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a

1t Il fe,) i3 a bounded seguence of real numbers, then the sequence ':n; | 15 |
(1 divergent
(2] converges Lo one
(3 converges to zero
() a Cauchy =equence but not convergent
2. The series i [=1)" it tll B
=1 i
(1) absolutely convergent
(2 condilivnally convergenl
t3) {:.um-'erges but not conditionally
4] divergent
4, If [] and [x} denole the greatest integer value and fractional value of & respectively,

then fix) = [x® - ()2 is
(1) continuous on (-1 1] L2 continuous on -1 1)

(3 continuens on -1 1) 3] continuous on (=1 1)

4. Let £ R — R defined as

1 . 1 1 :
‘ —; dfx= 15 rational and ged. of im, nl = 1
In i

flx] =

10,  ifx iz irrational

Then flz) 15

(11 conlinuous at » = 1 but net at x = 3
(2] continuous at x = 1 and x = 3

] continupus at ¥ = 3 bul nol at x = 1
(] dizcontiriuous at ¥ = 1 and ¥ = w,,"i
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X

5. The sequence of functions {f (x)} is defined by f,(x) = —. Then i)
n
(1} convergez uniformly to zero on R
(2} converges puintwise to zero but not uniformly on [0, 1]

(3 converges uniformly to zero on 10, 1]
(4 does not converge on [0, 1)
6. Define /. [0, 1] = R by
2, ifxisrational
fla)=
0, ifxisirrational
Then :

1
(1) fis Riemann integrable and _" fle)dx = I fx)dx =2
0 0

L
(2)  f is not Riemann integrable and [ f(x)dx =2 [ flx}dx=0

0 0
1 1
(4)  f iz Riemann integrable and J flx)dx :I flx)de =0
0 i

1 1
{4)  f i3 not Riemann integrable and I fx}dx = D,I flxjdx =2
0 0

il If # and { are respectively the supremum and infimum of the aet

=1 ! ]
E= J'[—) ’fn £ N:, then length of the interval [{, £] is :

ng .-"I
1
i1} 1 {2) 57
: 3 ) 3
(3} 1 i4) 7
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8 f:100, 1 = R defined as

.rzsiniz, x {0, 1]
fix)= 2
0, x=1)
s |
(1}  discontinuous at x = 0
(2} continuous but not differentiable on |0, 1]
(3) differentiable on [0, 1] but not of bounded variation
() bounded wvariation on [0, 1] and differentiable
9.  IS,) is a sequence of real numbers such that (S, , ; — S, < Jin for all
n e N. Then {8} is :
(1 a Cauechy Sequence and is divergent
(2) a Cauchy Sequence
(3}  monotonically inereasing and not bounded
(4} monotonically decrcasing
10, f:01, 2] - R and g : [1, 2] = R are defined by flx} = Jx and glx) = L_
Consider the following statements : i

{a) The alope of the tangent to the curve ¥ = flz) parallel to the line joining

1, 1) and (2.2) is at -+ £(h>0)

R

{(h) The slope of the tangent to the curve y = glx) parallel to the line joining

1 ;
(1, 1} and [2:- E] is at ¢ where ¢ =2 + 24(h > 0)

Which of the above statementi(s) is(are) true 7
(1) Only (o) is true (2] Only (h) is true
(3} Both (o) and (b)) are false () Both {a) and (b] are true

JL-413-MAT—A A



11.  f: -1, 1] — R defined by
I.TPsin(x “], ifx +0

fix) =
0, ifx =0

(4]
1
where P and @ are real numbers, ¢ > 0. Consider the series Fi = E i

gl

Then :

(1) filx) is bounded for every P and Zu, is divergent

(2] flx) 15 continuous for every P and Zu, is divergent

(3 f10) exists if Xu, is convergent

(4] flx) 15 continuous for every P

f 1 :
12, t, ={-1)" 1+ ‘ then hm supt, is :
|, L h—

(1} =1 (2) 0

(3 does not exist {4) 1
13. Which of the following is a econnected subset of R, where a, b, ¢ are real numbers

and a = b = ¢ 7

(1} Z (2) Q

(3} lez, &) {4} la, & w (B, ]
14. The real line B with the metrie

4, fxzy
dfx, ) =
0, fx=y

is !

