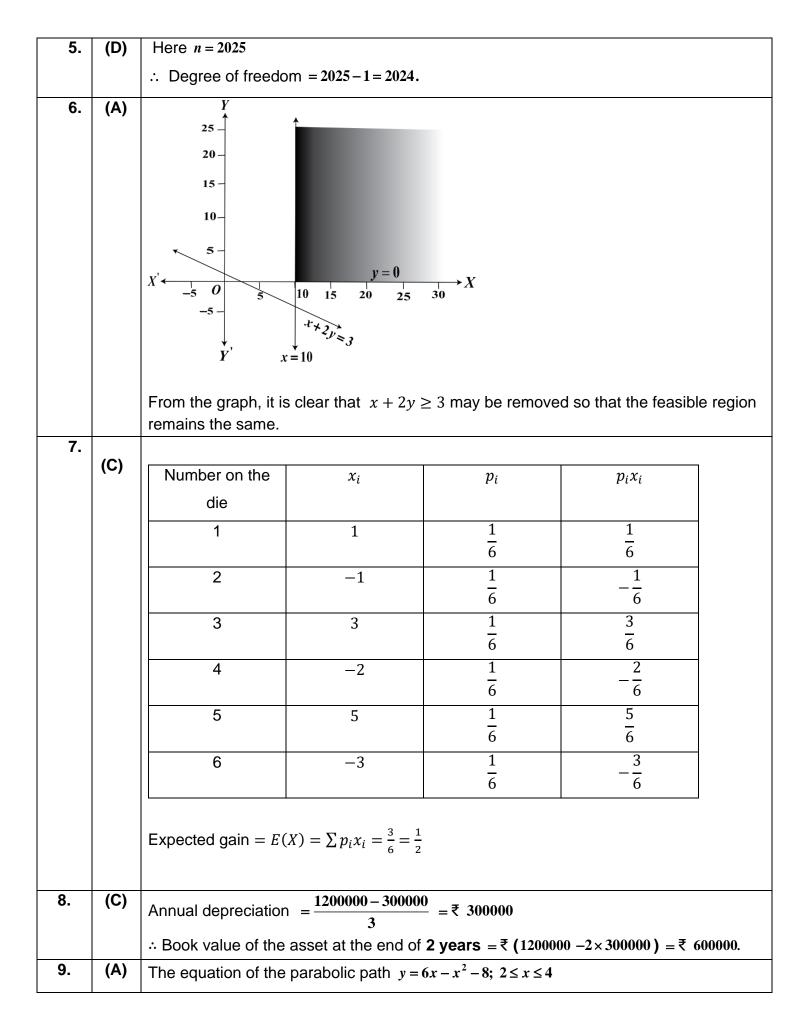
MARKING SCHEME

CLASS XII

APPLIED MATHEMATICS (CODE-241)

SECTION: A (Solution of MCQs of 1 Mark each)

Q		HINTS/SOLUTION
no	ANS	
no.		
1.	(C)	The required area is given by $\left \int_{1}^{4} (\sqrt{x}) dx\right = \left[\frac{\frac{3}{2}}{\frac{3}{2}}\right]_{1}^{4} = \left \frac{2}{3}(8-1)\right = \frac{14}{3}$ squnits.
2.	(A)	Systematic Sampling as it is a type of probability sampling while others are types of non-probability sampling. (When selection of objects from the population is random, then objects of the population have an equal probability i.e., has a known non-zero equal chance of selection. In other words, in probability sampling, sample units are selected at random.)
3.	(A)	The cost function for a manufacturer is given by $C(x) = \frac{x^3}{3} - x^2 + 2x$ (in rupees). The marginal cost function is given by $MC(x) = \frac{dC}{dx} = x^2 - 2x + 2$ MC'(x) = 2x - 2 So, the marginal cost decreases from 0 to 1 and then increases onwards
4.	(C)	$f(x) = 4x - \frac{1}{2}x^{2}$ Being a polynomial function $f(x)$ is differentiable $\forall x \in \left(-2, \frac{9}{2}\right)$ f'(x) = 4 - x. $f'(x) = 4 - x = 0 \Rightarrow x = 4$. For the function $f(x) = 4x - \frac{1}{2}x^{2}$ in the interval $\left[-2, \frac{9}{2}\right]$, the end points are $x = -2 \& x = \frac{9}{2}$ \therefore The absolute minimum value of the function $f(x) = 4x - \frac{1}{2}x^{2}$ in the interval $\left[-2, \frac{9}{2}\right]$ is $\min\left\{f(-2), f(4), f\left(\frac{9}{2}\right)\right\} = \min\left\{-10.8, \frac{63}{2}\right\} = -10.$
		$\operatorname{Min}\left\{f\left(-2\right),f\left(4\right),f\left(\frac{9}{2}\right)\right\} = \operatorname{Min}\left\{-10,8,\frac{63}{8}\right\} = -10.$

