Marking Scheme Class X Session 2023-24 MATHEMATICS STANDARD (Code No.041)

TIME: 3 hours

MAX.MARKS: 80

	SECTION A	
	Section A consists of 20 questions of 1 mark each.	
1.	(b) xy ²	1
2.	(b) 1 zero and the zero is '3'	1
3.	(b) $\frac{a_1}{a_2} = \frac{b_1}{b_2} \neq \frac{c_1}{c_2}$	1
4.	(c) 2 distinct real roots	1
5.	(c) 7	1
6.	(a) 1:2	1
7.	(d) infinitely many	1
8.	(b) $\frac{ac}{b}$	1
	b+c	
9.	(b) 100°	1
10.	(d) 11 cm	1
11.	$\sqrt{b^2-a^2}$	1
	(c) $$	
12.	(d) cos A	1
13.	(a) 60°	1
14.	(a) 2 units	1
15.	(a) 10m	1
16.	$4-\pi$	1
	$(b) \frac{4}{4}$	
17.	(b) $\frac{22}{46}$	1
18.	(d) 150	1
18.	(a) Both assertion (A) and reason (R) are true and reason (R) is the correct explanation of	1
19.	assertion (A)	
20.	(c) Assertion (A) is true but reason (R) is false.	1
	SECTION B	
	Section B consists of 5 questions of 2 marks each.	
21.	Let us assume, to the contrary, that $\sqrt{2}$ is rational.	
	So, we can find integers a and b such that $\sqrt{2} = \frac{a}{b}$ where a and b are coprime.	1⁄2
	So, b $\sqrt{2}$ = a.	
	Squaring both sides,	
	we get $2b^2 = a^2$.	1/2
	Therefore, 2 divides a^2 and so 2 divides a.	72
	So, we can write a = 2c for some integer c.	
	Substituting for a, we get $2b^2 = 4c^2$, that is, $b^2 = 2c^2$.	1/2
	This means that 2 divides b ² , and so 2 divides b	
	Therefore, a and b have at least 2 as a common factor.	
	But this contradicts the fact that a and b have no common factors other than 1.	1⁄2
	This contradiction has arisen because of our incorrect assumption that $\sqrt{2}$ is rational.	
	So, we conclude that $\sqrt{2}$ is irrational.	

22.	ABCD is a parallelogram. AB = DC = a D D C C C D C C D C C	1⁄2
	Point P divides AB in the ratio 2:3 $AP = \frac{2}{5}a$, $BP = \frac{3}{5}a$	
	point Q divides DC in the ratio 4:1.	1/2
	$DQ = \frac{4}{5}a$, $CQ = \frac{1}{5}a$	72
	$\Delta APO \sim \Delta CQO [AA similarity]$	1/2
	$\frac{AP}{CQ} = \frac{PO}{QO} = \frac{AO}{CO}$	
	$\frac{AO}{CO} = \frac{\frac{2}{5}a}{\frac{1}{2}a} = \frac{2}{1} \implies OC = \frac{1}{2}OA$	1⁄2
	$\frac{1}{CO} = \frac{1}{\frac{1}{5}a} = \frac{1}{1} \implies OC = \frac{1}{2}OA$	
23.	$DA = DD \cdot CA = CE \cdot DE = DD [Tengente to a circle]$	1/
	PA = PB; CA = CE; DE = DB [Tangents to a circle] Perimeter of \triangle PCD = PC + CD + PD	1⁄2
	= PC + CE + ED + PD $= PC + CA + BD + PD$	
	= PC + CA + BD + PD $= PA + PB$	1
	Perimeter of $\triangle PCD = PA + PA = 2PA = 2(10) = 20$ cm	1⁄2
24.	$\therefore \tan(A+B) = \sqrt{3} \therefore A+B = 60^0 \qquad \dots (1)$	1⁄2
	$\therefore \tan(A - B) = \frac{1}{\sqrt{3}} \therefore A - B = 30^0 \qquad(2)$	1/2 1/2
	Adding (1) & (2), we get $2A=90^{0} \implies A = 45^{0}$ Also (1) –(2), we get $2B = 30^{0} \implies B = 45^{0}$	1/2
	[or]	
	$2\csc^2 30 + x\sin^2 60 - \frac{3}{4}\tan^2 30 = 10$	
	$\Rightarrow 2(2)^2 + x \left(\frac{\sqrt{3}}{2}\right)^2 - \frac{3}{4} \left(\frac{1}{\sqrt{3}}\right)^2 = 10$	1
	$\Rightarrow \qquad 2(4) + x\left(\frac{3}{4}\right) - \frac{3}{4}\left(\frac{1}{3}\right) = 10$	1⁄2
	$\Rightarrow \qquad 8 + x \left(\frac{3}{4}\right) - \frac{1}{4} = 10$	
	$\Rightarrow \qquad 32 + x (3) -1 = 40$ $\Rightarrow \qquad 3x = 9 \Rightarrow x = 3$	1⁄2
25.	$\Rightarrow 3x = 9 \Rightarrow x = 3$ Total area removed = $\frac{\angle A}{360} \pi r^2 + \frac{\angle B}{360} \pi r^2 + \frac{\angle C}{360} \pi r^2$	1⁄2
	$= \frac{\frac{2A+2B+2C}{360}}{\frac{180}{360}} \pi r^2$ = $\frac{180}{360} \pi r^2$	
	$=\frac{180}{360}\pi r^2$	1⁄2
	$=\frac{180}{360} X \frac{22}{7} X (14)^2 $ ¹ / ₂	1/2
	$= 308 \text{ cm}^2$	
	[or]	
	The side of a square = Diameter of the semi-circle = a	
	Area of the unshaded region = Area of a square of side 'a' + 4(Area of a semi-circle of diameter 'a')	1⁄2
	The horizontal/vertical extent of the white region = 14-3-3 = 8 cm	1⁄2
	Radius of the semi-circle + side of a square + Radius of the semi-circle = 8 cm	1

