

UKPSCForest Ranger

Previous Year Paper2015 Mains Statistics

Test Prime

ALL EXAMS, ONE SUBSCRIPTION

70,000+ Mock Tests

600+ Exam Covered

Personalised Report Card

Previous Year Papers

Unlimited Re-Attempt

500% Refund

ATTEMPT FREE MOCK NOW

ञन द्वीत्राधिकारी (मुख्य) परीद्या-2015

No. of Printed Pages: 8

VRA- 22

2015

सांख्यिकी

STATISTICS

निर्धारित समय : तीन घण्टे]

[पूर्णांक : 200

Time allowed: Three Hours!

[Maximum Marks: 200

नोट :

- इस प्रश्न-पत्र में दो खण्ड 'अ' तथा 'ख' हैं । प्रत्येक खण्ड में चार प्रश्न हैं । किन्हीं पाँच प्रश्नों के उत्तर दोजिए, प्रत्येक खण्ड से कम से कम दो प्रश्न अवश्य होने चाहियें ।
- (ii) सभी प्रश्नों के अंक सपान हैं।
- (iii) एक प्रश्न के सभी भागों का उत्तर अनिवार्यतः एक साथ दिया जाय ।
- (iv) केवल नॉन-प्रोप्रामेबल केलकुलेटर ही अनुमन्य है ।

Note:

- (i) This question paper has two sections 'A' and 'B'. Every section has four questions, attempt any five questions. At least two questions should be from every section.
- (ii) All questions carry equal marks.
- (iii) All the part of a question must be answered together.
- (iv) Only Non-programmable calculator is allowed.

खण्ड – 'अ'

SECTION - 'A'

- (अ) एक सिक्का इस प्रकार भारित है, जिससे कि P(H) = 2/3 और P(T) = 1/3 है । सिक्के को उछाला जाता है और यदि शीर्ष (Head) आता है तो एक संख्या 1 से 10 में से चुनी जाती है और यदि पुच्छ (Tail) आता है तो एक संख्या 1 से 5 में से चुनी जाती है । किसी सम संख्या को चुनने की प्रायिकता क्या होगी ?
 - (ब) (i) एक आवृत्ति बंटन के प्रेक्षणों का बिन्दुओं -1 ब +1 से विचलन वर्ग माध्य क्रमश: 25 व 13 हैं । बंटन का माध्य व प्रसरण ज्ञात कीजिए ।
 - (ii) बाउले के वैषम्य गुणांक की परिभाषा दीजिये तथा वह परिस्थितियाँ बताइये जहाँ यह उपयोगी है । इसकी सीमाएँ भी निर्धारित कीजिये । 1 + 2 + 2
 - (iii) किसी बंटन में E(X) = 10 व E(X²) = 109 है । चेबीचेव असमिका का प्रयोग करके प्रायिकता P[4 < X < 16] का निम्न परिवन्ध निर्धारित करिए ।
 - (iv) स्वेच्छ बिन्दु आघूर्ण व केन्द्रीय आघूर्ण की परिभाषा दीजिये । दिखाइये कि केन्द्रीय आघूर्ण मूल,
 बिन्दु परिवर्तन से स्वतंत्र किन्तु अनुमाप परिवर्तन से स्वतंत्र नहीं होता है ।
 2 + 3
 - (a) Suppose a coin is weighted so that P(H) = 2/3 and P(T) = 1/3. The coin is tossed and if head appears, a number is selected at random from the numbers 1 to 10. If tail appears, a number is selected at random from the numbers 1 to 5. What is the probability that an even number is selected?

- (b) (i) In a frequency distribution, the mean square deviation of a set of observations about the points -1 and +1 are 25 and 13 respectively. Find the mean and variance of the distribution.
 - (ii) Define Bowley's measure of skewness and mention the situations where it is useful. Also determine its limits.
 - (iii) For a distribution E(X) = 10 and $E(X^2) = 109$. Using Tchebychev's inequality, determine the lower bound to the probability $P[4 \le X \le 16]$.
 - (iv) Define raw and central moments. Show that the central moments are independent of change of origin but not of scale
- (अ) दो याद्चिक चरों का संयुक्त प्रायिकता द्रव्यमान फलन निम्न है:

$$4 \times 5 = 20$$

35.			Y = y	
p(x, y)		0.	-1	2
	-1	c	2c	3c
X = x	0	2e	c	2c
	1	3c	3c	c

ज्ञात कीजिये (i) c का मान, (ii) Y का उपांत बंटन, (iii) p(0 ≤ X < 2, Y ≥ 1), (iv) E(X)

