CHEMISTRY Solutions

1.	The Henry's law constant (K_H) values of	6.	The correct option for the value of vapour
	three gases (A, B, C) in water are 145, 2 \times		pressure of a solution at 45°C with
	10^{-5} and 35 kbar, respectively. The		benzene to octane in molar ratio 3 : 2 is:
	solubility of these gases in water follow		(2021)
	the order: (2024)		[At 45°C vapour pressure of benzene is
	(a) $B > C > A$ (b) $A > C > B$		280 mm Hg and that of octane is 420 mm
	(c) $A > B > C$ (d) $B > A > C$		Hg. Assume Ideal gas]
2.	The plot of osmotic pressure (π) vs		(a) 168 mm of Hg
	concentration (mol L-1) for a solution		(b) 336 mm of Hg
	gives a straight line with slope 25.73 L		(c) 350 mm of Hg
	bar mol^{-1} . The temperature at which the		(d) 160 mm of Hg
	osmotic pressure measurement is done	7.	The mixture which shows positive
	is: (2024)		deviation from Raoult's law is: (2020)
	$(\text{Use R} = 0.083 \text{ L bar mol}^{-1} \text{ K}^{-1})$		(a) Benzene + Toluene
	(a) 310°C (b) 25.73°C		(b) Acetone + Chloroform
	(c) 12.05° C (d) 37° C		(c) Chloroethane + Bromoethane
3.	Given below are two statements: One is		(d) Ethanol + Aceton
	labelled as Assertion (A) and the other is	8.	The freezing point depression constant
	labelled as Reason (R).		(K_f) of benzene is 5.12 K kg mol ⁻¹ . The
	Assertion (A): Helium is used to dilute		freezing point depression for the solution
	oxygen in diving apparatus.		of molality 0.078 m containing a non-
	Reason (R): Helium has high solubility		electrolyte solute in benzene is (rounded
	In O_2 .		off up to two decimal places): (2020)
	In the light of the above statements,		(a) 0.80 K (b) 0.40 K
	from the entire given below (2002)	0	$ \begin{array}{c} (c) 0.00 \text{ K} \\ \text{If } \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $
	If official the options given below: (2023)	9.	li 8 g 01 a non-electrolyte solute is
	(a) Bould (A) and (A) are true but (A) is NOT the correct explanation of (A)		its vapour pressure to 80% the molor
	(b) (A) is true but (P) is folce	1	moss (in a mol. 1) of the solute is
	(c) (A) is false but (R) is true		Given that molar mass of n-octane is
	(d) Both (A) and (R) are true and (R) is		114 g mol^{-1} (2020 Covid Re-NEET)
	the correct explanation of (A)		(a) 60
4	Which amongst the following aqueous		(a) 00
	solution of electrolytes will have		(c) 20
	minimum elevation in boiling point?		(d) 40
	Choose the correct option: (2023)	10.	Isotonic solutions have same
	(a) 0.05 M NaCl (b) 0.1 M KCl		(2020 Covid Re-NEET)
	(c) 0.1 M MgSO_4 (d) 1 M NaCl		(a) Freezing temperature
5.	The following solutions were prepared by		(b) Osmotic pressure
	dissolving 10 g of glucose $(C_{\ell}H_{12}O_{\ell})$ in		(c) Boiling temperature
	250 ml of water (P_1), 10 g of urea		(d) Vapour pressure
	(CH_4N_2O) in 250 ml of water (P ₂) and 10 g	11.	For an ideal solution, the correct option
	of sucrose $(C_{12}H_{22}O_{11})$ in 250 ml of water	-	is: (2019)
	(P_3) . The right option for the decreasing		(a) $\Delta_{mix} S = 0$ at constant T and P
	order of osmotic pressure of these		(b) $\Delta_{mix} V \neq 0$ at constant T and P
	solutions is: (2021)		(c) $\Delta_{min} H = 0$ at constant T and P
	(a) $P_1 > P_2 > P_3$ (b) $P_2 > P_3 > P_1$		(d) $A_{min} G = 0$ at constant T and P
	(c) $P_3 > P_1 > P_2$ (d) $P_2 > P_1 > P_3$		
0.40	Adda247 P	ublicat	ions For More Study Material