(11 complete (2) separable

[3) compact (4) connected
15.  If M iR) denotes the metric space of all # x n square matrices with real entries,

1
|'-} IJ\:.d
the metric induced by the norm !|A|| = z |u.[_,L where A = l”.’jlrr y n and
L

A

if 5,(R) and T (R} denote the sets of singular and non-singular matrices
respectively, then

(1) both S (R} and T (R} are open

12y 5,(R) is open and T, (R) iz closed

(3) 3.(R) is closed and T, (R) is open

{(4)  Both 5,(R) and T,/R) are closed

JL-413-MAT—A i} PT.O



16. Which of the following 1s not & normal zpace 7
(1) R with usual topology
(2] R with discrete topology
(3} R, (R with Lower limit topology)
(4) Ry = By
17. Which of the following subsets of B x R is connected 7

(1) {[x, w)x? + ¥ =1} o L sili=sf= 1]

3 {lx )20 4 (v y)fxeQ yeQ)

18. If A is any connected subset of an infinite metric space (X, d) with at least Lwo
distinet points, then A is !

(1] a set with exactly two points
(2] a finite zet with at least two pointg
(3 a countably infinite set
(4}  an uncountable set
19. If the function f @ B — @ is defined by
-1, ifx?<2
fx)=1

ll, otherwise

on the set @ of all rational numbere with usual metric, then f iz @

(1) Continuous on

(2 Discontinuous al ¥ = 2
(3 Darboux continuous
(4) Continucus but net differentiable
20). The set x = {{x, ¥) & B x Rfx > 0} with the co-finite topology is :
(1} both second countable and separable
(i) separable but not second countable
(3) neither second countable nor zeparable

(4) zsecond ecountable but not separable

JT.-413-MAT—A 6



21 In the topaological space Q of rational numbers with usual topology, the set
E= (—W'IE, '\-E) mQ s ;
(1 compact but not closed
{2) closed but not bounded
{3)  closed and bounded but not compaet

(4) compact, closed and bounded
22, If ¢ denotes the Euler's phi function, then o{1000) =

(1} 500 (2 400
(3] 1040 (4) 40
23. If a'% + 1 is divisible by 10, then a possible value of n from the following is:
(1} 10 23 L1
(3} 12 (4) 13
24, If n ia an even number with n > 6, then there exist two primes p and g such
that :
i1) ged, (np,.ong) =1 (2} ged.in —p,r—qg) =1
3 ged 0 aY =1 (4)  ged. in’p, n%g) = 1

25.  The equation 26x = 4 (modulo 11) has :
{1 infinitely many solutions for x medule 11
(2} only two solutions for x module 11

(3 only one solution for x module 11
4) no solution for ¥ module 11

26, If @ and & denote residue classes modulo p and if @ = &, then :
i1) p divides ab (2] p divides a + b
{3} p divides a = b (4] p divides %

27. If @ =b (mod k) and 0 = |a — b| < k, then :
(1) ged. (a, &) =1 (2) g = b
(3) a < b (4] =5

28, If P 1z prime, which of the following i3 true ?
(1) (P — 1) = -lmod P) (2] P! = 1{mod F)
(3 {P = 1) = 1limod F) (4] Pl = —1(meod P)

29.  Which of the following is nof true ?
(1) (12" = 12(mod P) (P is Prime)
(2) E () =125 (¢ 15 Euler’s phi function}
d/125

(3 12x = 48(med 18) has no solution
(4) r~ + lisdivisible by 5, 0 € r <9 = r = 4, 9
:' =

30. If o is the Euler totient function, then E ofd

d/125
(1) 125 (2} 25
(3) 115 (4) 5
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1.

3.

34.

A6,

3,

38,

34.

