CHEMISTRY Thermodynamics

1 . 2 .	 In which of the entropy increases A. A liquid evapore B. Temperature lowered from 2 NaHCO_{3(s)} → Na₂ C. Cl_{2(g)} → 2Cl_(g) Choose the corroptions given below (a) A, B and D (c) C and D Match the List - 1 	the following processes s? orates to vapour. of a crystalline solid 130 K to 0 K. $CO_{3(s)} + CO_{2(g)} + H_2O_{(g)}$ rect answer from the ow: (2024) (b) A, C and D (d) A and C I with List II. List -II	 4. Consider the following reaction: 2H₂(g) + O₂(g) → 2H₂O(g) Δ_rH° = -483.64 kJ What is the enthalpy change for decomposition of one mole of water? (Choose the right option). (2023) (a) 120.9 kJ (b) 241.82 kJ (c) 18 kJ (d) 100 kJ 5. The equilibrium concentrations of the species in the reaction A + B ≓ C + D are 2, 3, 10 and 6 mol L⁻¹, respectively at 300 K. ΔG° for the reaction is: (R = 2 cal/mol K) (2023)
	(Process)	(Conditions)	(a) -137.26 cal (b) -1381.80 cal (c) -13.73 cal (d) 1372.60 cal
	A. Isothermal process	I. No heat exchange	6. Which amongst the following options is the correct relation between change in
	B. Isochoric process	II. Carried out at constant temperature	enthalpy and change in internal energy? (2023) (a) $\Delta H = \Delta U + \Delta n_g RT$
	C. Isobaric process	III. Carried out at constant volume	(b) $\Delta H - \Delta U = -\Delta nRT$ (c) $\Delta H + \Delta U = \Delta nR$ (d) $\Delta H = \Delta U - \Delta n_g RT$
	D. Adiabatic process	IV. Carried out at constant pressure	7. One mole of an ideal gas at 300 K is expanded isothermally from 1 L to 10 L volume. ΔU for this process is: (2022) (Use R = 8.314 J k ⁻¹ mol ⁻¹)
3.	Choose the corr options given bela (a) A-IV, B-II, C-II (b) A-I, B-II, C-III (c) A-II B-III, C-II (d) A-IV, B-III, C-II (c) 100 calories (d) 0 calories	rect answer from the ow: (2024) III, D-I I, D-IV V, D-I -II, D-I ne during reversible nsion of one mole of 25°C from pressure of 20 0 atmosphere is: K ⁻¹ mol ⁻¹) (2024) ries es	(Use R = 8.314 J k ⁻¹ mol ⁻¹) (a) 0 J (b) 1260 J (c) 2520 J (d) 5040 J 8. A vessel contains 3.2 g of dioxygen gas STP (273.15 K and 1 atm pressure). The gas is now transferred to another vesses at constant temperature, where pressure becomes one third of the origin pressure. The volume of new vessel in is: (2022) (Given: molar volume at STP is 22.4 L) (a) 67.2 (b) 6.72 (c) 2.24 (d) 22.4

9.	Which of the following p-V curve	13.	The correct option for free expansion of		
	(2022)		an ideal gas under adiabatic condition is: (2020)		
	(a)		(a) $q = 0, \Delta T < 0$ and $w > 0$		
	Isotherman		(b) $q < 0, \Delta I = 0$ and $w = 0$ (c) $q > 0, \Delta T > 0$ and $w > 0$		
	p		(c) $q \ge 0, \Delta T \ge 0$ and $w \ge 0$ (d) $a = 0, \Delta T \ge 0$ and $w \ge 0$		
		14.	If for a certain reaction $\Delta_r H$ is 30 kJ mol-		
			¹ at 450 K, the value of $\Delta_r S$ (in JK ⁻¹ mol ⁻¹		
	V		¹) for which the same reaction will be		
	(b)		spontaneous at the same temperature is		
	Isothermal		(2020 Covid Re-NEET)		
		1	(a) -33 (b) 33		
	F	15	(c) -70 (d) 70		
		15.	At standard conditions, if the change in the enthalpy for the following reaction is		
	V		-109 kJ mol^{-1}		
	(c)		$H_{2(q)} + Br_{2(q)} \rightarrow 2HBr_{(q)}$		
	l Isothermal	V	Given that bond energy of H_2 and Br_2 is		
		× 1	435 kJ mol ⁻¹ and 192 kJ mol ⁻¹ ,		
	p		respectively, what is the bond energy (in		
			kJ mol ⁻¹) of HBr?(2020 Covid Re-NEET)		
	V		(a) 736 (b) 518 (1) 262		
	(b)	16	(c) 259 (d) 368		
	(a)	10.	K expands from 0.1 L to 0.25 L against a		
			constant external pressure of 2 bar. The		
	p		work done by the gas is (Give that 1 L bar		
			= 100 J) (2019)		
			(a) -30 J (b) 5 kJ		
10	Which one among the following is the		(c) 25 J (d) 30 J		
10.	correct option for right relationship	17.	In which case change in entropy is		
	between C_P and C_V for one mole of ideal	1	(2019)		
	gas? (2021)		(b) Expansion of a gas at constant		
	(a) $C_P - C_V = R$		temperature		
	(b) $C_P - RC_V$ (c) $C_V = RC_P$	1.1	(c) Sublimation of solid to gas		
	(d) $C_P + C_V = R$		(d) $2H(g) \rightarrow H_2(g)$		
11.	For irreversible expansion of an ideal gas	18.	The bond dissociation energies of X_2 , Y_2		
	under isothermal condition, the correct		and XY are in the ratio of $1: 0.5: 1. \Delta H$		
	option is: (2021) (a) $AU \neq 0 AS = \pm 0$		for the formation of XY is -200 kJ mol^{-1} .		
	(a) $\Delta U \neq 0$, $\Delta S_{total} \neq 0$ (b) $\Delta U = 0$, $\Delta S_{total} \neq 0$		The bond dissociation energy of λ_2 will be (2018)		
	(c) $\Delta U \neq 0, \Delta S_{total} = 0$		(a) 200 kJ mol^{-1}		
	(d) $\Delta U = 0, \Delta S_{total} = 0$		(b) 100 kJ mol^{-1}		
12.	For the reaction, $2Cl(g) \rightarrow Cl_2(g)$, the		(c) 400 kJ mol^{-1}		
	correct option is: (2020) (a) $A H > 0$ and $A S < 0$		(d) 800 kJ mol ⁻¹		
	(a) $\Delta_r H > 0$ unit $\Delta_r S < 0$ (b) $\Lambda_r H < 0$ and $\Lambda_r S < 0$				
	(c) $\Delta_r H < 0$ and $\Delta_r S < 0$				
	(d) $\Delta_r H > 0$ and $\Delta_r S > 0$				
		I 			
242	Adda247 PublicationsFor More Study Material				
			Visit: adda247.com		

