

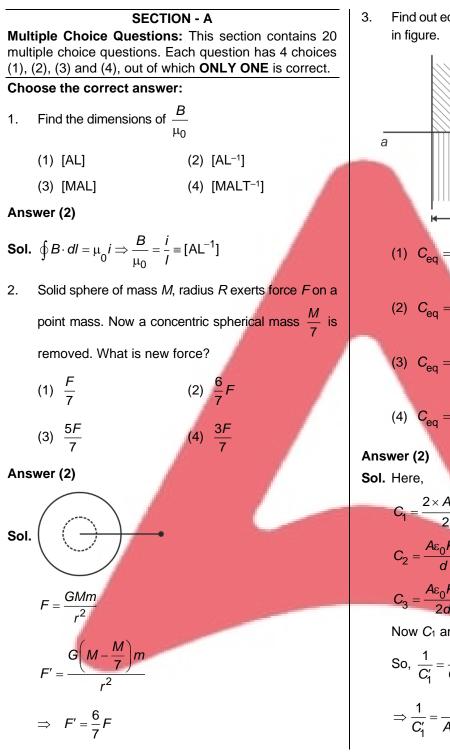
22/01/2025 Morning

Memory Based Answers & Solutions

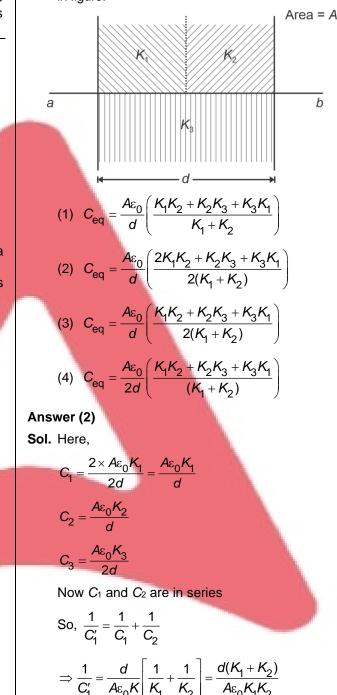
Time : 3 hrs.

M.M. : 300

JEE (Main)-2025 (Online) Phase-1

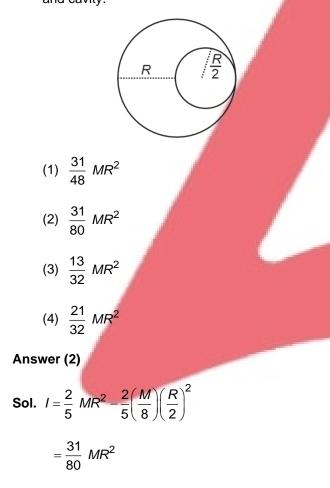

(Physics, Chemistry and Mathematics)

IMPORTANT INSTRUCTIONS:

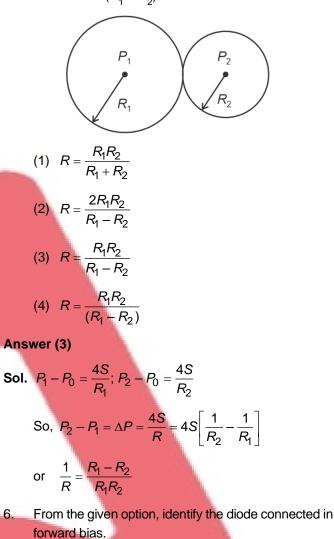

- (1) The test is of **3 hours** duration.
- (2) This test paper consists of 75 questions. Each subject (PCM) has 25 questions. The maximum marks are 300.
- (3) This question paper contains Three Parts. Part-A is Physics, Part-B is Chemistry and Part-C is Mathematics. Each part has only two sections: Section-A and Section-B.
- (4) **Section A :** Attempt all questions.
- (5) Section B : Attempt all questions.
- (6) Section A (01 20) contains 20 multiple choice questions which have only one correct answer.
 Each question carries +4 marks for correct answer and –1 mark for wrong answer.
- (7) Section B (21 25) contains 5 Numerical value based questions. The answer to each question should be rounded off to the nearest integer. Each question carries +4 marks for correct answer and –1 mark for wrong answer.

PHYSICS

3. Find out equivalent capacitance for the situation show in figure.



$$\Rightarrow C_1' = \frac{A\varepsilon_0 K_1 K_2}{d(K_1 + K_2)}$$


Now C'_1 is parallel to C_3

$$\Rightarrow C_{eq} = \frac{A\varepsilon_0}{d} \left[\frac{K_1 K_2}{K_1 + K_2} + \frac{K_3}{2} \right]$$
$$\Rightarrow C_{eq} = \frac{A\varepsilon_0}{d} \left[\frac{2K_1 K_2 + K_2 K_3 + K_3 K_1}{2(K_1 + K_2)} \right]$$

4. From a sphere of mass *M* and radius *R*, a cavity of radius $\frac{R}{2}$ is created. Find the moment of inertia about an axis passing through the centre of sphere and cavity.

5. Find the radius of curvature of the common surface of two bubbles $(R_1 > R_2)$

$$(1) = -15 V$$

$$(2) 2 V \bullet 4 V$$

$$(3) -10 V \bullet 15 V$$

$$(4) = -3 V$$

Answer (1)

Sol. Only in option (1), the p-side is connected at higher potential than the n-side of the diode.

7. Radius of electron in ground state for hydrogen is a_0 , then radius of electron in He⁺ ion in 3rd excited state is

a. Then
$$\frac{a_0}{a}$$

(1) $\frac{1}{2}$

is

(2) $\frac{1}{4}$ (3) $\frac{1}{16}$

Answer (4)

(4)

Sol.
$$r = \frac{n^2}{z} r_0 \Rightarrow$$
 for H
 $a_0 = \frac{1}{1} r_0$
 $a = \frac{4^2}{2} r_0$

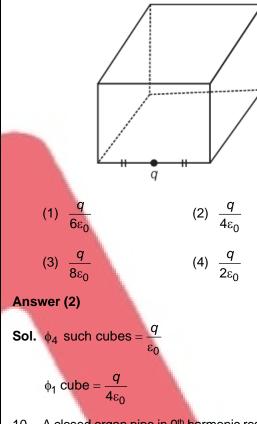
$$\frac{a_0}{a} = \frac{1}{8}$$

 Ice at -10°C is to be converted into steam at 110°C. Mass of ice is 10⁻³ kg. What amount of heat is required?

(1) $\Delta Q = 730$ cal (2) $\Delta Q = 900$ cal

(3) $\Delta Q = 1210$ cal

Answer (1)


Sol. -10° C ice to 0° C ice $\rightarrow 0^{\circ}$ C ice to 0° C water $+ 0^{\circ}$ C water to 100° C water $+ 100^{\circ}$ C water to 100° C steam $+ 110^{\circ}$ C steam.