- (ब) (i) माना कि X~ Poisson (λ) यदि 2P(X = 1) = 3P(X = 0) हो तो बंटन का माध्य व बहुलक क्या होंगे ?
 2½ × 2 = 5
 - (ii) यदि X तथा Y स्वतंत्र N(0, 1) बंटित चर हैं तो $\frac{1}{\sqrt{2}}(X Y)$ का बंटन क्या होगा ? 5
 - (iii) यदि किसी यादृच्छिक चर का आघूर्ण जनक फलन $M_\chi(t) = \left(\frac{3}{4} + \frac{1}{4}\,e^t\right)^{16}$ है. तब $E(X^2)$ का मान ज्ञात कीजिये ।
 - (iv) उपयुक्त उदाहरण देते हुए समस्टित तथा प्रतिदर्शज में अन्तर स्पष्ट कीजिये । 5
- (a) The joint probability mass function of two random variables X and Y is given by

			Y = y	
p(x, y)	O		1	2
100	-1	c	2c	3c
X = x	0	2c	c	2c
	1	3c	3c	C

Find (i) the value of c, (ii) Marginal distribution of Y, (iii) $p(0 \le X \le 2, Y \ge 1)$, (iv) E(X)

- (b) (i) Let X~ Poisson (λ). If 2P(X = 1) = 3P(X = 0), then find the mean and mode of the distribution.
 - (ii) If X and Y be independently distributed each following N(0, 1), then what will be the distribution of $\frac{1}{\sqrt{2}}$ (X-Y)?
 - (iii) If a random variable has moment generating function $M_x(t) = \left(\frac{3}{4} + \frac{1}{4}c^t\right)^{16}$, then find the value of $E(X^2)$.
 - (iv) Giving suitable examples differentiate between parameter and statistic.

- 3. (अ) काई-वर्ग बंटन को परिभाषा दीजिये । माना कि $X \sim \chi^2(n)$, तब X का आधूर्ण जनक फलन ज्ञात कीजिये और दिखाइयें कि इसके rवें संचयी का मान $n \ 2^{r-1} \ (r-1)$! होंगा । 5+10+5=20
 - (ब) (i) दो स्वतंत्र चरों X व Y के प्रसरण क्रमश: V(X) = 9 व V(Y) = 16 हैं । यदि u = X + Y हो तथा V = X Y हो तब u और V के मध्य सहसम्बन्ध गुणांक क्या होगा ?
 - (ii) यदि b_{yx} और b_{xy} कमशः X पर Y का और Y पर X के समाश्रयण समीकरणों के समाश्रयण गुणांक हैं तो सिद्ध कीजिये कि $r=\sqrt{b_{yx}\cdot b_{xy}}$ जहाँ r सहसम्बन्ध गुणांक हैं । 5
 - (iii) किसी प्रसामान्य समष्टि से 9 आमाप के एक यादृच्छिक प्रतिदर्श का माध्य 10 व प्रसरण 16 पाया गया । यदि t(8, 0.05) = 1.82 और t(8, 0.025) = 2.262 हैं तो समष्टि माध्य का 95% विश्वास्थता अंतराल क्या होगा ?
 - (iv) F-प्रतिदर्शन, t-प्रतिदर्शन के साथ कैसे सम्बन्धित है ? F-प्रतिदर्शन की दो उपयोगिताएँ लिखिए । 2 + 3 = 5
 - (a) Define Chi-square distribution. Let $X \sim \chi^2(n)$, then find the moment generating function of X and show that its r^{th} cumulant is $n \ 2^{r-1} \ (r-1)$!
 - (b) (i) Two independent random variables X and Y have variances V(X) = 9 and V(Y) = 16 respectively. If u = X + Y and V = X - Y, then what will be the correlation between U and V.
 - (ii) If b_{yx} and b_{xy} are the regression coefficients of regression equations of Y on X and X on Y respectively, then prove that $r = \sqrt{b_{yx} \cdot b_{xy}}$ where r is the coefficient of correlation between X and Y.
 - (iii) The mean and variance of a sample of size 9 from a normal distribution are found to be 10 and 16 respectively. If t(8, 0.05) = 1.82 and t(8, 0.025) = 2.262, then what is the 95% confidence interval for population mean?
 - (iv) How is F-statistic related to t-statistic? Write two uses of F-statistic.
- 4. (अ) क्रैमर-राव असमिका का कथम दीजिए । यदि $x_1, x_2, ..., x_n$, बंटन

$$f(x,0) = \begin{cases} \frac{1}{\theta} e^{-x/\theta} \; ; \; 0 < x < \infty, \, \theta > 0 \\ 0 \; ; \; \; \text{3--ver} \end{cases},$$