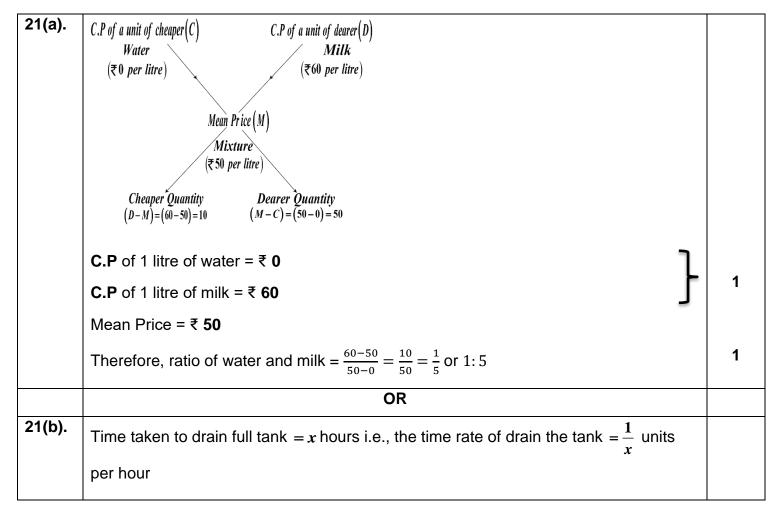


	$\frac{dy}{dx} = 6 - 2x$
	$\implies \frac{dy}{dx_{x=3}} = 6 - 2 \times 3 = 0.$
(B)	This is a binomial distribution with $n = 80, p = 5\% = \frac{1}{20}$. If X is the binomial random
	variable for the number of defectives then X is $B\left(80, \frac{1}{20}\right)$.
	So, $\sigma^2 = npq = 80 \times \frac{1}{20} \times \frac{19}{20} = \frac{19}{5}$.
(C)	$375 \text{ hours} = (24 \times 15 + 15) \text{ hours}$
	$\therefore 375 \pmod{24} = 15$
	Therefore, it will be 9 am after 375 hours.
(B)	$x \in (-1,3) - \{0\} \Rightarrow x \in (-1,0) \cup (0,3)$
	When $x \in (-1,0)$ then $\frac{1}{x} \in (-\infty,-1)$ (<i>i</i>)
	When $x \in (0,3)$ then $\frac{1}{x} \in (\frac{1}{3},\infty)$ (<i>ii</i>)
	From (i) & (ii) , we have $\frac{1}{x} \in (-\infty, -1) \cup (\frac{1}{3}, \infty)$.
(C)	Secular trend variations are considered as long-term variation, attributable to factor
	such as population change, technological progress and large –scale shifts in consumer tastes.
(B)	$R = ₹ 800.$ $i = \frac{4}{200} = 0.02$
	200
	$P = \frac{R}{i} = \frac{800}{0.02} = \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $
(A)	The slope of L_1 at any arbitrary point (x, y) is $\frac{dy}{dx}$.
	The slope of L_2 that connects the point (x, y) to the origin is $\frac{y-0}{x-0} = \frac{y}{x}$
	Now,
	$\frac{dy}{dx} = \frac{1}{3} \times \frac{y}{x}$
	$\therefore \frac{dy}{dx} = \frac{y}{3x}.$
	(C) (B) (B)

16.	(A)	adj A = $2A^{-1} \implies A^{-1} = \frac{1}{2}(adj A)$ $\therefore A = 2$
		Now, $ 3AA^{T} = 3^{3} \times A ^{2} = 108$
17.	(B)	We have, $P = \begin{bmatrix} 3 & 4 \\ -1 & 2 \\ 0 & 1 \end{bmatrix} \& Q^T = \begin{bmatrix} -1 & 2 & 1 \\ 1 & 2 & 3 \end{bmatrix} \Rightarrow Q = \begin{bmatrix} -1 & 1 \\ 2 & 2 \\ 1 & 3 \end{bmatrix}$
		So, $P - Q = \begin{bmatrix} 3 & 4 \\ -1 & 2 \\ 0 & 1 \end{bmatrix} - \begin{bmatrix} -1 & 1 \\ 2 & 2 \\ 1 & 3 \end{bmatrix} = \begin{bmatrix} 4 & 3 \\ -3 & 0 \\ -1 & -2 \end{bmatrix}.$
18.	(B)	order is 2 and degree is 1 .
19.	(A)	Both (A) and (R) are true and (R) is the correct explanation of (A).
20.	(C)	(A) is true but (R) is false.