	2 (radius of the semi-circle) + side of a square = 8 cm	
	$2a = 8 \text{ cm} \Rightarrow a = 4 \text{ cm}$	1/2
	Area of the unshaded region	
	= Area of a square of side 4 cm + 4 (Area of a semi-circle of diameter 4 cm)	
	$= (4)^{2} + 4 X \frac{1}{2} \pi (2)^{2} = (16 + 8\pi) \text{ cm}^{2}$	1⁄2
	SECTION C	
	Section C consists of 6 questions of 3 marks each	
26.	Number of students in each group subject to the given condition = HCF (60,84,108)	1/2
	HCF (60,84,108) = 12	1⁄2
	Number of groups in Music = $\frac{60}{12}$ = 5	1/
		1/2
	Number of groups in Dance = $\frac{84}{12}$ = 7	1/2
	Number of groups in Handicrafts = $\frac{108}{12}$ = 9	1/2 1/2
	Total number of rooms required = 21	72
27.	$P(x) = 5x^2 + 5x + 1$	1/2
27.	-b -5	12
	$\alpha + \beta = \frac{1}{a} = \frac{1}{5} = -1$	1/2
	$\alpha\beta = \frac{c}{c} = \frac{1}{c}$	1/2
	$\alpha + \beta = \frac{-b}{a} = \frac{-5}{5} = -1$ $\alpha \beta = \frac{c}{a} = \frac{1}{5}$ $\alpha^{2} + \beta^{2} = (\alpha + \beta)^{2} - 2\alpha\beta$	
	u' + p'' = (u + p) - 2up	1⁄2
	$=(-1)^2 - 2\left(\frac{1}{5}\right)$	1/
	$= 1 - \frac{2}{5} = \frac{3}{5}$ $\alpha^{-1} + \beta^{-1} = \frac{1}{\alpha} + \frac{1}{\beta}$	1/2
		1/2
	$\alpha^{-1} + \beta^{-1} = \frac{-}{\alpha} + \frac{-}{\beta}$	72
	$\begin{pmatrix} \alpha & \beta \\ (\alpha+\beta) & (-1) \end{pmatrix}$	
	$=\frac{(\alpha+\beta)}{\alpha\beta}=\frac{(-1)}{\frac{1}{\pi}}=-5$	
28.	Let the ten's and the unit's digits in the first number be x and y, respectively.	
20.	So, the original number = $10x + y$	
	When the digits are reversed, x becomes the unit's digit and y becomes the ten's	
	Digit.	1/2
	So the obtain by reversing the digits = $10y + x$	
	According to the given condition.	
	(10x + y) + (10y + x) = 66	
	i.e., $11(x + y) = 66$	1⁄2
	i.e., $x + y = 6 (1)$	
	We are also given that the digits differ by 2,	1/2
	therefore, either $x - y = 2 - (2)$	1/2
	or $y - x = 2$ (3)	1/
	If $x - y = 2$, then solving (1) and (2) by elimination, we get $x = 4$ and $y = 2$. In this case, we get the number 42.	1/2
	If $y - x = 2$, then solving (1) and (3) by elimination, we get $x = 2$ and $y = 4$.	1/2
	In this case, we get the number 24.	/2
	Thus, there are two such numbers 42 and 24.	
I I	[or]	
		1⁄2
	Let $\frac{1}{\sqrt{x}}$ be 'm' and $\frac{1}{\sqrt{y}}$ be 'n',	1⁄2
		1/2 1/2