(4) $\Delta Q = 870$ cal

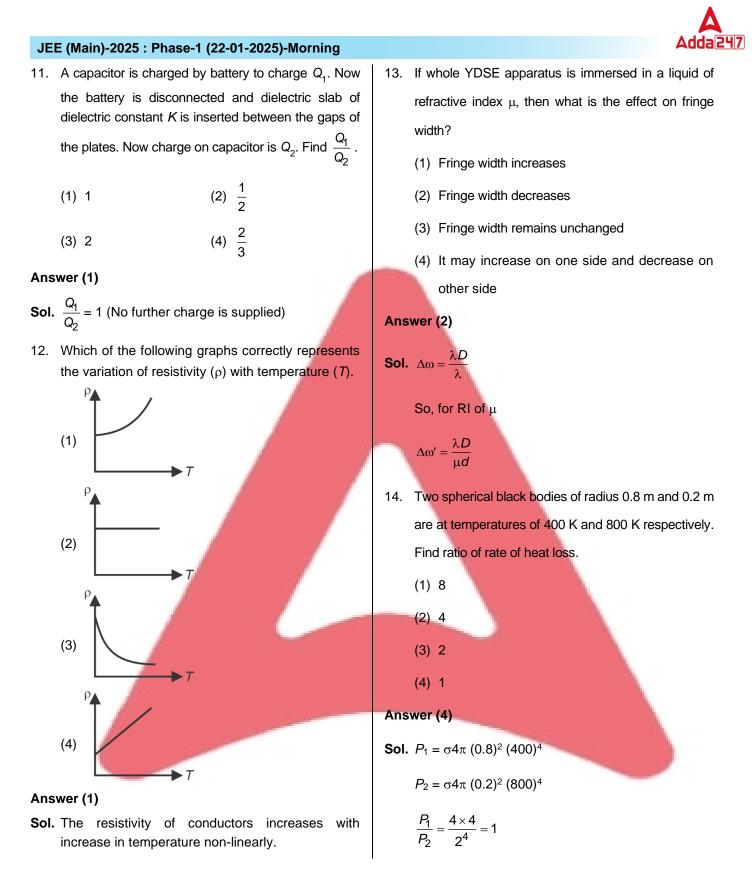
$$\Rightarrow \Delta Q = \left(1 \times \frac{1}{2} \times 10\right) + (1 \times 80) + (1 \times 1 \times 100)$$
$$+ (1 \times 540) + \left(1 \times \frac{1}{2} \times 10\right) = 730 \text{ cal}$$

JEE (Main)-2025 : Phase-1 (22-01-2025)-Morning

9. A charge of value *q* is placed at the edge of a imaginary cube of side a as shown in figure. Find the net flux through the cube

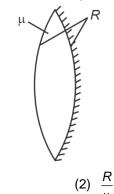
A closed organ pipe in 9th harmonic resonates with 4th harmonic of open organ pipe [*l*_{closed} = 10 cm]. Find length of open organ pipe.

(1)
$$L_0 = 15 \text{ cm}$$


(2)
$$L_0 = \frac{100}{9}$$
 cm

(3)
$$L_0 = \frac{110}{7}$$
 cm

(4)
$$L_0 = \frac{80}{9}$$
 cm


Answer (4)

Sol.
$$\frac{9v}{4L_c} = \frac{4v}{2L_0} \Rightarrow L_0 = \frac{8L_c}{9}$$

15. The equiconvex lens shown in figure is silvered on one side. For what distance of object from the lens is the image formed on the object itself?

 $\frac{R}{2\mu-2}$

(1) μ*R*

(3)
$$\frac{R}{2\mu - 1}$$

Answer (3)

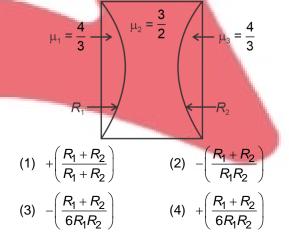
Sol. Silvering of lens

$$\frac{1}{F_{eq}} = \frac{1}{f_m} - \frac{2}{f_\ell} \qquad \qquad \frac{1}{f_\ell} = (\mu - 1) \left(\frac{1}{R} - \left(\frac{1}{-R} \right) \right)$$
$$= \frac{-2}{R} - \frac{4(\mu - 1)}{R} \qquad \qquad \frac{1}{f_\ell} = \frac{2(\mu - 1)}{R}$$
$$= \frac{-2(1 + 2\mu - 2)}{R}$$
$$F = \frac{-R}{2(2\mu - 1)}$$

For object-image to coincide distance should be 2f|u| = 2|F|

$$=\frac{R}{2\mu-1}$$

- Light of wavelength 550 nm is incident an surfaces of cerium and lithium. Work function are respectively
 1.9 eV and 2.5 eV. Then electron will be ejected from
 - (1) Cerium only (2) Lithium only
- (3) From both of them (4) None of them **Answer (1)**


Sol.
$$E(eV) = \frac{1240}{\lambda(nm)} = \frac{1240}{550} \approx 2.25$$

2.25 > 1.9 for cerium only

17. The figure shows an electron entering the space between the plates of a parallel plate capacitor with an initial velocity, $v_x = 10^6$ m/s parallel to the plates. If the length of plates is I = 10 cm and the electric field in the region E = 9.1 N/C, then the value of v_y when the electron comes out of the plates is (Electronic mass = 9.1×10^{-31} kg)

Acceleration of electron along *y*-axis, $a = \frac{eE}{m}$

$$= \frac{eE}{m} \cdot \frac{l}{v_x}$$
$$= \frac{1.6 \times 10^{-19} \times 9.1 \times 10 \times 10^{-2}}{9.1 \times 10^{-31} \times 10^6} \text{ m/s}$$

18. Find the equivalent power of the thin lens combination shown in the figure.

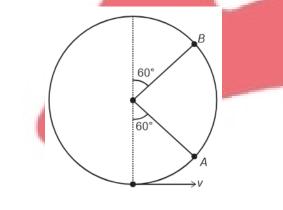
S

Answer (3)

Sol. Net power = $P_1 + P_2 + P_3$

$$= \frac{(\mu_1 - 1)}{R_1} + (\mu_2 - 1) \left(\frac{1}{-R_1} + \frac{1}{-R_2} \right) + \frac{(\mu_3 - 1)}{R_2}$$
$$= \frac{(\mu_1 - \mu_2)}{R_1} + \frac{(\mu_3 - \mu_2)}{R_2}$$
$$= \left(\frac{4}{3} - \frac{3}{2} \right) \frac{1}{R_1} + \left(\frac{4}{3} - \frac{3}{2} \right) \frac{1}{R_2}$$

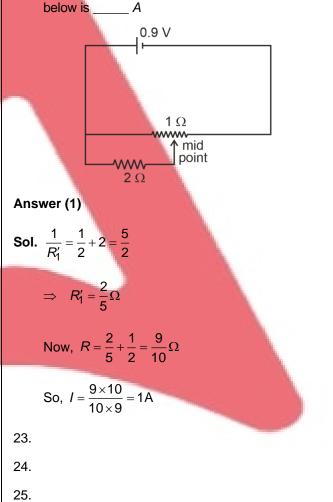
 $= -\frac{1}{6} \left(\frac{1}{R_1} + \frac{1}{R_2} \right)$ $= -\left(\frac{R_1 + R_2}{6R_1R_2} \right)$


19.

