Solutions

S1. Ans.(d)

 $LaH_{2.87} \rightarrow Non-stoichiometric$

 \rightarrow Metallic/Interstitial hydride.

S2. Ans.(b)

Coke: It is used as reducing agent in carbon reduction methods. (in metallurgical process)

Diamond: It is a allotrope of carbon in which each carbon is sp³ hybridised.

Fullerene: It contains pentagonal & hexagonal rings (cage like structure)

Graphite: It is soft solid because graphite layers are bonded with weak Vander Wall attractions.

S3. Ans.(b)

F-1, N-3, Na⁺ and O-2

all ions are isoelectronic containing 10e-

 $Z_{\rm eff} \longrightarrow Na^{\scriptscriptstyle +} > F^{\scriptscriptstyle -} > 0^{-2} > N^{-3}$

order of radius $\rightarrow N^{-3} > 0^{-2} > F^- > Na^+$

 \rightarrow Nitrogen to achieve Noble gas configuration by gaining 3e⁻ and form N^{-3}

S4. Ans.(a)

 $A \rightarrow$ Peroxodisulphuric acid

 $B \rightarrow Sulphuric acid$

 $C \rightarrow Pyrosulphuric \ acid \ H_2S_2O_7$

A-IV, B-I, C-II, D-III

S9. Ans.(d)

Each boron atoms in diborane uses sp³ hybrid orbitals for bonding.

S10. Ans.(b)

Compound	Boiling point (K)
H ₂ O	373
H_2S	213
H_2Se	232
H_2Te	269

The boiling points of these hybrids not exactly increases with increase in molar mass.

H₂O has maximum boiling point due to intermolecular hydrogen bonding.

S11. Ans.(c)

Dry ice, $CO_2(s)$, is used as refrigerant

C₆₀ contains 20 six membered rings, 12 five membered rings statement 3 and 4 are correct.

S12. Ans.(a)

CO is Neutral oxide

BaO is Basic oxide

Al₂O₃ is Amphoteric oxide

Cl₂O₇ is Acidic oxide

S13. Ans.(b)

Carbon monoxide binds with Hb to form 300 times more stable compound carboxyhaemoglobin than oxyhaemoglobin complex.

S14. Ans.(d)

CO_2	:	acidic
SnO_2	:	amphoteric

 SiO_2 : acidic

GeO₂ : acidic

S15. Ans.(d)

Due to presence of vacant d-orbital in si, Ge and Sn they form species like SiF_6^{2-} , $[GeCl_6]^2$, $[Sn(OH)_6]^{2-}$.

 $SiCl_6^{2-}$ does not exist because six large chloride ions cannot be accommodated around Si⁴⁺ due to its small size.

S16. Ans.(a)

PbF₄ is ionic in nature, because cation is bigger and anion is smaller.

 SiF_4 is easily hydrolysed because it has unoccupied 3d orbital that are able to accept electron pairs from the oxygen atoms on water to form bond.

 $SiCl_4 + 3H_2O \rightarrow H_2SiO_3 + 4HCl$

 GeX_4 is more stable than GeX_2 as in GeX_4 all the orbitals are fully filled.

SnF₄ is ionic in nature as F atom is very small and Sn atom is very large. So, it is ionic in nature according to Fajan's rule.

S17. Ans.(c)

Group 13 order of atomic radius is not regular due to transition contraction.

So order is: B < Ga < Al < In < Tl

S18. Ans.(d)

∴ 'B' has no vacant d-orbitals in its valence shell, so it can't extend its covalency beyond 4, i.e., 'B' cannot form the ion like MF_6^{3-} i.e. BF_6^{3-} .

Hence, the correct option is (d).

S19. Ans.(b)

 Sn^{2+} is reducing while Pb⁴⁺ is oxidizing. This is because of absence of f-orbital (fully filled) in Sn^{2+} and presence in Pb⁴⁺ due to which Pb⁴⁺ show inert pair effect but not Sn^{2+} .

S20. Ans.(b)

+1 oxidation state increases down the group as the fully filled d- and f- orbitals will get added due to which inert pair effect will come into role.

T1 > In > Ga > A1 > B

For More Study Material Visit: adda247.com