$(2m + 3n = 2) X - 2 \Rightarrow -4m - 6n = -4$ (1)	
4m - 9n = -1 $4m - 9n = -1$ (2)	
Adding (1) and (2)	
We get $-15n = -5 \Rightarrow n = \frac{1}{2}$	1/2
5	
Substituting $n = \frac{1}{2}$ in $2m + 3n = 2$, we get	
J J	1/2
2m + 1 = 2	
2m = 1	
$m = \frac{1}{2}$	1
$m = \frac{1}{2} \implies \sqrt{x} = 2 \implies x = 4 \text{ and } n = \frac{1}{3} \implies \sqrt{y} = 3 \implies y = 9$	
29.	
$\angle OAB = 30^{\circ}$	
$\angle OAP = 90^{\circ}$ [Angle between the tangent and	
the radius at the point of contact] $(\circ \langle \rangle)$	>P 1/
$\angle PAB = 90^{\circ} - 30^{\circ} = 60^{\circ}$	1/2
AP = BP [Tangents to a circle from an external point]	1/
$\angle PAB = \angle PBA$ [Angles opposite to equal sides of a triangle]	1/2
In $\triangle ABP$, $\angle PAB + \angle PBA + \angle APB = 180^{\circ}$ [Angle Sum Property]	
$60^\circ + 60^\circ + \angle APB = 180^\circ$	1/
$\angle APB = 60^{\circ}$	1/2
$\therefore \Delta ABP$ is an equilateral triangle, where AP = BP = AB.	1/
PA = 6 cm	1/2
In Right $\triangle OAP$, $\angle OPA = 30^{\circ}$	
$\tan 30^\circ = \frac{OA}{PA}$	1/
$\frac{1}{1} = \frac{OA}{OA}$	1/2
$\sqrt{3}$ 6	1/
$\tan 30^\circ = \frac{OA}{PA}$ $\frac{1}{\sqrt{3}} = \frac{OA}{6}$ $OA = \frac{6}{\sqrt{3}} = 2\sqrt{3}cm$	1/2
[or]	
	P
Let \angle TPQ = θ	A
\angle TPO = 90° [Angle between the tangent and	
the radius at the point of contact]	$\left(\begin{array}{c} 0 \end{array} \right) \left[\frac{1}{2} \right]$
$\angle OPQ = 90^{\circ} - \theta$	
TP = TQ [Tangents to a circle from an external	Q
point]	1/
\angle TPQ = \angle TQP = θ [Angles opposite to equal sides of a triangle]	1/2
In ΔPQT , $\angle PQT + \angle QPT + \angle PTQ = 180^{\circ}$ [Angle Sum Property]	1/2
$\theta + \theta + \angle PTQ = 180^{\circ}$	1/2
$\angle PTQ = 180^{\circ} - 2\theta$	
$\angle PTQ = 2 (90^{\circ} - \theta)$	1/2
	1/2
$\angle PTQ = 2 \angle OPQ [using (1)]$ 30. Given, $1 + \sin^2\theta = 3 \sin \theta \cos \theta$	
Dividing both sides by $\cos^2\theta$,	
$\frac{1}{\cos^2\theta} + \tan^2\theta = 3\tan\theta$	1/2
$\sec^2\theta + \tan^2\theta = 3\tan\theta$	¹ /2 1/2
$1 + \tan^2\theta + \tan^2\theta = 3 \tan \theta$	⁷² 1/2
$1 + 2 \tan^2 \theta = 3 \tan \theta$	1/2 1/2
$2\tan^2\theta - 3\tan\theta + 1 = 0$	72
If $\tan \theta = x$, then the equation becomes $2x^2 - 3x + 1 = 0$	

