Solutions

Adda247 Publications

S13. Ans.(d) Free expansion, since $P_{ext} = 0$ $w = -P_{ex}\Delta V = 0$; So, work done = 0 For adiabatic condition, q = 0From first law of thermodynamics $\Delta E = q + w$ $\therefore \Delta E = 0$ Internal energy of an ideal gas is a function of temperature : If internal energy remains constant $\therefore \Delta T = 0$ Thus (d) option is correct. **S14.** Ans.(d) For spontaneous reaction, $\Delta_r G$ must be less than zero So, $\Delta_r G = \Delta_r H - T \Delta_r S < 0$ or, $\Delta_r S > \frac{\Delta_r H}{T}$ $> \frac{30,000}{450} = 66.67 \, JK^{-1} \, mol^{-1}$ For reaction to be spontaneous the value of $\Delta_r S$ must be greater than 66.67 J that is 70 JK⁻¹ mol⁻¹ S15. Ans.(d) $H_2(g) + Br_2(g) \rightarrow 2HBr(g);$ $\Delta H = -109 k \ mol^{-1}$ ΔH = sum of bond energy of reactants – sum of bond energy of products $(BE_{H-H}) + (BE_{Br-Br}) - 2(BE_{H-Br})$ $-109 = (435) + (192) - 2(BE_{H-Br})$ $BE_{H-Br} = 368 \ kJ \ mol^{-1}$ **S16.** Ans.(a) $W_{irr} = -P_{ext}\Delta V = -2 \ bar \times (0.25 - 0.1)L$ S22. = -0.30 L-bar $= -0.30 \times 100$ J ⇒ -30 J S17. Ans.(d) For evaporation of water $\Delta S > 0$; (i) $\Delta S = +ve$ In expansion of gas at constant T (ii) $\Delta S > 0$; $\Delta S = +ve$ (iii) Solid \rightarrow gas ; Δ S = +ve $2\text{Hg} \rightarrow \text{H}_2(\text{g}), \Delta \text{S} < 0 \quad (:: \Delta n_g < 0)$ (iv) No. of particle decreases from reactant to product side. **S18.** Ans.(d) The reaction for $\Delta_f H^{\circ}(XY)$ $\frac{1}{2}X_2(g) + \frac{1}{2}Y_2(g) \to XY(g)$ S25. Bond energies of X₂, Y₂ and XY are x, $\frac{x}{2}$, x respectively $\therefore \quad \Delta H = \left(\frac{x}{2} + \frac{x}{4}\right) - \frac{x}{2} = -200$

On solving, we get $\Rightarrow \frac{x}{4} = -200$ \Rightarrow x = 800 kJ/mole **S19.** Ans.(d) $\Delta U = q + W$ For adiabatic process, q = 0 $\therefore \Delta U = W = -P. \Delta V$ = -2.5 atm × (4.50 - 2.50) L = -2.5×2 L-atm $\Rightarrow -5 \times 101.3$ J $= -506.5 \text{ J} \Rightarrow -505 \text{ J}$ **S20.** Ans.(c) $\Delta G = \Delta H - T \Delta S$ For spontaneous reaction, ΔG must be negative. For negative value of ΔG , ΔH should be less than $T\Delta S$. It is possible when T > 425 K. $\Delta H = 35.5 \text{ KJ/mol} = 35500 \text{ J/mol}$ $T\Delta S = (425) (83.6) = 35530$ $T\Delta S > \Delta H$ Hence, the reaction is spontaneous. **S21.** Ans.(c) The molecule having more number of bonds have largest value of entropy. \therefore C₂H₆ have large value of entropy. Ans.(b) Under isothermal reversible conditions, "free-energy" the term in thermodynamics signifies that "No expansion work done by the system". $-\Delta G_{system} = W_{non-expansion}$ **S23.** Ans.(d) For isothermal process $\Delta S = nRln \frac{P_i}{P_c}$ **S24.** Ans.(d) For any spontaneous process, $\Delta G = (-ve)$ and $\Delta S = (+ve)$ that is increase in entropy. So, at $\Delta H < 0$ and $\Delta S > 0$ at all temperatures according the reaction will be spontaneous. Ans.(b) $\frac{dlnP}{dT} = \frac{-\Delta H_v}{RT^2}$ (this is Clausis Clapeyron equation).

Adda247 Publications

For More Study Material Visit: adda247.com **S26.** Ans.(a) $C(s) + O_2 \rightarrow CO_2(g) \quad \Delta H = -393.5 \text{ KJ/mole}$ $\Delta H_r = \Delta H f_{CO_2}$ So heat of formation of CO₂ = 393.5 kJ/moleor we can say Heat released on formation of 44 gm CO₂ = 393.5 kJHeat released on formation of 35.2 gm of $CO_2 = \frac{393.5}{44} \times 35.2 = 314.8$ $\Rightarrow \simeq 315 \text{ kJ}$ **S27.** Ans.(a) $X_2O_4 \rightleftharpoons 2XO_2(g)$ $\Delta H = \Delta U + \Delta n_g R \times T$ $\Delta n_g = \text{ No. of moles of gaseous product - No. of moles of gaseous reactant}$ = 2 - 0 = 2 $\Delta H = 2.1 + \frac{2(2) \times 300}{1000}$ $= 2.1 + 1.2 \Rightarrow 3.3 \text{ K Cal}$ $\Delta G = \Delta H - T\Delta S = 3300 - 300 \times 20$ = -2700 cal = -2.7 kcal

Adda247 Publications

For More Study Material Visit: adda247.com