Section -B

[This section comprises of solution of very short answer type questions (VSA) of 2 marks each]



24(a).	Let <i>X</i> be the random variable denoting the number of workers who catch the disease.	
	Hence, the speed of boat in still water is 10 km/h	
	Solving, we get $x = 10$	1/2
	According to question, $\frac{d}{x-5} = 3 \times \frac{d}{x+5}$	1/2
	Speed downstream = $(x + 5)$ km/h	1⁄2
	Speed upstream = $(x - 5)$ km/h	1/2
	Speed of stream = 5 km/h	
23.	Let the total distance be d km and the speed of boat in still water be x km/h	
	Therefore, B can give a start of $(350-325) = 25m$ to C.	1/2
	When <i>B</i> covers 350 <i>m</i> then <i>C</i> covers $\frac{169}{182} \times 350 = 325m$	1⁄2
	When B covers $182m$ then C covers $169m$	
	$\frac{B}{C} = \frac{A}{C} \times \frac{B}{A} = \frac{200}{169} \times \frac{182}{200} = \frac{182}{169}$	1/2
	$\Rightarrow A : C = 200 : 169$	1/2
	and <i>C</i> covers $(200 - 31) = 169m$	
	then <i>B</i> covers $(200-18)=182m$	
22.	In a 200m race, when A covers 200m	
	Hence, 14 hours are required to drain the full tank.	
	Solving, we get $x = 14$	1/2
	$\left(\frac{1}{2}\right) - \left(\frac{1}{x}\right) = \left(\frac{3}{7}\right)$	1
	Now, according to question,	/2
	The rate of filling the tank along with the leakage will be $=\frac{3}{7}$ units per hour.	1/2
	Again, with the leakage, the pipe takes $2\frac{1}{3} = \frac{7}{3}$ hours to fill the full tank.	
	per hour	
	Time taken to fill the full tank is 2 hours i.e., the time rate of filling the tank $=\frac{1}{2}$ units	

	Given, $p = \frac{20}{100} = \frac{1}{5} \Rightarrow q = \frac{4}{5}$ and $n = 6$	1/2
	Now, $P(X = x) = {}^{6}C_{x} \left(\frac{1}{5}\right)^{x} \left(\frac{4}{5}\right)^{6-x}$, $x = 0, 1,, 6$	
	So, the required probability that out of six workers 4 or more will catch the disease is	
	$P(X \ge 4) = P(X = 4) + P(X = 5) + P(X = 6)$	
	$= {}^{6}C_{4} \left(\frac{1}{5}\right)^{4} \left(\frac{4}{5}\right)^{2} + {}^{6}C_{5} \left(\frac{1}{5}\right)^{5} \left(\frac{4}{5}\right)^{1} + {}^{6}C_{6} \left(\frac{1}{5}\right)^{6} \left(\frac{4}{5}\right)^{0}$	1
	$=\frac{265}{5^6}$ or 0.017.	1/2
	OR	
24(b).	We have, mean $\mu = 12$ and standard deviation $\sigma = 2$, i.e., $X \sim N(\mu, \sigma^2)$	
	(i) Let X denote the count of the months for which this machine lasts.	
	The probability of an item produced by this machine will last less than 7 months is	
	P(X < 7)	
	For $X = 7$, $Z = \frac{7-12}{2} = -\frac{5}{2}$	1/2
	Now,	
	$P(X < 7) = P\left(Z < -\frac{5}{2}\right) = P\left(Z > \frac{5}{2}\right)$	
	$= 1 - P\left(Z < \frac{5}{2}\right) = 1 - 0.9938 = 0.0062$	1/2
	(ii) The probability of an item produced by this machine will last more than 7 months and less than 14 months is $P(7 < X < 14)$	
	For $X = 7$, $Z = \frac{7-12}{2} = -\frac{5}{2}$	
	and for $X = 14, Z = \frac{14 - 12}{2} = 1$	1⁄2
	$P\left(7 < X < 14\right) = P\left(-\frac{5}{2} < Z < 1\right)$	
	$=P\left(Z<1\right)-P\left(Z<-\frac{5}{2}\right)$	
05	= 0.8413 - 0.0062 = 0.8351	1⁄2
25.	Given, $A^2 = B$	