20.

SECTION - B

Numerical Value Type Questions: This section contains 5 Numerical based questions. The answer to each question should be rounded-off to the nearest integer.


21. The particle shown in figure is just able to complete the vertical circular motion. Find the ratio of kinetic energy at *A* to the kinetic energy at *B*.

Answer (2)

Sol.
$$v = \sqrt{5gR}$$

 $KE_A = \frac{1}{2}mv^2 - mg\frac{R}{2}$
 $KE_A = 2mgR$
 $KE_B = \frac{1}{2}mv^2 - mg\left(\frac{3R}{2}\right)$
 $= mgR$
 $\frac{KE_A}{KE_B} = 2$

22. The current drawn from battery in the circuit shown

CHEMISTRY

SECTION - A Multiple Choice Questions: This section contains 20 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4), out of which ONLY ONE is correct.	4. Which of the following has maximum size out of Al ³⁺ , Mg ²⁺ , F ⁻ , Na ⁺ ? (1) Al ³⁺ (2) Mg ²⁺ (3) F ⁻ (4) Na ⁺
 Choose the correct answer : 1. For complex ion [NiCl₄]²⁻ what is the charge on metal and shape of complex respectively? (1) +2, Tetrahedral (2) +2, Square planar (3) +4, Tetrahedral (4) +4, Square Planar Answer (1) Sol. [NiCl₄]²⁻ ⇒ Ni²⁺ → 3d⁶ CI⁻ ligand is weak field ligand and hybridisation is sp³. Shape of complex is tetrahedral. Compare boiling point of given solutions (i) 10⁻⁴ M NaCl (ii) 10⁻³ M NaCl (iii) 10⁻² M NaCl (iv) 10⁻⁴ M urea (1) I > II > III > IV (2) III > II > IV 	 Answer (3) Sol. For isoelectronic species, more the negative charge more will be the size, also more the positive charge smaller will be the size. The correct order of ionic size is : Al³⁺ < Mg²⁺ < Na⁺ < F⁻ 5. The IUPAC name of given specie is HOOC - CH - CH - COOCH₃ CH₃ CH₃ (1) 2, 3-dimethyl methyl carboxy butanoic acid (2) 4-methoxy carbonyl-2, 3-dimethyl propanoic acid (3) 3-methoxycarbonyl-2-methyl butanoic acid (4) 1-carboxy-2, 3-dimethyl methyl butanoate
 (3) II > I > III > IV (4) III > I > II > IV Answer (2) Sol. Higher the elevation in boiling point, higher will be the boiling point 	Answer (3) Sol. 1 2 3 HOOC - CH - CH - COOCH.
∆Tb ∞ i × m For urea i = 1 For NaCl i = 2 Boiling point order III > II > I > IV	 HOOC - CH - CH - COOCH₃
 3. The correct decreasing order of electronegativity is F > Cl > I > Br Cl > F > Br > I F > Cl > Br > I (4) Br > F > I > Cl 	(i) $K_4[Fe(CN)_6]$ (ii) $[Cu(NH_3)_4]^{+2}$ s (iii) $K_4[Fe(SCN)_6]$ (iv) $[Fe(en)_3]Cl_3$
Answer (3) Sol. The correct order is F > Cl > Br > l	(1) $ > > > V$ (2) $ > > V > $ (3) $ V > > > $ (4) $ V > > > $ Answer (2)

JE	E (Main)-2025 : Phase-1 (22-01-2025)-Morning	Adda2	47
	. K ₄ [Fe(CN) ₆] ⇒ d^6 ⇒ SFL,	(3) Statement-I is correct but statement-II is	
	$K_2[Cu(NH_3)_4] \Rightarrow d^9 \Rightarrow dsp^2$	incorrect (4) Statement-I is incorrect but statement-II is	
	$K_4[Fe(SCN)_6] \Rightarrow d^6 \Rightarrow WFL$	correct Answer (1)	
	$[Fe(en)_3]Cl_3 \Rightarrow d^5 \Rightarrow SFL$	Sol. $CH_3 - O - CH_2^{\oplus}$ stabilised by resonance.	
	Splitting energy ∞ Strength of ligand ∞ Charge of CA.	9. Which of the following acids is also known as vitamin C?	
	$\Delta_{sp} > \Delta_{o}$	 (1) Adipic acid (2) Ascorbic acid (3) Saccharic acid (4) Aspartic acid 	
	> > V >	Answer (2)	
7.	Consider the given equilibrium reaction	 Sol. Ascorbic acid is also known as vitamin C. 10. An electron of He⁺ is present in 3rd excited state. 	
	$CO_2(g) + C(s) \Longrightarrow 2CO(g)$	Find its de-Broglie wavelength.	
	If initial pressure of CO ₂ is 0.6 atm and after	(1) 6.64 Å (2) 1.66 Å	
	equilibrium is established, total pressure is 0.8 atm. Then, find K_p .	(3) 3.32 Å (4) 13.28 Å	
	(1) 0.4 (2) 0.2	Answer (1) Sol. $n\lambda = 2\pi r$	
	(3) 0.6 (4) 0.8	For 3^{rd} excited state, n = 4	
Ans	swer (1)	$4\lambda = 2 \times \pi \times a_{\circ} \frac{n^2}{7}$	
Sol	$CO_2(g) + C(s) \Longrightarrow 2CO(g)$		
	t = 0 0.6	$4\lambda = 2 \times \pi \times 0.529 \frac{16}{2} \text{\AA}$	
	$t = t_{eq} 0.6 - p \qquad \qquad 2p$	$\lambda = 2 \times 3.14 \times 0.529 \times 2 \text{ Å} = 6.64 \text{ Å}$	
	P_t at equilibrium = 0.8 = 0.6 + p	11. Which of the following will show positive Fehling	
	0.2 = p	test?	
	$K_{p} = \frac{(p_{CO})^{2}}{(p_{CO_{2}})} = \frac{(2p)^{2}}{0.6 - p} = \frac{4 \times 0.04}{0.6 - 0.2} = \frac{4 \times 0.04}{0.4} = 0.4$		
8.	Statement-I: CH ₃ – O – CH ₂ – CI will show	сно	
	nucleophilic substitution by $S_N 1$ mechanism in	$H_3C - C = O$	
	CH ₃		
	Statement-II: $CH_3 = CH_2 = CH_2 = CI$ will not undergo	CH ₂ – CHO	
	CH ₃		
	nucleophilic substitution via $S_N 2$ mechanism easily.	$(4) C_2H_5 - CH - CH - CH_3$ $ I OH OH$	
	(1) Statement-I and statement-II both are correct		
	(2) Statement-I and statement-II both are incorrect	Answer (3)	