			$\Rightarrow (x-1)(x)$	(2x-1) = 0 = 0	1 or $\frac{1}{2}$		
				$\tan \theta = 1$	-		1
31.					<u>L</u>		
	Length [in mm]	Number of leaves (f)	CI	Mid x	d	fd	
	118 – 126	3	117.5- 126.5	122	-27	-81	
	127 - 135	5	126.5–135.5	131	-18	-90	
	136 - 144	9	135.5-144.5	140	-9	-81	
	145 - 153	12	144.5 - 153.5	a = 149	0	0	
	154 - 162	5	153.5 - 162.5	158	9	45	2
	163 - 171	4	162.5 - 171.5	167	18	72	1/2
	172 - 180	2	171.5 - 180.5	176	27	54	1/2
		Mean	$=a+\frac{\Sigma fd}{\Sigma f}=149$	+ -8	I		
			Σf = 149 – 2.025 = 1				
	Average length	of the leaves					
			SECTI	ON D			
		Section D	consists of 4 qu	lestions of 5 n	narks each		
32.	32. Let the speed of the stream be x km/h. The speed of the boat upstream = $(18 - x)$ km/h and the speed of the boat downstream = $(18 + x)$ km/h. The time taken to go upstream = $\frac{distance}{speed} = \frac{24}{18-x}$ hours					1	
	the time taken to go downstream = $\frac{distance}{spe} = \frac{24}{18+x}$ hours According to the question, $24 \qquad 24$					1	
			$\frac{24}{18-x} - \frac{24}{18+x}$	= 1			1
	$24(18 + x) - 24(18 - x) = (18 - x) (18 + x)$ $x^{2} + 48x - 324 = 0$ $x = 6 \text{ or } -54$ Since x is the speed of the stream, it cannot be negative. Therefore, x = 6 gives the speed of the stream = 6 km/h.					1	
			[0]	rl			1
	[or] Let the time taken by the smaller pipe to fill the tank = x hr. Time taken by the larger pipe = $(x - 10)$ hr					1⁄2	
			by smaller pipe in by larger pipe in	1 hour = $\frac{x}{1}$			1
			in $9\frac{3}{8} = \frac{75}{8}$ hour	x - 10	ipes together.		1⁄2
			by both the pipes	s in 1 hour = $\frac{8}{1}$			1⁄2
	<u> </u>			75		5	

		1
	Therefore, $\frac{1}{x} + \frac{1}{x-10} = \frac{8}{75}$ $8x^2 - 230x + 750 = 0$	1⁄2
	$x = 25, \frac{30}{8}$	1
	Time taken by the smaller pipe cannot be $30/8 = 3.75$ hours, as the time taken by	1⁄2
	the larger pipe will become negative, which is logically not possible. Therefore, the time taken individually by the smaller pipe is 25 hours and the larger pipe will be 25 – 10 =15 hours.	1⁄2
33.	(a) Statement – $\frac{1}{2}$	
	Given and To Prove $-\frac{1}{2}$	2
	Figure and Construction ½ Proof – 1 ½ ^A N	3
	[b] Draw DG BE	
	In \triangle ABE, $\frac{AB}{BD} = \frac{AE}{GE}$ [BPT]	1/2
	$BD GE \begin{bmatrix} D & T \end{bmatrix}$	
	CF = FD [F is the midpoint of DC](i) B	1/2
	In Δ CDG, $\frac{DF}{CF} = \frac{GE}{CE} = 1$ [Mid point theorem]	1/
	GE = CE(ii)	1/2
	$\angle CEF = \angle CFE$ [Given]	
	CF = CE [Sides opposite to equal angles](iii)	1⁄2
	From (ii) & (iii) $CF = GE(iv)$	
	From (i) & (iv) $GE = FD$ AB AE AB AE	
	$\therefore \frac{AB}{BD} = \frac{AE}{GE} \Longrightarrow \frac{AB}{BD} = \frac{AE}{FD}$	
34.		
	Length of the pond, $l = 50m$, width of the pond, $b = 44m$	
	Water level is to rise by, h = 21 cm = $\frac{21}{100}$ m	
	Volume of water in the pond = lbh = 50 x 44 x $\frac{21}{100}$ m ³ = 462 m ³	1
	Diameter of the pipe = 14 cm	
	Radius of the pipe, r = 7cm = $\frac{7}{100}$ m	
	Area of cross-section of pipe = πr^2	
	$= \frac{22}{7} \times \frac{7}{100} \times \frac{7}{100} = \frac{154}{10000} \text{ m}^2$	1
		1/2
	Rate at which the water is flowing through the pipe, h = 15km/h = 15000 m/h Volume of water flowing in 1 hour = Area of cross-section of pipe x height of water	1/2
	coming out of pipe	
	$=\left(\frac{154}{10000} \times 15000\right)m^3$	1
	Time required to fin the poind $= \frac{1}{Volume of water flowing in 1 hour}$	1
	$=\frac{462 \times 10000}{154 \times 15000} = 2 \text{ hours}$	
	154×15000 Speed of water if the rise in water level is to be attained in 1 hour = 30km/h	
	[or]	

