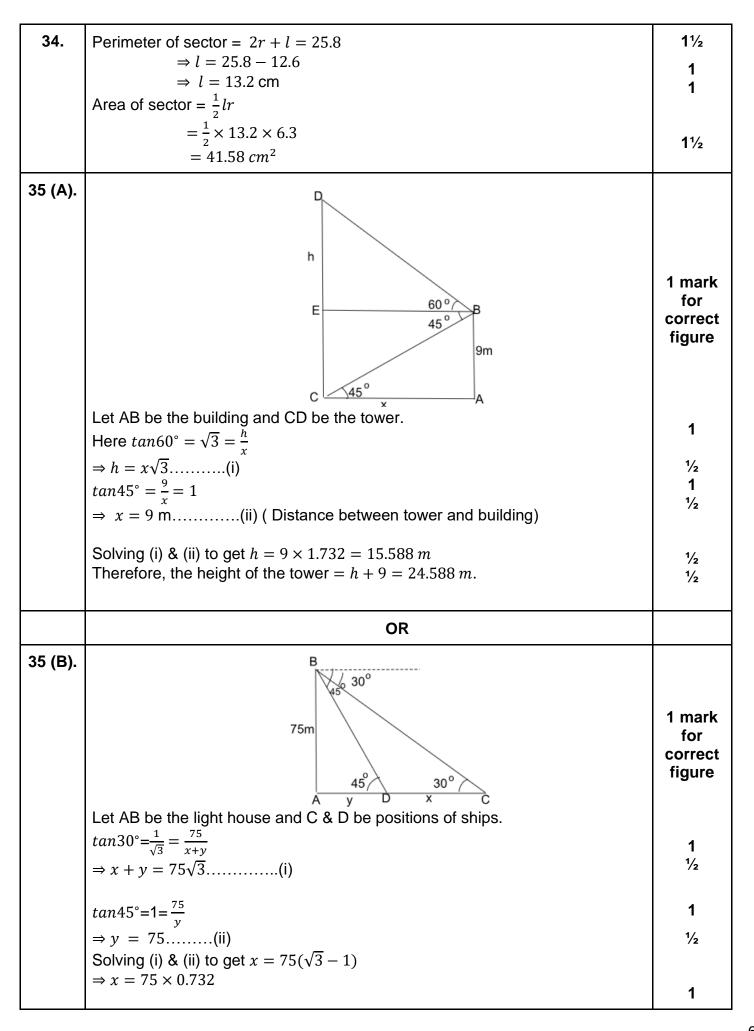
Marking Scheme Class X Session 2024-25 MATHEMATICS BASIC (Code No.241) (For Visually Impaired)

TIME: 3 hours

MAX.MARKS: 80


Q. No.	Section A	Marks
1.	B) 90	1
2.	C) either intersecting or coincident	1
3.	D) 7	1
4.	C) 2 $\sqrt{a^2 + b^2}$	1
5.	D) 145°	1
6.	D) 15 cm	1
7.	A) $\frac{5}{4}$	1
8.	B) Similar but not congruent	1
9.	C) 3780	1
10.	B) 40	1
11.	D) $\frac{2}{3}$	1
12.	D) $\sqrt{119}$ cm	1
13.	A) cos 60°	1
14.	(C) $3\pi r^2$	1
15.	D) 4	1
16.	B) real and equal	1
17.	C) 30 - 40	1
18.	D) $25x^2 - 5x - 2$	1
19.	 A) Both assertion (A) and reason (R) are true and reason (R) is the correct explanation of assertion (A) 	1
20.	C) Assertion (A) is true but reason (R) is false.	1