	$\Rightarrow \begin{bmatrix} \alpha & 0 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} \alpha & 0 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 5 & 1 \end{bmatrix}$ $\Rightarrow \begin{bmatrix} \alpha^2 & 0 \\ \alpha + 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 5 & 1 \end{bmatrix}$ $\Rightarrow \alpha^2 = 1 \text{ and } \alpha + 1 = 5.$ Hence, no real value of α exists.	1 1⁄2 1⁄2
17]	<u>Section –C</u> his section comprises of solution short answer type questions (SA) of 3 marks eac	h]
26.	$5 \equiv 5 \pmod{7}$ $\Rightarrow 5^2 \equiv 25 \pmod{7}$ $\Rightarrow 5^2 \equiv 4 \pmod{7}$ $\Rightarrow 5^4 \equiv 4^2 \pmod{7}$	1
	$\Rightarrow 5^{4} \equiv 2 \pmod{7}$ $\Rightarrow 5^{20} \equiv 32 \pmod{7}$ $\Rightarrow 5^{20} \equiv 4 \pmod{7}$ $\Rightarrow 5^{60} \equiv 1 \pmod{7}$	1
	$\Rightarrow 5^{61} \equiv 5 \pmod{7}$ Hence, the remainder when 5^{61} is divided by 7 is 5	1
27(a).	Given,	
	$n_1 = 10, n_2 = 8, \overline{x_1} = 750, \overline{x_2} = 820, s_1 = 12 \& s_2 = 14$	
	Consider, Null hypothesis \mathbf{H}_{0} : Mean life is same for both the batches i.e., $(\mu_{1} = \mu_{2})$.	
	Alternate hypothesis \mathbf{H}_{α} : Two batches have different mean lives i.e., $(\mu_1 \neq \mu_2)$.	
	Test Statistics,	
	$\mathbf{t} = \frac{\overline{x_1} - \overline{x_2}}{\mathbf{S}} \times \sqrt{\frac{n_1 n_2}{n_1 + n_2}},$	
	Where $S = \sqrt{\frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}}$	
	$\Rightarrow S = \sqrt{\frac{9 \times 144 + 7 \times 196}{10 + 8 - 2}}$	1

		1/2
	$=\sqrt{\frac{2668}{16}}=12.91$	
	$\therefore t = \frac{750 - 820}{12.91} \times \sqrt{\frac{10 \times 8}{10 + 8}}$	
	$=\frac{-70}{12.91}\times 2.1081$	
	= -11.430	1
	Since, calculated value $ t = 11.430 >$ tabulated value $t_{16}(0.05) = 2.120$	
	So, rejected the null hypothesis at 5% level of significance.	1/2
	Hence, the mean life for both the batches is not the same.	
	OR	
27(b).	Here, population mean (μ) = 25	
	Sample mean $(\bar{x}) = \frac{\sum x_i}{n} = \frac{138}{6} = 23$	1⁄2
	Sample size $(n) = 6$	
	Consider, Null hypothesis $\mathbf{H}_{\scriptscriptstyle 0}$: There is no significant difference between the sample	
	mean and the population mean i.e., $(\mu_1 = \mu_2)$.	
	Alternate hypothesis \mathbf{H}_{α} : There is no significant difference between the sample mean	
	and the population mean i.e., $(\mu_1 \neq \mu_2)$.	
	Values of $(x_i - \bar{x})^2$ are 1, 9, 49, 9, 9 and 25	
	$\therefore s = \sqrt{\frac{102}{5}} = 4.52$	1
	Now, $t = \frac{\bar{x} - \mu}{\frac{s}{\sqrt{n}}} = \frac{23 - 25}{\frac{4.52}{\sqrt{6}}}$	
	= -1.09	1
	$\Rightarrow t = 1.09$	
	Since, calculated value $ t = 10.763 < \text{tabulated value } t_5(0.01) = 4.132$	
	So, the null hypothesis is accepted.	1⁄2
	Hence, the manufacturer's claim is valid at 1% level of significance.	
28.	Given, mean = λ = 3.2	1/2
	Let X be the number of bicycle riders which use the cycle track.	

	Required probability = $P(X \le 2) = P(X = 0) + P(X = 1) + P(X = 2)$	
	$= \frac{e^{-3.2}(3.2)^0}{0!} + \frac{e^{-3.2}(3.2)^1}{1!} + \frac{e^{-3.2}(3.2)^2}{2!}$	1½
	$= e^{-3.2}(1+3.2+5.12)$	
	$= 0.041 \times 9.32 = 0.618$	1/2
	Also, mean expectation = variance of $X = \lambda = 3.2$	1⁄2
29.	Here, Initial investment value $(IV) = ₹5000$	1/2
	Final investment value (FV) =₹10500	1/2
	No of period $(n) = 3$ (starting from 2021 to 2023)	
	$\Rightarrow r = \left(\frac{FV}{IV}\right)^{\frac{1}{n}} - 1 = \left(\frac{10500}{5000}\right)^{\frac{1}{3}} - 1$	1
	= 1.2805 - 1 = 0.2805	1⁄2
	<i>CAGR</i> = 28.05%	1⁄2
30.	Let the number of necklaces manufactured be x , and the number of bracelets	
	manufactured be y.	
	According to question,	
	$x + y \le 25$ and	
	$\frac{x}{2} + y \le 14$	
	The profit on one necklace is ₹ 100 and the profit on one bracelet is ₹ 300.	
	Let the profit (the objective function) be Z , which has to be maximized.	
	Therefore, required LPP is	
	Maximize $Z = 100x + 300y$	1
	Subject to the constraints	1/2
	$x + y \le 25$	/2
	$\frac{x}{2} + y \le 14$	1
	$x, y \ge 0$	1/2
31(a).	(i) We have, $\sum_{i=1}^{8} P(X=i) = 1$	