ें से एक यादुच्छिक प्रतिदर्शज है, तो θ का निम्नतम प्रसरण प्रतिबन्ध ज्ञात कीजिए । 5 + 15 = 20

(ब) (i) n आमाप के एक प्रतिदर्श पर आधारित, जो कि बंटन

$$f(x, \theta) = (\theta + 1) x^{\theta}; 0 \le x \le 1, \theta > -1$$

से लिया गया है, समष्टित 🖯 का अधिकतम सम्भाव्य आकलक ज्ञात कीजिए ।

5

VRA-22

- (ii) माना कि $x_1, x_2, \dots x_n$ एक द्विपद बंटन B(1, p) से एक यादृष्टिक प्रतिदर्श है । $T = \sum\limits_{i=1}^n x_i$ निर्धारित कीजिए और दिखाइये कि $\frac{T(T-1)}{n(n-1)}$ भ p^2 का अनिभनत आकलक है ।
- (iii) चरघातांकी बंटन $f(x, \theta) = \frac{1}{\theta} e^{-x/\theta}$; $x \ge 0$ से एक प्रेक्षण परिकल्पना $H_0: \theta = 1$ विरुद्ध $H_1: \theta > 1$ का परीक्षण करने के लिये लिया गया यदि क्रांतिक क्षेत्र $\mathbf{w} = \{x: x > 2\}$ को तो परिकल्पना का आमाप क्या होगा ?
- (iv) सम्भावित अनुपात परीक्षण की व्याख्या कीजिये । इसके मुख्य गुण भी बताइये । 2 + 3 = 5
- (a) State Cramer-Rao Inequality. If x_1, x_2, \dots, x_n is a random sample from the distribution

$$f(x, \theta) = \begin{cases} \frac{1}{\theta} e^{-r/\theta} ; & 0 < x < \infty, \theta > 0 \\ 0 & \text{; otherwise} \end{cases}$$

find the minimum variance bound estimator of θ .

(b) (i) Find the maximum likelihood estimate of parameter θ , based on a sample of size n from the distribution:

$$f(x, \theta) = (\theta + 1) x^{\theta}; 0 \le x \le 1, \theta > -1$$

- (ii) Let $x_1, x_2, ..., x_n$ be a random sample from a binomial distribution B(1, p). Define $T = \sum_{i=1}^{n} x_i$ and prove that $\frac{T(T-1)}{n(n-1)}$ is an unbiased estimator of p^2 .
- (iii) One observation is drawn from exponential distribution $f(x, \theta) = \frac{1}{\theta} e^{-x/\theta}$; $x \ge 0$ to test the hypothesis $H_0: \theta = 1$ against $H_1: \theta > 1$. If the critical region is $w = \{x : x > 2\}$, what is size of the test?
- (iv) Explain likelihood ratio principle. Also state its important properties.

खण्ड – 'ब' SECTION – 'B'

 (अ) स्तरित प्रतिचयन में आनुपातिक व इष्टतम् नियतन की व्याख्या कीजिये । 30 आमाप का एक स्तरित प्रतिदर्श निम्न आकार के चार स्तरों से लेना हैं :

स्तर	· · · · · · · · · · · · · · · · · · ·	11	ш	IV
N_{h}	50	100	150	200
S_h	4	3	4	2

- प्रत्येक स्तर से आनुपातिक व इष्टतम नियतन द्वारा लिये जाने वाले प्रतिदर्श आमाप निर्धारित कीजिये । 8 + 12 = 20
- (ब) (i) 121 छात्रों द्वारा प्राप्त अंकों का मानक विचलन 12.5 पाया गया । समष्टि माध्य के आकलक की मानक त्रुटि प्राप्त कीजिये । यदि 10 आमाप का एक प्रतिदर्श (i) पुनर्स्थापना सहित,
 (ii) पुनर्स्थापना रहित, यादच्छिक प्रतिचयन द्वारा लिया गया है ।

(ii) क्रमबद्ध प्रतिचयन क्या है ? इसके लाभ व हानि लिखिये । 1 + 4 = 5

(iii) प्रतिचयन तथा अप्रतिचयन त्रुटियों में विभेद कीजिये । इनकों किस प्रकार कमें किया जा सकता है ?
3 + 2 = 5

(iv) CSO के मुख्य कार्य बताइये । CSO से प्रकाशित होने वाले दो मुख्य प्रकाशन लिखिए ।

3 + 2 = 5

(a) Explain proportional and optimum allocation in stratified sampling. A stratified random sample of size 30 is to be drawn from the following four strata.