				Section	R				
21(A).	$PA^2 = PB^2$	2		Occion					
().	$ \Rightarrow (x-4)^2 + (y-3)^2 = (x-3)^2 + (y-4)^2 \Rightarrow x = y or x - y = 0 $						1 1		
					OR				
21 (B).	Let the points be A(-4, -1), B(-2, -4), C(4, 0) and D(2,3) Mid-point of AC = $\left(\frac{-4+4}{2}, \frac{-1+0}{2}\right) = \left(0, -\frac{1}{2}\right)$ Mid-point of BD = $\left(\frac{-2+2}{2}, \frac{-4+3}{2}\right) = \left(0, -\frac{1}{2}\right)$ Since mid-points of AC and BD are same \therefore ABCD is a parallelogram (as diagonals of parallelogram bisect each other)						1 1⁄2 1⁄2		
22.		В							
	$A \longrightarrow B$ AM = 4 cm						1/2		
	$OM = \sqrt{O2} = \sqrt{5^2}$	$\frac{A^2 - A}{2^2 - 4^2}$	M^2						1/2
	= 3 ci								1
23 (A).	$\frac{\frac{12}{2}}{2}[2 \times 20 + 11d] = 900$ $\Rightarrow d = 10$ Also $a_{12} = 20 + 11 \times 10 = 130$						1⁄2 1 1⁄2		
					OR				
23 (B).	Putting $n = 1$, $S_1 = a = 6 - 1^2 = 5$ (<i>i</i>) Putting $n = 2$, $S_2 = 2a + d = 6 \times 2 - 2^2 = 8$ (<i>ii</i>) Solving (i) & (ii) $d = -2$							1/2 1 1/2	
24.	$sin(A - B) = \frac{1}{2} \implies A - B = 30^{\circ} \dots (i)$ $cos(A + B) = \frac{1}{2} \implies A + B = 60^{\circ} \dots (ii)$ Solving (i) & (ii) to get $A = 45^{\circ}, B = 15^{\circ}$							1/2 1/2 1/2+1/2	
25.	Class	5-10	10-15	15-20	20-25	25-30	30-35		
	Frequency	5	6	15	10	5	4		
		1					<u> </u>		

	Modal class is 15-20. $Mode = 15 + 5 \times (\frac{15-6}{2 \times 15-6-10})$ = 18.21(approx.)	1/2 1 1/2				
	Section-C					
26	Let $\sqrt{5}$ be a rational number.					
	$\therefore \sqrt{5} = \frac{p}{q}$, where q≠0 and p & q are coprime.					
	$5q^2 = p^2 \Longrightarrow p^2$ is divisible by 5					
	\Rightarrow p is divisible by 5 (i)	1				
	\Rightarrow p = 3a, where 'a' is a postive integer					
	$25a^2 = 5q^2 \Longrightarrow q^2 = 5a^2 \Longrightarrow q^2$ is divisible by 5					
	\Rightarrow q is divisible by 5 (ii)	1				
	(i) and (ii) leads to contradiction as 'p' and 'q' are coprime.	1/2				
	$\therefore \sqrt{5}$ is an irrational number.					
27(A).	Let the required point on the y axis be P(0,y).	1⁄2				
	$\frac{1}{B(-1,2)}$ Let AP : PB be k : 1 Therefore, $\frac{-k+4}{k+1} = 0$ $\Rightarrow k=4$ Therefore, required ratio is 4:1 & $y = \frac{8-5}{5} = \frac{3}{5}$ Hence point of intersection is $(0, \frac{3}{5})$.	1 1/2 1/2 1/2				
	OR					
27 (B).	Let the line $4x + y = 4$ intersects AB at $P(x_1, y_1)$ such that AP: PB= k :1 4x+y=4 $A(-2,-1)$ P $B(3,5)$					

	$x_1 = \frac{3k-2}{k+1}$ and y					1	
	(x_1, y_1) lies on $4x + y = 4$						
	Therefore, $4(\frac{3k-2}{k+1}) + (\frac{5k-1}{k+1}) = 4$						
	\Rightarrow k=1	\Rightarrow k=1					
	Required ratio is 7	1:1				1/2	
28.	LHS= $\left(\frac{1}{sinA} - s\right)$		sA)			1/2	
	$=\frac{1-\sin^2 A}{\sin A} \times$	$\frac{1-\cos^2 A}{\cos A}$				1	
	$=\frac{\cos^2 A}{\sin A} \times \frac{\sin A}{\cos A}$						
	$=\cos A \sin A$ RHS = $\frac{\cos A \sin A}{\sin^2 A + \cos^2 A}$					1/2	
		nA = LHS				1	
29.							
	Class	Х	frequency(f)	$u = \frac{x - 25}{10}$	fu		
	0-10	5	6	-2	-12		
	10-20	15	10	-1	-10		
	20-30	25	15	0	0		
	30-40	35	9	1	9	Correct table	
	40-50	45	10	2	20	$1\frac{1}{2}$	
			∑ <i>f</i> =50		$\sum fu = 7$		
	$Mean = 25 + 10 \times \left(\frac{7}{50}\right) = 26.4$						
30 (A).	(i) $\triangle OAP \cong \triangle OBP$ ∠APO = ∠BPO	A		P			
	Or OP bisects $\angle P$					1	
	(ii) $\Delta AQP \cong \Delta BQP$ ⇒AQ=QB and ∠A	$AQP = \angle BQP$				1	