	$\Rightarrow p + 2p + 2p + p + 2p + p^{2} + 2p^{2} + 7p^{2} + p = 1$	
	$\begin{array}{c} \cdot \mathbf{r} \cdot -\mathbf{r} \cdot -\mathbf{r} \cdot \mathbf{r} \cdot \mathbf{r} \cdot -\mathbf{r} \cdot \mathbf{r} \cdot \mathbf{r} \cdot \mathbf{r} -\mathbf{r} \\ \end{array}$	1/2
	$\Rightarrow 10p^2 + 9p - 1 = 0$	
	$\Rightarrow (10p-1)(p+1) = 0$ $\Rightarrow p \neq -1$	
	$\Rightarrow p \neq -1$ $\therefore p = \frac{1}{10}$	1
	$p = \frac{1}{10}$	
	(ii) 8 () 8	1/2
	Mean, $E(X) = \sum_{i=1}^{8} i P(X=i)$	/2
	$= 1 \times p + 2 \times p + 3 \times 2p + 4 \times p + 5 \times 2p + 6 \times p^{2} + 7 \times 2p^{2} + 8 \times (7p^{2} + p)$	1⁄2
	$= 33p + 76p^2$	
	$=\frac{33}{10}+\frac{76}{100}=\frac{203}{50}$	1⁄2
	OR	
31(b).	We have, $p = 0.01 = \frac{1}{100} \Rightarrow q = \frac{99}{100}$	1/2
	Let number of Bernoulli trials be n .	
	Now, the binomial distribution formula is for any random variable (X) is given by	
	$P(X = x) = {}^{n} C_{x} \left(\frac{1}{100}\right)^{x} \left(\frac{99}{100}\right)^{n-x}$	
	So, the probability of at least one success is	
	$P(X \ge 1) = 1 - P(X = 0) = 1 - {^n C_0} \left(\frac{1}{100}\right)^0 \left(\frac{99}{100}\right)^n = 1 - \left(\frac{99}{100}\right)^n$	1
	According to condition, $P(X \ge 1) \ge 0.5 \Rightarrow 1 - \left(\frac{99}{100}\right)^n \ge 0.5 \Rightarrow \left(\frac{99}{100}\right)^n \le 0.5$	1/2
	$\Rightarrow n \log_{10} \frac{99}{100} \le \log_{10} 0.5 \Rightarrow n \ge \frac{\log_{10} 0.5}{\log_{10} 0.99}; (as \log_{10} 0.99 < 0)$	1/2
	[Using log ₁₀ 2 = 0.3010 and log ₁₀ 99 = 1.9956] ⇒ $n \ge 68.409 \Rightarrow n = 69$ [∵ $n \in \mathbb{N}$].	1⁄2

[This section comprises of solution of long answer type questions (LA) of 5 marks each]

2(a).	Here, number o	of observations Production	$n = 11(odd numb)$ $x = t_i - 1967$	er) x ²	223	
		(y)	$x = t_i = 1907$	X	xy	
	1962	2	-5	25	-10	
	1963	4	-4	16	-16	
	1964	3	-3	9	-9	
	1965	4	-2	4	-8	
	1966	4	-1	1	-4	
	1967	2	0	0	0	
	1968	4	1	1	4	
	1969	9	2	4	18	2 marks
	1970	7	3	9	21	for
	1971	10	4	16	40	correct
	1972	8	5	25	40	table
	Total	$\sum y = 57$	$\sum x = 0$	$\sum x^2 = 110$	$\sum xy = 76$	
	Since, $\sum c$ we have <i>a</i> Therefore, the	x = 0 i.e., deviat $= \frac{\sum y}{n} = \frac{57}{11} = 5.1$ required equation	ion from actual b 8, $b = \frac{\sum xy}{\sum x^2} = \frac{7}{11}$			1
	The trend value 1.73, 2.42, 3	es are .11, 3.8, 4.49, 5.1	8, 5.87, 6.56, 7.2	5, 7.94, 8.63		2
			OR			
2(b).	Yearly/	Small scale	4-quarterly	4-quarterly	 4-year centered 	
	Quarterly	industry	moving total		moving average	
		39		1		11