 Strata
 1
 II
 III
 IV

 N_h
 50
 100
 150
 200

 S_h
 4
 3
 4
 2

Determine the sizes of the sample using proportional and optimum allocation from every strata.

- (b) (i) The standard deviation of marks obtained by 121 students was found to be 12.5. Find the standard error of the estimator of the population mean for a random sample of size 10 taken (i) with replacement, (ii) without replacement.
 - (ii) What is systematic sampling? Write its advantages and disadvantages.
 - (iii) Differentiate between sampling and non-sampling errors. How can these errors be minimized?
 - (iv) Write main functions of CSO. Write two main publications that are published from CSO.

6. (अ) 16 चूज़ों को यादृच्छिक रूप से चार भिन्न प्रकार के पोषण A, B, C व D दिये गये । चूजों में भार वृद्धि इस प्रकार रही :

A 2 5 6 7

B 3 4 8 9 f

C 2 4 6 4

D 5 4 6 5

5% सार्थकता के स्तर पर परीक्षण कीजिये कि चारों पोषणों से चूज़ों में हुई भार वृद्धि समान है, $[F_{(3, 12)}(0.05) = 3.49]$

(व) (i) एक धा प्रसरण विश्लेषण का गणितीय मॉडल और उसकी शृन्य परिकल्पना लिखिये । इसकी
मृलभृत अभिधारणाएँ भी लिखिए ।
 2 + 3 = 5

[P.T.O.

(ii) निम्न प्रसरण विश्लेषण तालिका में लुप्त प्रविष्टियाँ भरें :

$1 \times 5 = 5$

5

प्रसरण विश्लेषण तालिका

विचलन का स्रोत	स्वातंत्र्य कोटि	वर्गों का योग	वर्गों का योग माध्य	परीक्षण प्रतिदर्शज
किस्म	3	18.90	d	е
उर्वरक	a	27.90	9.30	
त्रुटि	b	c	0.70	
कुल :	15			

- (iii) एक लैटिन वर्ग अभिकल्पना, जिसमें 5 कारक हैं दूसरी पंक्ति और चाँथे कॉलम में तीसरे कारक पर प्रेक्षण लुप्त है । बचे हुए प्रेक्षणों से $R_2=20$, $C_4=15$, $T_3=15$ तथा G=101 प्राप्त हुआ जहाँ R, C, T व G क्रमशः लुप्त प्रेक्षण वाली पंक्ति, कालम, कारक व कुल जोड़ को दर्शाते हैं । लुप्त प्रेक्षण क्या है ?
- (iv) 2² बह-उपादानीय नियत प्रभाव प्रयोग की प्रसरण विश्लेषण तालिका बनाये ।
- (a) 16 chicks were randomly given four different types of feeds A, B, C and D. The weight gains in chicks were as under:

A 2 5 6 7 B 3 4 8 9 C 2 4 6 4 D 5 4 6 5

Test at 5% level of significance if the weight gains due to feeds is same in chicks, $[F_{(3, 12)}(0.05) = 3.49]$

- (b) (i) Write the mathematical model of one way analysis of variance and also write the null hypothesis to be tested. Also write its basic assumptions.
 - (ii) Fill in the blanks in the following analysis of variance table:

ANOVA Table

Source of Variation	Degrees of freedom	Sum of Squares	Mean S.S.	Test Statistic
Variety	3	18.90	d	e
Fertilizer	a	27.90	9.30	
Error	b	С	0.70	
Total:	15			

- (iii) In a latin square design with 5 treatments, the observation for 3rd treatment in the second row and fourth column is missing. From the available observations, R₂ = 20, C₄ = 15, T₃ = 15 and G = 101 was obtained, where R, C, T and G refer to row, column, treatment and grand sum containing the missing value. What is the missing value?
- (iv) Construct analysis of variance table for a fixed effect 2² factorial experiment in r replicates.