Let @ be a non-zero element in a group G with Ola) = n and m is relatively

prime to a, Then
(1) Qi) <« m (2] ™) = ™
(3) Oia™) = n 4) Dia™) = n

If |A : B] dencte the index number of A in B, and H, K are two subgroups of
a finite group & such that H c K, then :

(1} GG : H} = |G K]lG; : H] £2) G : Hl = [G : K][K : HI|

(3) H v K iz not a sabgroup (4] [ H Kl =G H)

If © iz a finite non nbelian group of order 27 and if Z((3) 18 center of G, then :
(1} ZG) = el (2)  ZG) =G

(3 OAG) = 3 (41 O(ZGH = 9

If ¢+ is a finile group and O(G) = 28, then the number of 7-Sylow subgroups
of (3 are .

(1} two L4 nne

(3}  three (4)  inflinite

In the group Z; x 7, the number of subgroups of order 4 12

(1) 18 2 8

(3 5] (4 1

A gubgroup of order 9 of the group 7y x 44 18 :

(1) Y (2) Ly = 2y

(3)  Ag » Zg (4 e

In a group of order 4, if a = ot ¥ a e G, then number of subgroups of G is:
(1) 2 2y 3

(3, 4 (1) 5

If (Z, +} 15 a group, then 0[4—2;] e

.
(1)  infimile (2}

(3 4 (1) 8

If order of a group iz 231, then the number of elements of order L1 in that
griup s

1) 8] () 21

] 11 14 11
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40,

4],

42,

43

46,

47.

A8,

Q and R are the rings of rational and rcal numbers with respect to usual addition
and multiplication. 8 = [{x, 3. OWx ¢ R, v € Q) is :

(1) an integral domain but not a field

(2] field

(3) commulative ring with unity with zero divisors
i4) non-commutative ring withoul zero divisors

The number of non-zero nilpotent elements in an integral domain is -
(1) 0

2y 1

{3} 2

(4) the order of the integral domain

The number of ideals of order 25 in the ring 2,y is :

(1) 5 (2) 4
(31 2 {4) 1
The number of prime ideals in the ring (@, +, .) of rational numbers is :
(1) O (2) 2
(3 infinite (4) 1

Il Z denotes the ring of integers, then the number of non-zero ring homomorphisms
from & to & iz :

{1} 1 (2) 2
3y 3 (4)
The charactenstic of a Boolean ring is
(1} 0 {2 1
3y 2 4) 4

In Zg the number of idempotent elements and nilpotent elements are denoted
by x and v respectively, then :

(1} Xy (2) x> 8

3 =y 4 x+v=2~R

Il Z, denotes the ring of integers modula n and y : Z = Z; x Z; defined by
win) = (A, A), then the kernel of y is :

{0 (2y 67

(3] 32 {4) 2Z

In the ring of Gaussian integers if U iz an ideal, then it is a :
(1) prime ideal (2) principal ideal

(3} maximal 1deal (4) a field

JL-413-MAT—A 9 PTO



49,

b0.

65,

Hb.

57.

The dimension of a vector space of polynomials of degree = n over a field
Fis :

(1) no+ 1 (2} n

(3) n-1 (4) infinity

A subspace of the vector space V,(R) among the following 1s :
(1} ((x, ¥, 2lxy < O} (2 {{x, v, 2ix < 0]

(3) e, y, 2Wa® + y% + 2% < 1 (40 {lx, y, 2x + 2 =0

A Vector in Vy(R), which is not in the linear span of 5 = {(1, 2}, (3, 6)) € V,R),
is :

(1) (4, 10) {2 =3, —6)

(3) [ S (o) (4, 8)

A basis of R¥R) is

(1) (3, 0, O, (0, 4, 0), (1, 1, O} (2} {7, 0, 0) (0, 7, 0, (7, 7, TH

{3y (5, 0, 0) (0, O, Dy, (2, 1, 1} (4} {1, 0, 0), (5, 0, 0), €0, 0, 2}

The determinant of the matrix of the linear Transformation T : B* — R? given
by Tig, b, ¢} = (3a + b, -2a + b, —a + 2b + dc) with respect to any basis is :