	II	47					
		20	162	40.5		1½ marks	
202			191	47.75	44.125	each for	
	IV	56	203	50.75	49.25	3 rd and 4 th	
	I	68	249	62.25	56.5	column	
	II	59	265	66.25	64.25	2 marks	
202	21	66	285	71.25	68.75	for last column	
	IV	72	286	71.5	71.375		
	I	88	280	70.00	7 0.75		
	II	60	275	68.75	69.375		
202	2	60	215	00.75			
	IV	67					
		ugh the points	(1,2), (2,1) and ((4,5) . So, it must s	atisfy the given		
	equation						
	Therefore, 2 = a + b + c						
1 = 4a	+2b+c					1	
5 = 16	a+4b+c				L		
Now,	$D = \begin{vmatrix} 1 & 1 \\ 4 & 2 \\ 16 & 4 \end{vmatrix}$	$\begin{vmatrix} 1 \\ 1 \\ 1 \end{vmatrix} = 1(2-4) - 1$	-1(4-16)+1(16-	$32) = -6 \neq 0$		1⁄2	
$D_a =$	$\begin{vmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 5 & 4 & 1 \end{vmatrix} = 2($	2-4)-1(1-5)	+1(4-10) = -6			1/2	
			16) + 1(20 - 16) = 2	24		1/2	
1							

	and $D_c = \begin{vmatrix} 1 & 1 & 2 \\ 4 & 2 & 1 \\ 16 & 4 & 5 \end{vmatrix} = 1(10-4) - 1(20-16) + 2(16-32) = -30$	1/2
	$\therefore a = \frac{D_a}{D} = \frac{-6}{-6} = 1; , b = \frac{D_b}{D} = \frac{24}{-6} = -4, , c = \frac{D_c}{D} = \frac{-30}{-6} = 5$	1½
	Therefore, equation of the curve is $y = x^2 - 4x + 5$	
	When owl is sitting at $(0,k)$ then $x = 0 \Rightarrow k = 5$	1/2
	OR	
33(b).	(i) $s(t) = at^2 + bt + c ; t \ge 0$	
	Clearly, $(10,16)$, $(20,22)$, $(30,25)$ lie on the curve of $s(t)$. Then, $100a + 10b + c = 16$ 400a + 20b + c = 22 900a + 30b + c = 25	1
	(ii) Let, $A = \begin{pmatrix} 100 & 10 & 1 \\ 400 & 20 & 1 \\ 900 & 30 & 1 \end{pmatrix}; X = \begin{pmatrix} a \\ b \\ c \end{pmatrix}; B = \begin{pmatrix} 16 \\ 22 \\ 25 \end{pmatrix}$	1/2
	Then, the system becomes, $AX = B$	
	A = 100(-10) - 400(-20) + 900(-10) = -1000 + 8000 - 9000	
	$= -2000 \neq 0$	1/2
	Now, $adjA = \begin{pmatrix} -10 & 500 & -6000 \\ 20 & -800 & 6000 \\ -10 & 300 & -2000 \end{pmatrix}^T = \begin{pmatrix} -10 & 20 & -10 \\ 500 & -800 & 300 \\ -6000 & 6000 & -2000 \end{pmatrix}$	1
	Therefore, $A^{-1} = \frac{1}{ A } (adjA) = \frac{1}{-2000} \begin{pmatrix} -10 & 20 & -10 \\ 500 & -800 & 300 \\ -6000 & 6000 & -2000 \end{pmatrix}$	1/2

	Then, $X = A^{-1}B = \frac{1}{-2000} \begin{pmatrix} -10 & 20 & -10 \\ 500 & -800 & 300 \\ -6000 & 6000 & -2000 \end{pmatrix} \begin{pmatrix} 16 \\ 22 \\ 25 \end{pmatrix}$ $= \frac{1}{-2000} \begin{pmatrix} 30 \\ -2100 \\ -14000 \end{pmatrix}$ $= \begin{pmatrix} -\frac{3}{200} \\ \frac{21}{20} \\ 7 \end{pmatrix}$ Therefore, $a = -\frac{3}{200}, b = \frac{21}{20}, c = 7.$	1½
34.	Let us consider demand function be $p = D(x) = ax + b$ (<i>i</i>)	
	When $x = 25$ then $p = 20000$	
	From equation (i), we have $20000 = 25a + b$ (ii)	1/2
	And when $x = 125$ then $p = 15000$	
	From equation (i), we have $15000 = 125a + b$ (ii)	1⁄2
	On solving equations (i) and (ii), we get $a = -50$ and $b = 21250$	1
	Therefore, demand function, $p = D(x) = -50x + 21250$	1⁄2
	For equilibrium point $D(x_0) = S(x_0)$	
	$\Rightarrow -50x_0 + 21250 = 100x_0 + 7000$	
	$\Rightarrow -150x_0 = -14250$	
	$\Rightarrow x_0 = 95$	1⁄2
	On putting value of x_0 in demand function and supply function, we get	
	$p_0 = 16500$	1/2

