Arithmetic Progression:

- An arithmetic progression (AP) is a list of numbers in which each term is obtained by adding a fixed number d to the preceding term, except the first term a. The fixed number d is called its common difference.
- The general form of an AP is $a, a + d, a + 2d, a + 3d, \dots$
- In the list of numbers a_1 , a_2 , a_3 ,... if the differences $a_2 a_1$, $a_3 a_2$, $a_4 a_3$,... give the same value, i.e., if $a_{k+1} a_k$ is the same for different values of k, then the given list of numbers is an AP.
- The nth term an (or the general term) of an AP is $a_n = a + (n-1)d$, where a is the first term and d is the common difference. Note that $a_1 = a$.
- The sum S_n of the first n terms of an AP is given by

$$S_n = \frac{n}{2} [2a + (n-1)d]$$

• If *l* is the last term of an AP of n terms, then the sum of all the terms can also be given by

$$S_n = \frac{n}{2}[a+1]$$

- Sometimes S_n is also denoted by S.
- If S_n is the sum of the first n terms of an AP, then its *n*th term a_n is given by

$$a_n = S_n - S_{n-1}$$

Q1. Write the nth term of the A.P. $\frac{1}{m}$, $\frac{1+m}{m}$, $\frac{1+2m}{m}$, Sol. Given AP is $\frac{1}{m}$, $\frac{1+m}{m}$, $\frac{1+2m}{m}$, We have, $a = \frac{1}{m}$ Now, $d = \frac{1+m}{m} - \frac{1}{m} = \frac{1+m-1}{m} = 1$ We know that $a_n = a + (n-1)d$ $\therefore a_n = \frac{1}{m} + (n-1)1 = \frac{1}{m} + n - 1$ Hence, $a_n = \frac{1+(n-1)m}{m}$

Q2. For what value of k will k + 9, 2k - 1 and 2k + 7 are the consecutive terms of an A.P.? Sol. We have

Consecutive terms of an AP are k + 9, 2k - 1, 2k + 7Then, $\Rightarrow (k + 9) + (2k + 7) = 2(2k - 1)$ {since if a, b, c are in AP, then a + c = 2b} $\Rightarrow k + 9 + 2k + 7 = 4k - 2$ $\Rightarrow 3k + 16 = 4k - 2$ $\Rightarrow 16 + 2 = 4k - 3k$ $\Rightarrow k = 18$

Q3. If S_n , the sum of first *n* terms of an A.P. is given by $S_n = 3n^2 - 4n$. Find the n^{th} term.

Sol. Given

 $S_n = 3n^2 - 4n$ We have $a_1 = S_1 = 3(1)^2 - 4(1) = 3 - 4 = -1$ $a_2 = S_2 - S_1$ $= [3(2)^2 - 4(2)] - (-1) = 12 - 8 + 1 = 5$ $\therefore d = a_2 - a_1 = 5 - (-1) = 6$ Hence, $a_n = -1 + (n - 1) \times 6 = 6n - 7$

Q4. The sum of the first 7 terms of an A.P. is 63 and that of its next 7 terms is 161. Find the A.P.

Sol. Given

$$S_7 = 63$$

We have,
 $S_n = \frac{n}{2} [2a + (n - 1)d]$
So,

$$S_{7} = \frac{7}{2}[2a + 6d] = 63$$

Or

$$2a + 6d = 18 \qquad ... (i)$$

Now, sum of 14 terms is:

$$S_{14} = S_{first \ 7 \ terms} + S_{next \ 7 \ terms}$$

$$= 63 + 161 = 224$$

$$\Rightarrow 2a + 13d = 32 \qquad ... (ii)$$

On subtracting (i) from (ii), we get

$$(2a + 13d) - (2a + 6d) = 32 - 18$$

$$\Rightarrow 7d = 14$$

$$\Rightarrow d = 2$$

Putting the value of d in (i), we get

$$2a + 6(2) = 18$$

$$2a = 18 - 12$$

$$a = 3$$

Hence, the A.P. will be: 3, 5, 7, 9, ...

Q5. Show that $(a - b)^2$, $(a^2 + b^2)$ and $(a + b)^2$ are in A.P.