Sol. Fehling test is given by Aldehydes except benzaldehyde

 \bigcirc

CH₂ – CHO will give +ve Fehling test

- 12. 4f⁷ configuration is possible for
 - (a) Eu³⁺, (b) Eu²⁺, (c) Gd³⁺, (d) Tb³⁺, (e) Sm²⁺
 - (1) (a) and (c)
 - (2) (b) and (c)
 - (3) (d) and (e)
 - (4) Only (c)

Answer (2)

Sol. Electronic configuration of:

 $Eu^{3+} \Rightarrow 4f^6$ $Tb^{3+} \Rightarrow 4f^8$ $Eu^{2+} \Rightarrow 4f^7$ $Sn^{2+} \Rightarrow 4f^5$ $Gd^{3+} \Rightarrow 4f^7$ $Sn^{2+} \Rightarrow 4f^7$

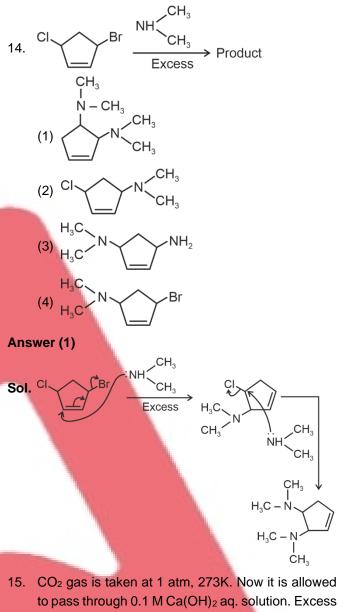
13. Given : $NH_2COONH_4(s) \Longrightarrow 2NH_3(g) + CO_2(g)$

If the partial pressure of CO_2 gas at equilibrium is 0.4 atm and the total pressure is 1 atm, then the value of K_p at the same temperature is

- (1) 0.027 atm³
- (2) 0.064 atm³
- (3) 0.144 atm³
- (4) 0.216 atm³

Answer (3)

Sol. $NH_2COONH_4(s) \Longrightarrow 2NH_3(g) + CO_2(g)$


Total pressure at equilibrium = 1.0 atm

Partial pressure of CO2 at equilibrium = 0.4 atm

 \therefore Partial pressure of NH₃ at equilibrium = 0.6 atm

$$K_{p} = (p_{NH_3})^2 (p_{CO_2})$$
$$= (0.6)^2 (0.4)$$

= 0.144 atm³

- to pass through 0.1 M Ca(OH)₂ aq. solution. Excess amount of Ca(OH)₂ is neutralised with 40 mL of 0.1 M HCI. Then find volume of Ca(OH)₂ initially taken if 50% Ca(OH)₂ is react with CO₂
 - (1) 40 mL
 - (2) 20 mL
 - (3) 80 mL
 - (4) 50 mL

Answer (1)

Sol. g meq of $Ca(OH)_2 = 2 \times gm$ eq of HCI

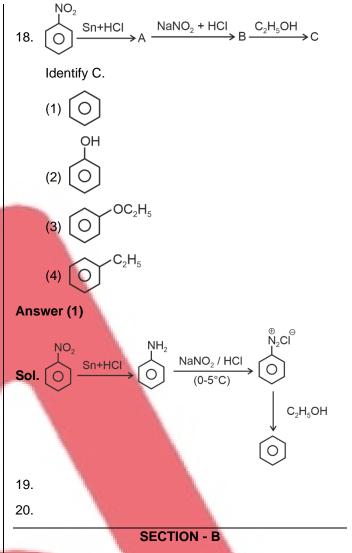
$$0.1 \times \frac{V_{mL}}{1000} \times 2 = 2 \times 0.1 \times \frac{40}{1000} \times 1$$
$$V_{mL} = 40 \text{ mL}$$

- 16. In a closed insulated container, a liquid is stirred with a paddle to increase the temperature, which of the following is true?
 - (1) $w = 0, \Delta E = q \neq 0$ (2) $\Delta E = w \neq 0, q = 0$ (3) $\Delta E = w = 0, q \neq 0$ (4) $\Delta E = 0, w = q \neq 0$

Answer (2)

Sol. In closed insulated container a liquid stirred with a paddle to increase the temperature, it behaves as an adiabatic container, q = 0

From FLOT

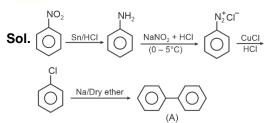

- $\Delta U = q + w; q = 0$
- $\Delta E = w$ (but not zero)
- 17. Match the column and choose the correct option

	Column-I (Properties)	1	Column-II (Order)
(A)	Electronegativity	(1)	B < C < N < O
(B)	Cationic size	(2)	Li > Mg > Be
(C)	Metallic Character	(3)	K > Mg > Al
(D)	D) Electron affinity		Cl > F > Br > l
(1) A–1, B–2, C–3, D–4			

- (2) A-4, B-3, C-2, D-1
- (3) A-2, B-3, C-4, D-1
- (4) A-3, B-2, C-4, D-1

Answer (1)

 $\begin{array}{ccc} \textbf{Sol.} & L_i^{i^+} > Mg^{2+} > Be^{2+} \\ & \downarrow \\ & 76\,\text{pm} & 72\,\text{pm} & 31\,\text{pm} \end{array}$

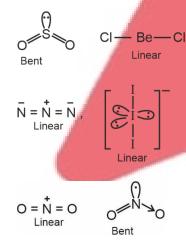

Numerical Value Type Questions: This section contains 5 Numerical based questions. The answer to each question should be rounded-off to the nearest integer.

21. (i) Sn/HCl $(ii) NaNO_2/HCl(0 - 5 °C)$ (iii) CuCl//HCl (iv) Na/dry ether (iv) Na/dry ether

Find molecular weight of (A) in g mol⁻¹

Answer (154)

Molecular weight of $(A) = 154 \text{ g mol}^{-1}$


22. Calculate Number of stereoisomers of $CH_3 - CH = CH - CH - CH_3$

Answer (4)

- **Sol.** Number of centres which can show stereoisomerism in molecule = 2 Number of isomers = $2^2 = 4$
- 23. How many compounds have linear shape SO₂, BeCl₂, N_3^- , I_3^- , NO₂⁺, NO₂?

Answer (4)

Sol.