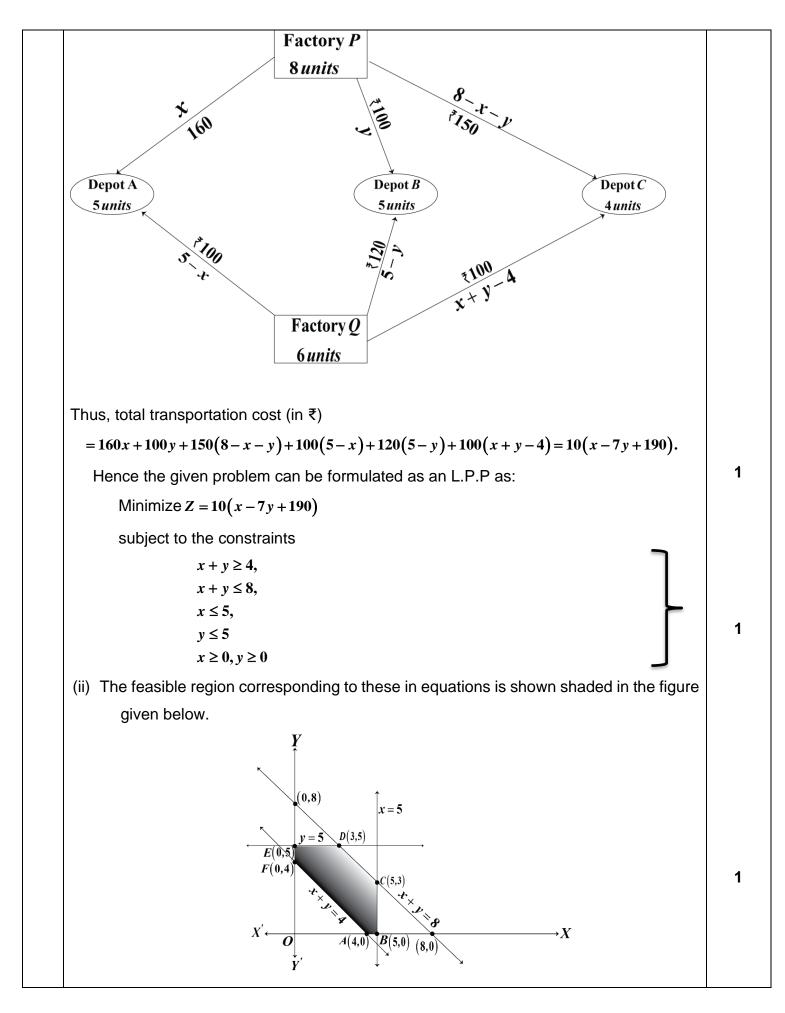
	∴ Consumer surplus (<i>CS</i>)	
	$=\int_0^{x_0}D(x)dx-p_0x_0$	
	$=\int_{0}^{95} (-50x + 21250) dx - 16500 \times 95$	1
	$= \left(-50\frac{x^2}{2} + 2150x\right)_0^{95} - 1567500$	
	= 1793125 - 1567500	
	=₹ 225625	1/2
35.	Amount needed after 4 years	
	= Replacement Cost - Salvage Cost = ₹ (55,200 – 72 00) = ₹ 48,000	1
	The payments into sinking fund consisting of 10 annual payments at the rate 7% per	
	year is given by	
	$A = RS_{\overline{n} i} = R\left[\frac{\left(1+i\right)^n - 1}{i}\right]$	
	$\Rightarrow 48000 = R\left[\frac{\left(1+0.07\right)^4 - 1}{0.07}\right] = R\left[\frac{\left(1.07\right)^4 - 1}{0.07}\right]$	
	$\Rightarrow R = \frac{48000}{4.4385} = ₹10814.5$	2
	Amount of Annual Depreciation = $\frac{36000-7200}{4} = \frac{28800}{4} = ₹7200$	1
	and rate of Depreciation = $\frac{7200}{36000 - 7200} \times 100 = 25\%$	1
	Section –E	

<u>Section –E</u>

[This section comprises solution of 3 case- study/passage-based questions of 4 marks each with two sub parts. Solution of the first two case study questions have three sub parts (i),(ii),(iii) of marks 1,1,2 respectively. Solution of the third case study question has two sub parts of 2 marks each.]