19.	A gas is allowed to expand in a well insulated container against a constant external pressure of 2.5 atm from an initial volume of 2.50 L to a final volume of 4.50 L. The change in internal energy ΔU of the gas in joules will be: (2017-Delhi) (a) +505 J (b) 1136.25 J	23.	For a sample of perfect gas when its pressure is changed isothermally from P _i to P _f , the entropy change is given by: (2016-II) (a) $\Delta S = nRT \ln \left(\frac{P_f}{P_i}\right)$ (b) $\Delta S = nRT \ln \left(\frac{P_i}{P_f}\right)$ (c) $\Delta S = nR \ln \left(\frac{P_f}{P_i}\right)$ (d) $\Delta S = nR \ln \left(\frac{P_i}{P_f}\right)$ The correct thermodynamic conditions
	(c) $-500 J$ (d) $-505 J$	47.	for the spontaneous reaction at all
20.	For a given reaction, $\Delta H = 35.5 \text{ KJ mol}^{-1}$		temperatures is: (2016-II)
	and $\Delta S = 83.6 \text{ JK}^{-1} \text{mol}^{-1}$. The reaction is		(a) $\Delta H < 0$ and $\Delta S < 0$
	spontaneous at: (Assume that ΔH and ΔS		(b) $\Delta H < 0$ and $\Delta S = 0$
	do not vary with temperature)	100	(c) $\Delta H > 0$ and $\Delta S < 0$
	(a) $T > 208 K$		(d) $\Delta H < 0$ and $\Delta S > 0$
	(a) $T < 235 \text{ K}$ (b) $T < 425 \text{ K}$	25.	Consider the following liquid-vapour
	(c) $T > 425 K$		equilibrium. Liquid \rightarrow Vancur Which of the following
	(d) All temperatures		relations is correct? $(2016-I)$
21.	Of the following, the largest value of		(a) $\frac{d\ln P}{dlnP} = \frac{-\Delta H_v}{dlnP}$ (b) $\frac{d\ln P}{dlnP} = \frac{-\Delta H_v}{dlnP}$
	entropy at 25°C and 1 atm is that of :		(a) $\frac{dT^2}{dT^2} - \frac{T^2}{T^2}$ (b) $\frac{dT}{dT} - \frac{T^2}{RT^2}$
	(2017-Gujarat)		(c) $\frac{\mathrm{ding}}{\mathrm{d}T^2} = \frac{\mathrm{ding}}{\mathrm{R}T^2}$ (d) $\frac{\mathrm{ding}}{\mathrm{d}T} = \frac{\mathrm{ding}}{\mathrm{R}T}$
	(a) CH_4 (b) H_2	26.	The heat of combustion of carbon to CO_2
22	$(C) C_2 \Pi_6$ $(U) C_2 \Pi_2$		is -393.5 kJ/mol. The heat released
44.	conditions, the term "free energy" in		upon formation of 35.2 g of CO_2 from
	thermodynamics signifies :		(a) $+315$ kJ (b) -630 kJ
	(2017-Gujarat)		(c) -3.15 kJ (d) -315 kJ
	(a) Expansion work d <mark>one on th</mark> e system	27.	For the reaction, $X_2O_4(l) \rightarrow 2XO_2(g), \Delta U =$
	(b) Non-expansion work done by the		2.1 kcal, $\Delta S = 20 \text{ cal } K^{-1}$ at 300 K. Hence,
	system		ΔG is : (2014)
	(c) Expansion work done by the system		(a) -2.7 kcal (b) 9.3 kcal
	system	1	(c) –9.3 kcal (d) 2.7 kcal
	System		