JEE (Main)-2025 : Phase-1 (22-01-2025)- Morning

 In Carius method 180 mg of organic compound gives 143.5 mg of AgCI. Find the percentage of CI in the organic compound. (Nearest integer)

Answer (20)

Sol. Mass of organic compound = 180 mg

Mass of AgCl = 143.5 mg

Mass of CI =
$$\frac{143.5}{143.5} \times 35.5$$
 mg

= 35.5 mg

Percentage of CI in the organic compound

$$=\frac{35.5\times100}{180}$$

25. Two ampere current is allowed to pass through molten AlCl₃ for 30 min. Find the mass (in mg) of aluminium deposited at cathode. (Nearest integer)

Answer (336)

Sol. Total charge passed = $2 \times 30 \times 60$ C

Number of Faradays passed = $\frac{2 \times 30 \times 60}{96500}$ F

Equivalents of AI deposited = $\frac{36}{965}$

Mass of AI deposited = $\frac{36 \times 9}{965}$ g

 $\frac{36 \times 9 \times 1000}{965} \text{ mg}$

= 335.75 mg

≃ 336 mg

MATHEMATICS

SECTION - A	Answer (2)
Multiple Choice Questions: This section contains 20 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4), out of which ONLY ONE is correct.	Sol. $P(E) = \frac{{}^{6}C_{2}}{{}^{10}C_{2}}$
Choose the correct answer :	$=\frac{15}{45}=\frac{1}{3}$
1. The shortest distance between the lines	3. Let $A = \{1, 2, 3\}$
$\frac{x-1}{2} = \frac{y-2}{3} = \frac{z-1}{4}$ and	relations from
2 3 4	(1) 4
$\frac{x+2}{7} = \frac{y-2}{8} = \frac{z+1}{2}$ is	(3) 6
	Answer (2)
(1) $\frac{88}{\sqrt{1277}}$ (2) $\frac{78}{\sqrt{1277}}$	Sol. The partitions
·····	{(1}, {2}, {3}} _
(3) $\frac{66}{\sqrt{1277}}$ (4) $\frac{55}{\sqrt{1277}}$	{{1, 2}, {3}} =
Answer (1)	separate
	{{1, 3}, {2}} -
Sol. $d = \frac{ (a_2 - a_1) \cdot (b_1 \times b_2) }{ b_1 \times b_2 }$	separate
	{{2, 3}, {1}} - ⁻
$b_1 \times b_2 = \begin{vmatrix} i & j & k \\ 2 & 3 & 4 \\ 7 & 8 & 2 \end{vmatrix}$	separate
$\begin{bmatrix} u_1 \\ v_2 \end{bmatrix} = \begin{bmatrix} 2 & 3 & 4 \\ 7 & 8 & 2 \end{bmatrix}$	{{1, 2, 3}} – All
	∴ Therefore, to
$= -26\hat{i} + 24\hat{j} - 5\hat{k}, \ a_2 - a_1 = 3\hat{i} + 2\hat{k}$	4. If $f(x) = 16(s)$
$d = \frac{ (3\hat{i} + 2\hat{k}) \cdot (-26\hat{i} + 24\hat{j} - 5\hat{k}) }{\sqrt{26^2 + 24^2 + 5^2}}$	maximum and
$\sqrt{26^2 + 24^2 + 5^2}$	(1) $\frac{1001\pi^2}{22}$ and
$=\left \frac{-78-10}{\sqrt{1277}}\right =\frac{-88}{\sqrt{1277}}$	33
$-\left[\sqrt{1277}\right] - \sqrt{1277}$	(3) $\frac{1117\pi^2}{59}$ and
2. In a bag there are 6 white and 4 black balls two balls	00
are drawn at random, then the probability that both ball are white are	Answer (2)
	Sol. $f(x) = (4 \sec^{-1} x)$
(1) $\frac{1}{2}$ (2) $\frac{1}{3}$	$=(4 \sec^{-1} x + c)$
0	
(3) $\frac{2}{3}$ (4) $\frac{1}{4}$	$= \left(3 \sec^{-1} x + \frac{1}{2} \right)$

Ans	wer (2)
Sol.	$P(E) = \frac{{}^{6}C_{2}}{{}^{10}C_{2}}$
	$=\frac{15}{45}=\frac{1}{3}$
	Let <i>A</i> = {1, 2, 3} number of non-empty equivalence relations from <i>A</i> to <i>A</i> are
	(1) 4 (2) 5
	(3) 6 (4) 8
Ans	wer (2)
Sol.	The partitions far a set with 3 elements, {1, 2, 3}
	$\{(1\}, \{2\}, \{3\}\}$ – Every element is in its own subset
	$\{\{1, 2\}, \{3\}\}$ – Two elements are together, one
	separate
	$\{\{1, 3\}, \{2\}\}$ – Two elements are together, one
	separate
	$\{\{2, 3\}, \{1\}\}$ – Two elements are together, one
	separate
	$\{\{1, 2, 3\}\}$ – All elements are together in one subset
	\therefore Therefore, total possible equivalence relation = 5
4.	If $f(x) = 16(\sec^{-1} x)^2 + (\csc^{-1} x)^2$. Then the
	maximum and minimum value of $f(x)$ is
	(1) $\frac{1001\pi^2}{33}$ and $\frac{2\pi^2}{9}$ (2) $\frac{1105\pi^2}{68}$ and $\frac{4\pi^2}{17}$
	(3) $\frac{1117\pi^2}{59}$ and $\frac{6\pi^2}{19}$ (4) $\frac{1268\pi^2}{27}$ and $\frac{3\pi^2}{16}$
Ans	wer (2)
Sol.	$f(x) = (4 \sec^{-1} x)^2 + (\csc^{-1} x)^2$
	$= (4 \sec^{-1} x + \csc^{-1} x)^2 - 8 \sec^{-1} x \csc^{-1} x$
	$= \left(3\sec^{-1}x + \frac{\pi}{2}\right)^2 - 8\sec^{-1}x \left[\frac{\pi}{2} - \sec^{-1}x\right]$