12. 13. 14.	The mixture that forms maximum boiling azeotrope is: (2019) (a) Water + Nitric acid (b) Ethanol + Water (c) Acetone + Carbon disulphide (d) Heptane + Octane If molality of the dilute solution is doubled, the value of molal depressin constant (K_f) will be: (2017-Delhi) (a) Unchanged (b) Doubled (c) Halved (d) Tripled Which of the following is dependent on temperature? (2017-Delhi) (a) Weight percentage (b) Molality (c) Molality (d) Mole fraction	20. 21.	 (b) Not enough information is given to make a prediction (c) The vapour will contain a higher percentage of benzene (d) The vapour will contain a higher percentage of toluene What is the mole fraction of the solute in a 1.00 m aqueous solution? (2015 Re) (a) 0.0177 (b) 0.177 (c) 1.770 (d) 0.0354 Which one of the following electrolytes has the same value of van't Hoff's factor (i) as that of Al₂(SO₄)₃ (if all are 100% ionized)? (2015) (a) K₃[Fe(CN)₆] (b) Al(NO₃)₃ (c) K₁[Fe(CN)₆] (d) K₂SO₄
15.	Toluene in the vapour phase is in equilibrium with a solution of benzene and toluene having mole fraction of toluene 0.50. If vapour pressure of pure benzene is 119 torr and that of toluene is 37.0 torr at the same temperature, mole fraction of toluene in vapour phase will be: (2018-Gujarat) (a) 0.325 (b) 0.462 (c) 0.237 (d) 0.506 Which one of the following is incorrect for ideal solution? (2016-II) (a) $\Delta P = P_{obs} - P_{calculated by Raoult's law} = 0$ (b) $\Delta G_{mix} = 0$ (c) $\Delta H_{mix} = 0$	22. 23.	(c) $K_4[Fe(CN)_6]$ (d) K_2SO_4 Which one is not equal to zero for an ideal solution? (2015) (a) ΔS_{mix} (b) ΔV_{mix} (c) $\Delta P = P_{observed} - P_{Raoult}$ (d) ΔH_{mix} The boiling point of 0.2 mol kg ⁻¹ solution of X in water is greater than equimolal solution of Y in water. Which one of the following statements is true in this case? (2015) (a) Molecular mass of X is greater than the molecular mass of Y (b) Molecular mass of X is less than the
	(d) $\Delta U_{mix} = 0$		molecular mass of Y
17. 18.	The van't Hoff factor (1) for a dilute aqueous solution of the strong electrolyte barium hydroxide is: (2016-II) (a) 2 (b) 3 (c) 0 (d) 1 At 100°C, the vapour pressure of a solution of 6.5 g of a solute in 100 g water is 732 mm. If $K_h = 0.52$, the boiling point	24.	 (c) Y is undergoing dissociation in <i>water</i> while X undergoes no change (d) X is undergoing dissociation in water Of the following 0.10 m aqueous solutions, which one will exhibit the largest freezing point depression? (2014)
19.	of this solution will be: (2016-I) (a) 103°C (b) 101°C (c) 100°C (d) 102°C Which of the following statements about the composition of the vapour over an ideal 1:1 molar mixture of benzene and toluene is correct? Assume that the temperature is at 25°C. (Given, vapour pressure data at 25°C, benzene = 12.8 kPa, toluene = 3.85 kPa) (2016) (a) The vapour will contain equal amounts of benzene and toluene	25.	(a) $C_6H_{12}O_6$ (b) $Al_2(SO_4)_3$ (c) K_2SO_4 (d) KCl How many grams of concentrated nitric acid solution should be used to prepare 250 mL of 2.0 M HNO ₃ ? The concentrated acid is 70% HNO ₃ . (2013) (a) 70.0 g of conc. HNO ₃ (b) 54.0 g conc. HNO ₃ (c) 45.0 g conc. HNO ₃ (d) 90.0 g conc. HNO ₃

Adda247 Publications