	Radius of the cylindrical tent $(r) =$			*	
	Total height of the tent = Height of the cylinder =		\wedge	10.5m	
	Height of the Conical part =			10.5m	1/2
	Slant height of the cone (l) = $\sqrt{h^2}$ +			¥	12
		$(5)^2 + (14)^2$	14m	3m	
	$=\sqrt{(10.3)^2 + (14)^2}$ = $\sqrt{110.25 + 196}$				
		$\frac{1}{25} = 17.5 \text{ m}$			1
	Curved surface area of cylindrical				
		= 2πrh			
		$= 2x \frac{22}{7} \times 14 \times 3$	3		1
		$= 264 \text{ m}^2$			
	Curved surface area of conical port	tion			
		=πrl			
	=	$=\frac{22}{7} \times 14 \times 17.5$			1
	=	=770 m ²			1/2
	Total curved surface area = 264 m				
	Provision for stitching and wastage	e =	26 m ²		11
	Area of canvas to be purchased	=	1060 m ²		1/2
	Cost of canvas = Rate × Surface are	ea			1/2
	= 500 x 1060 = ₹ 5,3	30.0007-			/2
35.	- 500 x 1000 - (5).	30,000/-			
	Marks obtained	Number of	Cumulative		
	Marks obtained	students	frequency		
	20 - 30	р	р		
	30 - 40	15	p + 15		
	40 - 50	25	p + 40		1
	50 - 60	20	p + 60		
	60 - 70	q	p + q + 60		
	70 - 80	8	p + q + 68		1/2
	80 - 90	10	p + q + 78		1/2
		90			
	p + q + 78 = 90		1		
	40				
	p + q = 12 Median = (l) + $\frac{\frac{n}{2} - c}{f}$. h				
	Median = $(l) + \frac{2}{f}$. h				
	$50 = 50 + \frac{45 - (p + 40)}{20} \cdot 10$				1/2
					1/
	$\frac{45 - (p + 40)}{20} \cdot 10 = 0$				1/2
	45 - (p + 40) = 0 P = 5				1/2
	P = 5 5 + q = 12				1⁄2
	q = 7				1
	Mode = $l + \frac{f_1 - f_0}{2f_1 - f_0 - f_2}$. h				1
	2f1-f0-f2				

	25-15	
	$= 40 + \frac{25 - 15}{2(25) - 15 - 20} \cdot 10$	
	$=40 + \frac{100}{15} = 40 + 6.67 = 46.67$	
	15 SECTION E	
36.	(i) Number of throws during camp. a = 40; d = 12	1
	$t_{11} = a + 10d$	-
	$=40 + 10 \times 12$	
	= 160 <i>throws</i>	
	(ii) $a = 7.56 \text{ m}; d = 9 \text{ cm} = 0.09 \text{ m}$	1/2
	n = 6 weeks	1/2
	$t_n = a + (n-1) d$	1/2
	= 7.56 + 6(0.09)	
	= 7.56 + 0.54	1/2
	Sanjitha's throw distance at the end of 6 weeks $= 8.1 \text{ m}$	
	(or)	
	a = 7.56 m; d = 9 cm = 0.09 m	1/2
	$t_n = 11.16 \text{ m}$	1/2
	$t_n = a + (n-1) d$	
	11.16 = 7.56 + (n-1) (0.09)	1/2
	3.6 = (n-1)(0.09)	
	$n-1 = \frac{3.6}{0.09} = 40$	
	n = 41	1/2
	Sanjitha's will be able to throw 11.16 m in 41 weeks.	
	(iii) a = 40; d = 12; n = 15	
	$S_n = \frac{n}{2} [2a + (n-1)d]$	1/2
	$S_n = \frac{15}{2} [2(40) + (15-1) (12)]$	
	$=\frac{15}{2}[80+168]$	
	2	
	$=\frac{15}{2}$ [248] =1860 throws	1/2
37.	(i) Let D be (a,b), then	
	Mid point of AC = Midpoint of BD	
		1/2
	$\left(\frac{1+6}{2}, \frac{2+6}{2}\right) = \left(\frac{4+a}{2}, \frac{3+b}{2}\right)$	
	4 + a = 7 $3 + b = 8$	
	a=3 $b=5$	
	Central midfielder is at (3,5)	1/2
		/2