 $=9(\sec^{-1} x)^{2} + \frac{\pi^{2}}{4} + 3\pi \sec^{-1} x - 4\pi \sec^{-1} x +$ $8 = 3\left(\frac{4}{3}\right) + \frac{p}{4-p}$ $8(\sec^{-1} x)^2$ $4 = \frac{p}{4-p}$ $= 17(\sec^{-1} x)^2 - \pi(\sec^{-1} x) + \frac{\pi^2}{4}$ $\Rightarrow 16 - 4p = p$ $\Rightarrow 5p = 16$ $= 17 \left| \left(\sec^{-1} x \right)^2 - \frac{\pi}{17} (\sec^{-1} x) + \frac{\pi^2}{34^2} \right| + \frac{\pi^2}{4} - \frac{17\pi^2}{34^2}$ $\Rightarrow p = \frac{16}{5}$ 6. If $\frac{dx}{dy} + \frac{x}{y^2} = \frac{1}{y^3}$, x(1) = 1. Then $x\left(\frac{1}{2}\right)$ equals to $=17\left[\left(\sec^{-1}x-\frac{\pi}{34}\right)^{2} + \frac{\pi^{2}}{4} - \frac{\pi^{2}}{68}\right]$ (1) 2-e (3) 5-e $= 17 \left| \left(\sec^{-1} x - \frac{\pi}{34} \right)^2 \right| + \frac{4\pi^2}{17}$ Answer (2) **Sol.** I.F = $e^{\int \frac{1}{y^2}}$ $Min = \frac{4\pi^2}{17}$ I.F = $e^{\frac{1}{y}}$ $\therefore \quad x \cdot e^{\frac{1}{y}} = \int e^{-\left(\frac{1}{y}\right)} \cdot \left(\frac{1}{x^3}\right) dy$ Max if sec⁻¹ $x = \pi$ $17\left|\left(\pi-\frac{\pi}{34}\right)^2\right|+\frac{4\pi^2}{17}$ $x \cdot e^{-\frac{1}{y}} = \int e^{-\left(\frac{1}{y}\right)} \cdot \left(\frac{1}{y}\right) \left(\frac{1}{y^2}\right) dy$ $\frac{1089}{68}\pi^2 + \frac{4\pi^2}{17} = \frac{1105\pi^2}{68}$ Put $\frac{1}{y} = t$ 5. If $8 = 3 + \frac{1}{4}(3 + p) + \frac{1}{4^2}(3 + p^2) + ... \infty$ then the $-\frac{1}{v^2}dy = dt$ value of p is $\therefore \quad xe^{-t} = -\int e^{-t} \cdot t \, dt$ (2) $\frac{16}{5}$ (1) $\frac{14}{5}$ $\mathbf{x}\mathbf{e}^{-t} = -\left[t \ \mathbf{e}^{-t} - \int \left(\frac{\mathbf{d}(t)}{\mathbf{d}t} \cdot \int \mathbf{e}^{-t} \cdot \mathbf{d}t\right) \mathbf{d}t\right]$ (4) $\frac{4}{5}$ (3) $\frac{3}{5}$ $\mathbf{x}\mathbf{e}^{-t} = -\left[-t \ \mathbf{e}^{-t} - \mathbf{e}^{-t}\right] + \mathbf{c}$ Answer (2) $xe^{-t} = te^{-t} + e^{-t} + c$...(1) Given x(1) = 1**Sol.** 8 = $\left(3 + \frac{3}{4} + \frac{3}{4^2} + ... + \infty\right) + \left(\frac{p}{4} + \frac{p^2}{4^2} + ... + \infty\right)$ $e^{-1} = e^{-1} + e^{-1} + c$ $8 = 3\left(1 + \frac{1}{4} + \frac{1}{4^2} + \dots + \infty\right) + \left(\frac{p}{4} + \frac{p^2}{4^2} + \dots + \infty\right)$ $-e^{-1} = c$:. from (1) $\mathbf{x} = \mathbf{t} + 1 - (\mathbf{e}^{-t} \cdot \mathbf{e}^{t})$ $8 = 3\left(\frac{1}{1-\frac{1}{2}}\right) + \frac{\frac{p}{4}}{1-\frac{p}{2}}$ Put $y = \frac{1}{2}$ x = 3 - e

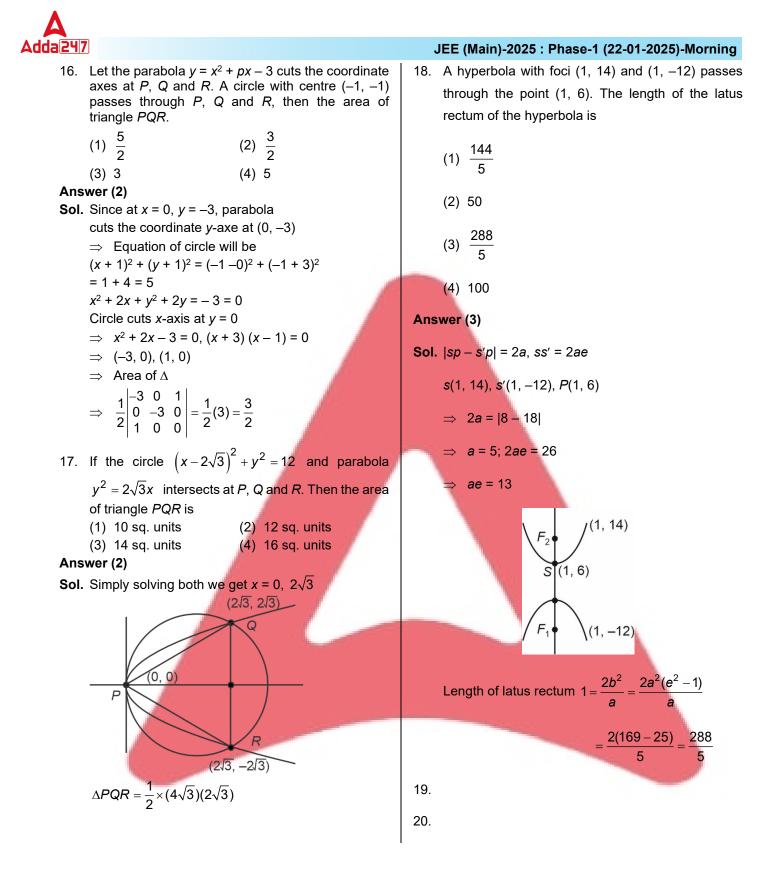
JEE (Main)-2025 : Phase-1 (22-01-2025)-Morning

(2) 3 - e(4) 7 - e

JEE (Main)-2025 : Phase-1 (22-01-2025)-Morning **Sol.** $(1 - x) [(1 - x) (1 + x + x^2)]^{2007}$ 7. Let $T_r = \frac{(2r-1)(2r+1)(2r+3)(2r+5)}{64}$, then $= (1 - x) (1 - x^3)^{2007}$ $= (1 - x^3)^{2007} - x(1 - x^3)^{2007}$ $\lim_{n\to\infty}\sum_{r=1}^n\frac{1}{T_r}$ is equal to $[(1 - x^3)^{2007}$ contains 3λ types of exponents while $x(1 - x^3)^{2007}$ will have $(3\lambda + 1)$ type while 2012 is $(3\lambda + 2)$ type] that is not possible $\Rightarrow 0$ (1) $\frac{22}{45}$ (2) $\frac{32}{35}$ Coefficient of x^{2012} in $(1 - x^3)^{2007} = 0$ Coefficient of x^{2011} in $(1 - x^3)^{2007} = 0$ (3) $\frac{27}{45}$ (4) $\frac{32}{45}$ \Rightarrow Coefficient of x^{2012} in $(1 - x)^{2008}(1 + x + x^2)^{2007} = 0$ 9. If the images of the points A(1, 3), B(3, 1) and C(2, 3)Answer (4) 4) in the line x + 2y = 4 are D, E and F respectively, **Sol.** $T_r = \frac{(2r-1)(2r+1)(2r+3)(2r+5)}{64}$ then the centroid of the triangle DEF is (2) $\left(-\frac{3}{5},-\frac{2}{5}\right)$ (1) (3, –1) $\Rightarrow \frac{1}{T_r} = \frac{64}{16\left(r - \frac{1}{2}\right)\left(r + \frac{1}{2}\right)\left(r + \frac{3}{2}\right)\left(r + \frac{5}{2}\right)}$ (3) $\left(\frac{2}{5}, -\frac{1}{5}\right)$ (4) $\left(\frac{1}{5}, -\frac{2}{5}\right)$ $\Rightarrow \frac{1}{T_r} = \frac{\frac{4}{3} \left[\left(r + \frac{5}{2} \right) - \left(r - \frac{1}{2} \right) \right]}{\left(r - \frac{1}{2} \right) \left(r + \frac{1}{2} \right) \left(r + \frac{3}{2} \right) \left(r + \frac{5}{2} \right)}$ Answer (3) **Sol.** Centroid of the $\triangle DEF$ is the mirror image of the centroid of the $\triangle ABC$ about the line x + 2y = 4. G_1 = Centroid of $\triangle ABC \equiv (2, 3), G_2 \equiv$ Centroid of $\Delta DEF.$ $\Rightarrow \frac{1}{T_r} = \frac{4}{3} \left| \frac{1}{\left(r - \frac{1}{2}\right)\left(r + \frac{1}{2}\right)\left(r - \frac{3}{2}\right)} \right|$ $G_1(2, 3)$ $M\left(\frac{x_1+2}{2},\frac{y_1+3}{2}\right)$ x + 2y = 4 $rac{1}{r+\frac{1}{2}}\left(r+\frac{3}{2}\right)\left(r+\frac{5}{2}\right)$ $G_{2}(x_{1}, y_{1})$ $\Rightarrow \frac{y_1 - 3}{x_1 - 2} = 2, \ \frac{x_1 + 2}{2} + (y_1 + 3) = 4$ $\lim_{n \to \infty} \sum_{r=1}^{n} \frac{1}{T_r} = \frac{4}{3} \left| \frac{1}{1 \ 3 \ 5} - \frac{1}{3 \ 5 \ 7} \right|$ $\Rightarrow x_1 = \frac{2}{5}, y_1 = -\frac{1}{5}$ 3 5 7 5 7 9 $\Rightarrow G_2 = \left(\frac{2}{5}, -\frac{1}{5}\right)$ 22222222 $=\frac{4}{3}\left[\frac{8}{15}\right]=\frac{32}{45}$ 10. If $A = \{1, 2, 3, \dots, 10\}$. $B = \left\{ \frac{m}{n}, m, n \in A \text{ and } m < n \text{ and gcd of } (m, n) = 1 \right\}.$ Coefficient of x^{2012} in $(1 - x)^{2008} (1 + x + x^2)^{2007}$ 8. (1) 0 (2) 1 Then number of elements in set B is (4) 3 (3) 2 (1) 30 (2) 31 Answer (1) (3) 28 (4) 29