(1) 10 () 5}

(3) 2 (4) 20

If 8 and T are subsets of a Vector Space V(F), then Li8§ o T) =
(1) L3 (2) LT

(3] L{S) + LT (4] L(s) 1 LiT)

Let V5(C) be the inner product space with respect to the standard inner product.
A Vector in V,(C) orthogonal to the Veetor (1 — 1, 1 + i} i3 @

i 3] {1 +i, 1 +1) (2} (-1 +¢, 1 + 1)

8 @ +i,1-—10 4y {1 —i 1 =4

In an inner product space ViF) :

(1) lew B) < e + (B 2 o B =[of - 8]

(3 e, B = o] B @ e B) = [ R

The eigenvalues of a 3 » § matrix P are 3, 1 and -2, then g1 =
(1) 5l - 2P + P2 (2) 51 + 2P + P?

(37 5L + 2P - P* {4y 51 — 2P — P2

JL-413-MAT—A 10



58,

60.

61.

62.

0 1 0
1 0 0 1 0 0
(17 (0 1 0 @ |2y &
o 0 1] 25 0 1
B 1 0 0
(3 |24 1 0 4 |25 0 1
24 0 1 g5 1 0

A linear transformation T : FZ - F? is defined as flx, y) = (x, * + ¥, ¥). Then
the nullity of T is :

1 4 2y a

3 0 (4) 2

The possible sct of eigenvalues of an orthogonal skew-symmetric matrix of order
4 x 4 is :

{1) {0, i, - (2] (1, -1, i, =il

(3 {1, -1} (4] e, =i

a b
The trace and determinant of a matrix A = -| are respectively 1
: ft dJ
and -3. The trace of A* — A" is :

(1} 21 (2 g

(3) 4 (4] 0
1 1 3] [-1}

If an eigenvector of the matrix |1 & 1)1 |0 , then its corresponding
3 1 1] |1

eigenvalue is !

(1] & {2 1

(3) -2 4) -3

JL-413-MAT—A 11 P.T.O



63. [ :R* > R? is a linear transformation defined by

flxq, xp, 29) = (&) — X9 X5 — g, x5 — xq). I (4, b, ¢} € Ker f, then :

{1} g +0 +c =0 2 [EolE 8 Lo =
(3} R i 4] =8 E0
1 w 0

64. Let A = ia 1 0|, Consider the following statements ;
¢ 1 o
ler) Rank of A 15 maximum only when a a # 0
() Rank of A is one when « = 00 or 1 or -1

{c) Rank of A is two only when « = 0

Which of the above statemenls are not correct 7

(1)  {a), {¢) only (2) (a), (&) only
(8)  dal, th) and {¢) {1) (&), te) only
65. 1, o, ®* are cubc roots of unity. Bach of B, v is either w or w2 If the
1 o p

rank of the matrix | @ 1 y| is three, then one of the possible triplet

we w1
{ct, B, v} is :
(1) {03, o, (@] {2} (1, m'"’_. tih
(3} (02, w8, ud) {4} (i3, W=, w)
66. Let f: € — C be analytic except for a simple pole at 2z = 0 and ¢ ; € = C

F{esif[z;lg{:z_}} aitz = [}
Res f(z}atz = 0

he analytic on €. Then the value of 18

{1 A10) (20 g1
{3 A 1) 14) M
JL-413-MAT—A 12



67. Let Fiz) be an entire funetion on € such that |Fizi| < 100 for each z with

|2| = 2. If F{i) = 2i, then F(1) 15 :

(1) any real number (2 2i
(3] 2 (4 0
Ba, The transformation w = 22 {ransforms the lines x =0, y = 0 and x +y = 1 into

the curves ¢y, €5 and eg respectively. Then at w = 0 the angle between ¢ and

ty ig !
T
(1) 3 (21 T
i
{3) 1 (4) :
] z'zjt + 1

69. The radius of convergence of the series .t-;1 {2!& 1) is

(1) infinity (2] 1
@ y -
}oe { .
70. The coefficient of (2 — 12 in the Taylor's Series expansion around 7 of
Sl , fzxmn
="
l—l, ifz=m
8z
1 l -1
{1 5 (2} 9
(3] : (4} (}
' 2