Sol. Given

 $(a - b)^2$, $(a^2 + b^2)$ and $(a + b)^2$ Common difference, $d_1 = (a^2 + b^2) - (a - b)^2 = a^2 + b^2 - (a^2 + b^2 - 2ab)$ $= a^2 + b^2 - a^2 - b^2 + 2ab = 2ab$ and $d_2 = (a + b)^2 - (a^2 + b^2)$ $= a^2 + b^2 + +2ab - a^2 - b^2$ = 2abSince, $d_1 = d_2$ Hence, $(a - b)^2$, $(a^2 + b^2)$ and $(a + b)^2$ are in A.P.

Q6. How many terms of the A.P. $-6, \frac{-11}{2}, -5, -\frac{9}{2}...$ are needed to give their sum zero.

Sol. Given a = -6 and $d = -\frac{11}{2} - (-6) = \frac{1}{2}$ Since, $S_n = \frac{n}{2} [2a + (n-1)d]$ Let sum of *n* terms be zero. $\therefore S_n = 0$ or, $\frac{n}{2} [2 \times -6 + (n-1)\frac{1}{2}] = 0$ or, $\frac{n}{2} [-12 + \frac{n}{2} - \frac{1}{2}] = 0$ or, $\frac{n}{2} [\frac{n}{2} - \frac{25}{2}] = 0$ or, $n^2 - 25n = 0$ n(n-25) = 0n = 25 as $n \neq 0$ Hence, required terms are 25.

Q7. In a certain A.P. 32th term is twice the 12th term. Prove that 70th term is twice the 31st term.

Sol. Let the 1st term be a and common difference be 'd'.

According to the question, $a_{32} = 2a_{12}$ $\therefore a + 31d = 2(a + 11d)$ a + 31d = 2a + 22d a = 9dAgain, $a_{70} = a + 69d$ = 9d + 69d = 78d $\therefore a_{31} = a + 30d$ = 9d + 3d = 39dHence, $a_{70} = 2a_{31}$ Hence Proved.

- Q8. The 8th term of an A.P. is zero. Prove that its 38th term is triple of its 18th term.
- Sol. Given, $a_8 = 0$ or, a + 7d = 0 or, a = -7d

or,
$$a_{38} = a + 37d$$

- or, $a_{38} = -7d + 37d = 30d$ And, $a_{18} = a + 17d$ = -7d + 17d = 10d
- or, $a_{38} = 30d = 3 \times 10d = 3 \times a_{18}$ $\therefore a_{38} = 3a_{18}$. Hence Proved.
- Q9. Show that the sum of all terms of an A.P. whose first term is a, the second term is b and the last term is c is equal to $\frac{(a+c)(b+c-2a)}{2(b-a)}$.

Sol. Given, first term, A = a and second term = b \Rightarrow common difference, d = b - a Last term, l = c $\Rightarrow A + (n - 1)d = c$ [By using, l = a + (n - 1)d] $\Rightarrow a + (n - 1)d = c$ $\Rightarrow a + (n - 1)(b - a) = c$ $\Rightarrow (a - b)(n - 1) = c - a$ $\Rightarrow n - 1 = \frac{c - a}{b - a}$ $\Rightarrow n = \frac{c - a}{b - a} + 1 = \frac{c - a + b - a}{b - a}$ $\Rightarrow n = \frac{b + c - 2a}{b - a}$ Now sum $= \frac{n}{2}[A + l] = \frac{(b + c - 2a)}{2(b - a)}[a + c]$ $= \frac{(a + c)(b + c - 2a)}{2(b - a)}$

Q10. For what value of n, are the *n*th terms of two A.Ps 63, 65, 67, ... and 3, 10, 17, ... equal?

Sol. Let a, d and A, D be the 1st term and common different of the 2 A.P.s respectively. Here,

a = 63, d = 2 A = 3, D = 7Given, $A_n = A_n$ $\Rightarrow a + (n - 1)d = A + (n - 1)D$ $\Rightarrow 63 + (n - 1)2 = 3 + (n - 1)7$ $\Rightarrow 63 + 2n - 2 = 3 + 7n - 7$ $\Rightarrow 61 + 2n = 7n - 4$ $\Rightarrow 5n = 65$ $\Rightarrow n = 13$

To solve such more questions click on the link below: https://drive.google.com/file/d/1hXNNA6gOtCOPEUyJ9x-vvPt6eeqPu5xO/view?usp=drive_link