1a 24 7	
Answer (2)	
Sol. $n = 1$ $m \in \phi$	0
$n=2 m=1 \Rightarrow \frac{m}{n}$	can be $\frac{1}{2}$ 1
$n = 3 m = 1, 2 \Rightarrow \frac{r}{r}$	$\frac{n}{n}$ can be $\frac{1}{3}, \frac{2}{3}2$
$n = 4 m = 1,3 \Rightarrow \frac{m}{r}$	$\frac{n}{2}$ can be $\frac{1}{4}, \frac{3}{4}2$
<i>n</i> = 5 <i>m</i> = 1, 2, 3, 4	$\Rightarrow \frac{m}{n} = \frac{1}{5}, \frac{2}{5}, \frac{3}{5}, \frac{4}{5} \dots 4$
$n = 6 m = 1, 5 \Rightarrow \frac{r}{r}$	$\frac{n}{n} = \frac{1}{6}, \frac{5}{6} \dots 2$
<i>n</i> = 7 <i>m</i> = 1, 2, 3, 4	$4, 5, 6 \Rightarrow \frac{m}{n} = \frac{1}{7}, \frac{2}{7}, \frac{3}{7}, \frac{4}{7}, \frac{5}{7}, \frac{6}{7}$
6	
<i>n</i> = 8 <i>m</i> = 1, 3, 5, 7	$\Rightarrow \frac{m}{n} = \frac{1}{8}, \frac{3}{8}, \frac{5}{8}, \frac{7}{8}4$
<i>n</i> = 9 <i>m</i> = 1, 2, 4, 5,	$7,8 \Rightarrow \frac{m}{n} = \frac{1}{9}, \frac{2}{9}, \frac{3}{9}, \frac{4}{9}, \frac{5}{9}, \frac{7}{9}, \frac{8}{9}$
6	
<i>n</i> = 10 <i>m</i> = 1, 3, 7, 9	$\Theta \Rightarrow \frac{m}{n} = \frac{1}{10}, \frac{3}{10}, \frac{7}{10}, \frac{9}{10}4$
	are there to pick 5 letters from such that <i>M</i> is the middle of the ot allowed).
(1) ²⁶ C ₅ .5!	
(2) ²⁵ C ₄ .4!	
(3) ²⁶ C ₄ .4!	
(4) ²⁵ C ₅ .5!	
Answer (2)	100
Sol. $\underline{A}_1 \underline{A}_2 \xrightarrow{M} \underline{A}_3 \underline{A}_2$	<u> </u>

 ${}^{25}C_4 \times 4!$


	EE (Main)-2025 : Phase-1 (22-01-2025)-Morning
	Let $ Z_i = 1$ for $i = 1, 2, 3$ satisfying
	$\left \bar{Z}_{1}Z_{2}+\bar{Z}_{2}Z_{3}+\bar{Z}_{3}Z_{1}\right ^{2}=a+b\sqrt{2}$, where <i>a</i> , <i>b</i> an
	rational numbers such that $\arg(Z_1) = \frac{\pi}{4}$, $\arg(Z_2) = 0$
	and $\arg(Z_3) = \frac{-\pi}{4}$, then find (<i>a</i> , <i>b</i>)
	(1) (5, 2) (2) (-5, -2) (3) (5, -2) (4) (-5, 2)
Ans	wer (3)
Sol.	$Z_1 = 1 e^{i\frac{\pi}{4}} = \frac{1}{\sqrt{2}} + i \cdot \frac{1}{\sqrt{2}}$
	$\frac{1}{\sqrt{2}} = 1 e^{-(0)}1 + 0i$
	$Z_3 = 1 e^{-i\frac{\pi}{4}} = \frac{1}{\sqrt{2}} - \frac{i}{\sqrt{2}}$
	$\overline{Z}_1 Z_2 = \left(\frac{1}{\sqrt{2}} - \frac{i}{\sqrt{2}}\right) (1)$
	$\overline{Z}_2 Z_3 = 1 \left(\frac{1}{\sqrt{2}} - \frac{i}{\sqrt{2}} \right)$
	$\overline{Z}_{3}Z_{1} = \left(\frac{1}{\sqrt{2}} + \frac{i}{\sqrt{2}}\right) \left(\frac{1}{\sqrt{2}} + \frac{i}{\sqrt{2}}\right)$
	$\Rightarrow \overline{Z}_1 Z_2 + \overline{Z}_2 Z_3 + \overline{Z}_3 Z_1 = \left(\frac{1}{\sqrt{2}} - \frac{i}{\sqrt{2}}\right) + \left(\frac{1}{\sqrt{2}} - \frac{i}{\sqrt{2}}\right)$
	$+\left(\frac{1}{2}-\frac{1}{2}\right)+2i\left(\frac{1}{2}\right)$
	$=\sqrt{2}-\sqrt{2}i+i$
	$\Rightarrow \left \overline{Z}_{1}Z_{2} + \overline{Z}_{2}Z_{3} + \overline{Z}_{3}Z_{1}\right ^{2} = \left \sqrt{2} + i\left(-\sqrt{2} + 1\right)\right ^{2}$
	$= \left(\sqrt{\left(\sqrt{2}\right)^2 + \left(1 - \sqrt{2}\right)^2}\right)^2$
	$=5-2\sqrt{2}$
13.	(a, b) = $(5, -2)$ Let a coin is tossed thrice. Let the random variable x is tail follows head. Let the mean of x is μ and

variance is σ^2 . Find 64 (μ + σ^2). (1) 48 (3) 132

(2) 64 (4) 128

Answer (1)