- (अ) काल श्रेणी क्या होती है और इसके क्या उपयोग हैं ? इसके मुख्य संघटकों का उदाहरण सहित वर्णन कीजिये । काल श्रेणी में मौसमी परिवर्तन के निर्धारण के लिये शृंखलित आपेक्षिक पद्धित की व्याख्या कीजिए ।
 4+8+8=20
 - (ब) (i) 2005-14 समयाविध के लिये जिसमें 2005 मूलविन्दु है । वार्षिक आँकड़ों की निम्न काल श्रेणी ŷ_t = 5.1 + 2t + t² प्राप्त हुई । वर्ष 2019 के लिये पूर्वानुमानित मान ज्ञात कीजिए । यदि मूलबिन्दु को एक वर्ष आगे विख्थापित कर दिया जाये तो उपनित समीकरण क्या होगा ?

 $2\frac{1}{2} \times 2 = 5$

- (ii) किसी वायुवान के संयोजन में लुप्त कीलकों की औसत संख्या 4 पाई गई । प्रति यूनिट त्रुटियों की संख्या के लिये नियन्त्रण सीमाएँ क्या होगी ?
- (iii) एकल प्रतिचयन आयोजना की व्याख्या कीजिये ।

5

(iv) निम्न शृंखला में सन् 2008 को आधार वर्ष बनाने पर नवे सूचकांक क्या हो जायेंगे ?

वर्ष	2005	2006	2007	2008	2009
सूचकांक	100	96	84	80	75

- (a) What is a time series and what are its uses? Explain its main components giving suitable examples. Explain link relative method for determining seasonal variation in time series.
- (b) (i) The trend equation for annual data for the time period 2005-14 with 2005 as origin was obtained as \$\hat{\gamma}_t = 5.1 + 2t + t^2\$. What is the forecast value for 2019? What will be the trend equation if origin is shifted forward by one year?
 - (ii) The average number of missing rivets in the assembly of an aircraft are found to be 4. Determine the control limits for the number of defects per unit.
 - (iii). Explain single sampling plan.
 - (iv) The base year in the following series is shifted to the year 2008, what will be the new index numbers?

Year	2005	2006	2007	2008	2009
Index Numbers	100	96	84	80	75

(अ) निम्न जीवन सारिणी को पूरा करें :

आयु	I_{x}	\mathbf{d}_{x}	\mathbf{p}_{x}	q_{x}	L_{χ}	T_{χ}	e° r
5	4412	=	35	=	254	/ <u>-</u>	=
6	3724		=0.0				1
7	3201	642	554	=	5 3.	:==	354
इन ऑकड़ों	पर आधारि	त केन्द्रीय	मृत्यु द	र भी ।	पता करे	1	

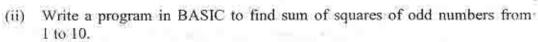
17 + 3 = 20

20 and 100 cm		0.00	Mary Mary					Ad	
(অ)	EX	lata.	114121	TIGHTIG	समस्या	CEL	सरम	CEL	4
1 34 1	1000	111111111111	2 2 2 2 4 5 M	ANNALL	23.44.25.44	2527	07.1	144.6	8

न्यूनतम कीजिये
$$z = 3x + 5y$$

जबिक
$$x + y = 6, x \le 4, y \le 5; x, y \ge 0$$

- 5
- (ii) BASIC प्रोग्रामन द्वारा 1 से 10 तक की विषम संख्याओं के वर्गों का योग ज्ञात करने के लिये प्रोग्राम लिखिये ।
- (iii) किसी संख्या का क्रमगृणित निकालने के लिये एक प्रवाह संचित्र बनाएँ । 5
- (iv) BASIC प्रौग्रामन में प्रयुक्त होने वाले दो भिन्न प्रकार के चरों की व्याख्या करें । चरों को मान देने की तीन विधियाँ भी बताएँ । 2 + 3
- (a) Complete the following life table :


Also find central mortality rate based on this data.

(b) (i) Solve the following linear programming problem:

Minimize
$$z = 3x + 5y$$

Subject to $x + y = 6$,

$$x \le 4$$

$$x, y \ge 0$$

- (iii) Draw a flow-chart to find factorial of a number.
- (iv) Explain two types of variables used in BASIC. Also write three different ways of assigning values to variables.