	AB is a straight line therefore $\angle AQP = \angle BQP = 90^{\circ}$ Hence OP is right bisector of AB	1
	OR	
30 (B).	Correct Given, to prove and construction Correct proof	1 2
31.	Let the two-digit number be $10x + y$ Therefore $(10x + y) + (10y + x) = 99$ $\Rightarrow x + y = 9$ (i) Also, $x = 3 + y$ (ii) Solving (i) & (ii) to get $y = 3, x = 6$ Therefore, required number is 63	1/2 1/2 1/2 1/2 1/2 1/2 1/2
	Section D	
32 (A).	Let the number of books purchased be x Therefore, cost price of 1 book = $\frac{1920}{x}$ Therefore $\frac{1920}{x} - \frac{1920}{x+4} = 24$ $\Rightarrow 1920 \times 4 = 24x(x+4)$ or $x^2 + 4x - 320 = 0$ $\Rightarrow (x + 20)(x - 16) = 0$	1 1 1
	$\Rightarrow x = 16, x \neq -20$ Number of books bought=16 Price of each book = $\frac{1920}{16}$ = ₹120	1 1
	OR	
32 (B).	Let the initial average speed of the train be x km/hr. Therefore $\frac{132}{x} + \frac{140}{x+4} = 4$ $\Rightarrow 4x^2 - 256x - 528 = 0$	1
	or $x^2 - 64x - 132 = 0$ $\Rightarrow (x - 66)(x + 2) = 0$ $\Rightarrow x = 66, x \neq -2$ Initial average speed of train= 66 km/hr	1
	Time taken to cover the distances separately = $\frac{132}{66}$ & $\frac{140}{70}$ i.e. 2 hours each	1
33.	Correct Given, to prove and construction Correct Proof	$\frac{\frac{1}{2} \times}{3=1\frac{1}{2}}$ $3\frac{1}{2}$

	= 54.9 m	
	Distance between the ships is 54.9 m Section E	
36.	(i) Number of students who do not prefer to walk = $200-120 = 80$	1/2
	P (selected student doesn't prefer to walk) = $\frac{80}{200}$ or $\frac{2}{5}$	1⁄2
	(ii) Total number of students who prefer to walk or use bicycle = $120 + 50$ = 170	1/2
	P (selected student prefers to walk or use bicycle) = $\frac{170}{200}$ or $\frac{17}{20}$	1/2
	(iii) (A) 50% of walking students who used bicycle = 60Number of students who already use bicycle = 50	1/2 1/2
	P (selected student uses bicycle) = $\frac{110}{200}$ or $\frac{11}{20}$ OR	1
	(B) Number of students who preferred to be dropped by car = $200 - (120 + 50 + 20)$ = 10 students	1
	P (selected student is dropped by car) = $\frac{10}{200}$ or $\frac{1}{20}$	1
37.	(i) $a > 0$ and $a \in R$	1
	(ii) $x^2 - Sx + P$ (where $S = -1, P = -2$) = $x^2 + x - 2$	1
	(iii) (A) $(k-2)(-1)^2 - 2(-1) - 5 = 0$ Solving, we get $k = 5$	1 1
	OR OR	¹ / ₂ + ¹ / ₂
	(B) $\alpha + \beta = 7, \alpha\beta = 12$ Now, $\frac{1}{\alpha} + \frac{1}{\beta} = \frac{\beta + \alpha}{\alpha\beta} = \frac{7}{12}$	1
38.	Given, height of cylinder = $h = 12$ cm radius of cylinder = 3 cm slant height of cone = 5 cm	
	(i) Let x be the height of cone	1/2
	$x^{2} + 3^{2} = 5^{2}$ $\Rightarrow x = 4 \text{ cm}$	1/2
	(ii) Curved surface area of cylinder	
	$= 2\pi rh$	1/2
	$= 2 \times 3.14 \times 3 \times 12$ $= 226.08 \ cm^2$	1/2
	(iii) (A) Curved surface area of the cone	

$=\pi r l$	
$= 3.14 \times 3 \times 5$	1⁄2
$= 47.1 \ cm^2$	
Area of the base circle = $3.14 \times 3^2 = 28.26 \ cm^2$	1⁄2
So, total surface area of the toy = CSA of cylinder + CSA of cone + area of base circle	1⁄2
$= (226.08 + 47.1 + 28.26) cm^{2}$ $= 301.44 cm^{2}$	1⁄2
OR	
(B) Combined volume of the toy	
= volume of cone + volume of cylinder	1⁄2
$=\frac{1}{3}\pi r^2 x + \pi r^2 h$	
$= \pi \times r^2 \left(\frac{1}{3} \times 4 + 12\right) cm^3$	1/2
$= 3.14 \times 9 \times \frac{40}{3} \ cm^3$	1/2
5	1/2
$= 376.8 \ cm^3$,2