36.	(i) For all values of $x, y = x^2 + 7$	
	: Shivam's position at any point of x will be $(x, x^2 + 7)$	
	The measure of the distance between Shivam and Manita, i.e., D	
	$D = \sqrt{(x-3)^2 + (x^2+7-7)^2} = \sqrt{(x-3)^2 + x^4}$	¹ ⁄ ₂ + ¹ ⁄ ₂
	(ii) We have,	
	$D = \sqrt{\left(x-3\right)^2 + x^4}$	
	Let $\Delta = D^2 = (x-3)^2 + x^4$	
	Now,	
	$\frac{d}{dx}(\Delta) = 2(x-3) + 4x^3 = 4x^3 + 2x - 6$	1⁄2
	$\frac{d}{dx}(\Delta) = 0 \Longrightarrow x = 1$	1/2
	(iii) (a): $\Delta''(x) = 8x^2 + 2$	
	Clearly, $\Delta''(x) = 8x^2 + 2 > 0$ at $x = 1$	1
	\therefore Value of x for which D will be minimum is 1.	
	For $x = 1, y = 8$.	
	Therefore, required distance = $D = \sqrt{(1-3)^2 + (1)^4} = \sqrt{4+1} = \sqrt{5}$	1
	OR	
	(iii) (b): $\Delta''(x) = 8x^2 + 2$	
	Clearly, $\Delta''(x) = 8x^2 + 2 > 0$ at $x = 1$	1
	\therefore Value of x for which D will be minimum is 1.	
	For $x = 1, y = 8$.	1
	Thus, the required position for Shivam is $(1, 8)$ when he is closest to Manita.	
37.	(i) Here, time = 25 years	
	Total number of payments = $25 \times 12 = 300$ R = 9% per annum.	1⁄2
	Rate of interest per month = $\frac{9}{1200}$ = 0.0075	1/2
	1200 (ii) (a) Cost of house =₹2500000	
	Down Payment =₹500000	

	∴ Principal amount = ₹(2500000 – 500000)	
	=₹2000000	1/2
	EMI (using <i>reducing balance method</i>) = $\frac{P \times i}{1 - (1 + i)^{-n}}$	
	$=\frac{2000000\times0.0075}{1-(1+0.0075)^{-300}}$	1
	$=\frac{15000}{1-(1.0075)^{-300}}$	
	$=\frac{15000}{1-(0.1062)}$	
	$=\frac{15000}{0.8938}=16782.27$	1/2
	Hence, monthly payment is ₹16782.27 OR	
	 (ii) (b) Cost of house =₹2500000 Down Payment =₹500000 	
	∴ Principal amount =₹(2500000-500000)	
	=₹2000000	1⁄2
	EMI (using <i>flat rate method</i>) = $P\left(i + \frac{1}{n}\right)$	
	$= 200000 \left(0.0075 + \frac{1}{300} \right) = 2000000 \left(0.0108333 \right)$	1
	= ₹21666.66	1/2
	(iii) EMI (using <i>reducing balance method</i>) = ₹16782.27 ∴ Total interest = $n \times \text{EMI} - P$	
	$= 300 \times 16782.27 - 2000000$ = 3034681	1/2 1/2
	Hence, total interest is ₹ 3034681 When EMI is calculated by (using <i>flat rate method</i>), then Total interest = $n \times EMI - P = 300 \times 21666.6 - 2000000$	
	$10tar \text{ interest} = n \times Emi - r = 300 \times 21000.0 - 2000000$ $= ₹ 4499980$	1/2
20		1⁄2
38.	(i) Let the factory P supply x units per week to depot A and y units to depot B	
	so that it supplies $8 - x - y$ units to depot C . Obviously $0 \le x \le 5, 0 \le y \le 5, 0 \le 8 - x - y \le 4$.	
	The given data can be represented diagrammatically as:	



	Corner Points	Value of $Z = 10(x - 7y + 190)$	
	A (4,0)	1940	
	B (5,0)	1950	
	C (5,3)	1740	
	D (3,5)	1580	
	E (0,5)	1550 →Minimum	
	F (0,3)	1690	
We obse	rve that Z is m	inimum at point $E(0, 5)$ and	d minimum value is ₹ 1550.
Hence x =	= 0, y = 5. Thus t	for minimum transportation	cost, factory P should supply 0, 5, 3
units to de	epots A, B, C re	espectively and factory Q sh	nould supply 5, 0, 1 units respectively
to depots	A, B, C.		