Solutions

Adda247 Publications

For More Study Material Visit: adda247.com

 $\frac{V_2}{V_1} - 1 = 1.1 - 1$ [: Subtract 1 from both sides] $\frac{\Delta V}{V} \times 100$ Percent increase $\frac{\Delta V}{V} = 10\%$ S14. Ans.(d) $\frac{P}{n} = \frac{RT}{M_{\cdots}}$ (Ideal gas equation) $\Rightarrow \rho = \frac{PM_w}{RT} = \frac{P \times (mN_A)}{kN_A T} = \frac{Pm}{kT}$ S15. Ans.(b) $PV^{x} = \text{constant}$ (Polytropic process) Heat capacity in polytropic process is given by $\left[C = C_v + \frac{R}{1-v}\right]$ Given that $PV^3 = \text{constant} \Rightarrow x = 3$...(1) Gas is monoatomic therefore $C_v = \frac{3}{2}R$...(2) by formula $C = \frac{3}{2}R + \frac{R}{1-3} = \frac{3}{2}R - \frac{R}{2} = R$ S16. Ans.(a) From Wein's displacement law $\lambda_m \propto \frac{1}{T}$ Now form sequence 'VIBGYOR' $(\lambda_m)_P < (\lambda_m)_R < (\lambda_m)_O$ So $T_P > T_R > T_O$

S17. Ans.(b) $\gamma = 1 + \frac{2}{f}$ Here degree of freedom \rightarrow n $\therefore \gamma = 1 + \frac{2}{n}$ S18. Ans.(b) Molecular mass M = 4.0 g $v_{\text{sound}} = \sqrt{\frac{\gamma RT}{M}} \Rightarrow \gamma = \frac{Mv^2}{RT} = 1.6$ So, $C_p = \gamma C_v \Rightarrow 1.6 \times 5$ $= 8 \, \text{IK}^{-1} \text{mol}^{-1}$ S19. Ans.(c) $P = \frac{\rho RT}{M} \Rightarrow M = \frac{\rho RT}{R}$ So, $\frac{M_A}{M_B} = \frac{\rho_A T_A P_B}{\rho_B T_B P_A} = (1.5)(1)\left(\frac{1}{2}\right) \Rightarrow \frac{M_A}{M_B} = \frac{3}{4}$ S20. Ans.(b) Mean free path $\lambda_m = \frac{1}{\sqrt{2\pi}d^2n}$ Where $d = \text{diameter of molecule} \Rightarrow \lambda_m \propto$ $\frac{1}{r^2}$ S21. Ans.(b) Number of moles in 1g He = $\frac{1}{4}$ Volume of the gas remains constant so we choose $\Delta Q = nC_v \Delta T$ Amount of heat energy required to raise its temperature from T_1K to T_2K $= nC_v \Delta T$

$$= \left(\frac{1}{4}\right) \left(\frac{3}{2}R\right) (T_2 - T_1) = \frac{3}{8}k_B N_A (T_2 - T_1)$$

Adda247 Publications

For More Study Material Visit: adda247.com