		4.
	(ii) GH = $\sqrt{(-3-3)^2 + (5-1)^2} = \sqrt{36+16} = \sqrt{52} = 2\sqrt{13}$	1/2 1/2
	$GK = \sqrt{(0+3)^2 + (3-5)^2} = \sqrt{9+4} = \sqrt{13}$	⁴ 2 1/2
	$HK = \sqrt{(3-0)^2 + (1-3)^2} = \sqrt{9+4} = \sqrt{13}$	1/2
	$GK + HK = GH \Rightarrow G, H \& K$ lie on a same straight line	
	[or]	
	$CJ = \sqrt{(0-5)^2 + (1+3)^2} = \sqrt{25+16} = \sqrt{41}$	1/2
	$CI = \sqrt{(0+4)^2 + (1-6)^2} = \sqrt{16+25} = \sqrt{41}$	1/2
	Full-back J(5,-3) and centre-back I(-4,6) are equidistant from forward C(0,1)	
	Mid-point of IJ = $\left(\frac{5-4}{2}, \frac{-3+6}{2}\right) = \left(\frac{1}{2}, \frac{3}{2}\right)$	1⁄2
		1⁄2
	C is NOT the mid-point of IJ	
	(iii) A,B and E lie on the same straight line and B is equidistant from A and E	
	\Rightarrow B is the mid-point of AE	
	$\left(\frac{1+a}{2}, \frac{4+b}{2}\right) = (2, -3)$	1/2
	$\begin{pmatrix} 2 & 2 \end{pmatrix}$ $\begin{pmatrix} 2 & 3 \end{pmatrix}$	1/2
38.	$1 + a = 4; a = 3. \qquad 4 + b = -6; b = -10 \text{ E IS } (3, -10)$	1
50.	(i) $\tan 45^\circ = \frac{80}{CE}$ (i) $\tan 30^\circ = \frac{80}{CE}$ (ii) $\tan 30^\circ = \frac{80}{CE}$	
	(ii) $\tan 30^\circ = \frac{80}{27}$	1/2
	CE 1 80	1/2 1/2
	$\Rightarrow \frac{1}{\sqrt{3}} = \frac{80}{CE}$	1/2
	$\Rightarrow CE = 80\sqrt{3}$	
	Distance the bird flew = AD = BE = CE-CB = $80\sqrt{3} - 80 = 80(\sqrt{3} - 1)$ m	1/2
	(or)	1/2
		/2
	$\tan 60^\circ = \frac{80}{CG}$	
	$\Rightarrow \sqrt{3} = \frac{\frac{CG}{80}}{\frac{CG}{CG}}$	1⁄2
	$\rightarrow \sqrt{3} - CG$	1/2
	80	
	\Rightarrow CG = $\frac{80}{\sqrt{3}}$	
	Distance the ball travelled after hitting the tree =FA=GB = CB -CG	
	GB = 80 - $\frac{80}{\sqrt{3}}$ = 80 (1 - $\frac{1}{\sqrt{3}}$) m	
	(iii) Speed of the bird = $\frac{Distance}{Time \ taken} = \frac{20(\sqrt{3}+1)}{2} \text{ m/sec}$	1⁄2
		1/2
	$=\frac{20(\sqrt{3}+1)}{2} \times 60 \text{ m/min} = 600(\sqrt{3}+1) \text{ m/min}$	12