JEE (Main)-	-2025 : Phase-	1 (22-01-2025)-M	Iorning Adda 24
Sol.			
	Xi	P_i	$g''(x) = \frac{f''(x)}{3} + f''(3 - x)$
ННН	0	$\frac{1}{8}$	$\Rightarrow g'(x) > 0$
ттт	0	-	\rightarrow $\mathcal{G}(\mathbf{X}) > 0$
TTT	0	$\frac{1}{8}$	$f'\left(\frac{3}{3}\right)-f'(3-x)>0$
HHT	1		
	•	<u>1</u> 8	$f'(x) > 0 \Rightarrow f'(x)$ is increasing
HTH	1		
		<u>1</u> 8	15. Let $\vec{b} = \lambda \hat{i} + 4\hat{k}, \lambda > 0$ and the projection vector of
ТНН	0		\vec{b} on $\vec{a} = 2\hat{i} + 2\hat{j} - \hat{k}$ is \vec{c} . If $ \vec{a} + \vec{c} = 7$, then the
		$\frac{1}{8}$	area of the parallelogram formed by vector \vec{b} and
TTH	0	1	
		$\frac{1}{8}$	\vec{c} is (in square units)
THT	1	$\frac{1}{8}$	(1) 8
			(2) 16
HTT	1	$\frac{1}{8}$	(3) 32
		8	(4) 64
$\mu = \Sigma P_i$	$x_i = \frac{1}{2}$		
	2		Answer (3)
$\sigma^2 = \Sigma P_1$	$P_i X_i^2 - \mu^2$		Sol. $\vec{c} = (\vec{b} \cdot \hat{a})\hat{a} = \frac{2\lambda - 4}{6}\vec{a}$
= 1	$-\frac{1}{4}=\frac{1}{4}$	100	6
2			$\left[\overline{z}, \overline{z}, \overline{z}, \overline{z}, \overline{z}, \overline{z}, \overline{z}, -4 \right] = 7$
$64\left(\frac{1}{2}+\right)$	$\left(\frac{1}{4}\right) = 64 \times \frac{3}{4} = 4$	8	$\therefore \vec{a} + \vec{c} = 7 \implies \vec{a} \left(1 + \frac{2\lambda - 4}{9}\right) = 7$
(-	• • •	10	
14. Let	$q(x) = 3f\left(\frac{x}{x}\right)$	$+f(3-x)\forall x \in (0,3)$	3) and $\left \frac{5+2\lambda}{9}\right \times 3 = 7 \implies 5+2\lambda = 21$
. ,	· /	n g(x) decreases	$\therefore \text{in interval} \qquad \because \lambda > 0 \implies \lambda = 8$
(0, α), th マ	ten α is	2 13	$\vec{z} = 4 \vec{z}$ and $\vec{b} = 4/2\hat{z}$
(1) $\frac{7}{4}$	1	(2) $\frac{2}{3}$	$\Rightarrow \vec{c} = \frac{4}{3}\vec{a} \text{ and } \vec{b} = 4(2\hat{i} - \hat{k})$
т	10		
(3) $\frac{9}{4}$		(4) $\frac{7}{3}$	$\vec{h}_{11} = \vec{h}_{12} = \vec{h}$
4	1	3	$\Rightarrow \vec{b} \times \vec{c} = \frac{16}{3} \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & 0 & 1 \\ 2 & 2 & -1 \end{vmatrix} = \frac{16}{3} (-2\hat{i} + 4\hat{j} + 4\hat{k})$
Answer (3)	(\mathbf{x})		2 2 - 1
Sol. $g(x) = 3$	$Bf\left(\frac{x}{3}\right) + f(3-x)$		$\Rightarrow \left \vec{b} \times \vec{c} \right = \frac{32}{3} \left -\hat{i} + 2\hat{j} + 2\hat{k} \right = 32$
			$\rightarrow \mu \times c = \frac{1}{3} -i+2j+2k = 32$
g'(x) = 3	$3 \cdot \frac{1}{3} f'\left(\frac{3}{3}\right) - f'(3)$	(B-x)	\Rightarrow Area of parallelogram formed by \vec{b} and \vec{c}
= f'	$\left(\frac{x}{3}\right)-f'(3-x)$		$\Rightarrow \left \vec{b} \times \vec{c} \right = 32$
	<-/		

SECTION - B

Numerical Value Type Questions: This section contains 5 Numerical based questions. The answer to each question should be rounded-off to the nearest integer.

21. If *A* be a 3 × 3 square matrix such that det(*A*) = -2. If det(3 adj(-6 adj(3*A*)) = $2^n \cdot 3^m$, where $m \ge n$, then 4m + 2n is equal to

Answer (104)

Sol. Concept: A. adj(A) = |A|I, $det(\lambda A) = \lambda^n det(A)$

- \Rightarrow det(A) = |A|^{*n*-1}, where *n* is order
- \Rightarrow det(3 adj(-6 adj(3A)))
 - $= 3^3 \cdot det(adj(-6 adj(3A)))$
 - $= 3^3 \cdot (-6 \operatorname{adj}(3A)))^2$
 - $= 3^3 \cdot (-6)^6 |3A|^4$
 - $= 3^9 \cdot 2^6 \cdot 3^{12} \cdot (-2)^4$
 - $= 3^{21} \cdot 2^{10}$
- ∴ *n* = 10, *m* = 21
- ∴ 4*m* + 2*n* = 104

22. If a_1 , a_2 , a_3 ..., a_n are in geometric progression such that $a_1a_5 = 28$, $a_2 + a_4 = 29$, then the value of a_6 is

- (1) 635 (2) 784 (2) 979 (4) 999
- (3) 872 (4) 898

Answer (2)

Sol. *a*₁*a*₅ = 28 ⇒ *a*²*r*⁴ = 28

$$a_{2} + a_{4} = 29 \Rightarrow ar + ar^{3} = 29$$

ar, ar^3 are roots of $k^{2} - 29k + 28 = 0$
$$\Rightarrow k = 1, k = 28$$

$$\Rightarrow ar = 1, ar^{3} = 28$$

$$\Rightarrow r^2 = 28, a^2 = \frac{1}{28}$$

$$a_6 = ar^5 \implies a_6^2 = a^2r^{10} = \frac{1}{28} \times (28)^5 = (28)^4$$

$$\Rightarrow$$
 $a_6 = (28)^2 = 784$

23. 24.

25.

- 19 -