JL-413-MAT—A 13 P.T.O



71, Let 0 € - (3]} — C he defined as flz) = z'z | . Which of the following is

8
false ?
(1) All the fixed points of [ are in the region Imiz) = 0
(2) There iz ne straight line which iz mapped onto a straight line by f
i3) [ is conformal

(4} f maps circles onlo circles

(LN

72.  The power series % 2" 1z analylic on :
|.: = |.
(1) lze Cflz| < 1) 2) {2z e Cz| =1)
1
(3) = C;"E = lz| =] (4}  nowhere
1

73. For flz) = ¢2, 2 = 0 is :

(1} 4 removable singularity (2 a pole of order 1

{3) an essential singularily (4) a pole of order 4
74 If w =flz) = & + iv is an analytic function and Pi tt, () iz & point on the two

families of curves ulx, y) = &, vlx, y) = 1 (b and [ are conatants), then the reciprocal

of the slope of tangent at P to ulx, v) = k is :

(1) cqual to the slope of the tangent at Ple, B) to the curve vic, v) = 1

It
—

(2 negative of the slope of the tangent at Ple, p) te the curve vix, y)

Il
T

(8} reciprocal of the slope of the tangent at Plo, Bl to the curve uvix, y)

(4] negative of the slope of the tangent at Plie, B) to the curve wix, vy = k

1 S-E'!Ez
75, — dz =
Em-! (2 - 1]4
(1) 0 (2) 2%
Rm .
(2] ;eﬁ id) fkrz

JL-413-MAT—A 14



76,

T

T8,

BO.

51.

JL-413-MAT

If y;, ¥ and yy are three solutions of (D? + aD? + 6D + ¢}y = 0 and determinant

¥ Y2 ¥

I

of | & »5|=#0 then:

EOE
(1) ¥ = Ryy + 8 (2} ¥ =03=0
{3) ¥a = kv + iy (4) ¥ #*0 ¥ 20, 3370
. ad’y | |
The general selution of Lol xd} +y=0 i ¥ =
dj_-'?' i
(1) Ax + Bx*® (2)  Ar + Bxlogx
(3] Ax + Blogx (4) A + Bxlogx
: . . @ N i
The differential equation R +sinit + z) =sint 18 :
I
(1}  non-linear and non-homogeneous
(2) non-linear and homogeneous

(3} Linear and homogeneous

{4) linear and non-homogeneous

4

All the zeros of the polynomial ap" + ap™ = Ll agx™ = ° 4 ... + @, have

negative real parts. If u(t) 1s any solution of the differential equation

tf :
. +a tu = 0, where 1) = e then 1r11'._1.‘r'|mr.rl:r:] -

a positive real number

EHDD” + rIlD” =kl 412]}”' AR

(1) a megative real number (2)
(3) a non-zero real number {4) ZETO

If y # x, a solution of the differential equation yiy + y)=axlx + ) 18y =
(1) 1 = x — ™ (2 I=24¢°

3 1 +x+e" ' (4 1+ x + e

If ¥y = xcos2x is a particular solution of 4" 4+ ay = —4 sin 2x, then the constant
o lakes the value :

{1 —4 (2) 4

(3) -2 4y 2

BTAY

J.%- 1 E_-..



82, Which of the following pair of functions iz not a linearly independent pair of
solutions of ¥ + 9y = 0 :

(1) gindx, dcos3dx — sin 3x
{2) eos dr, 3siny, - 451'113_\:,

{3} sin3r + cos3x, -Jcosx + 4eosy

15
{4} cos 3x, Heosdx — 3 Cosx

83.  If a transformation y = uv transforms flah” — 4f"xh’” + gz = 0 to the form

I.I'J

v+ Alxw = 0, then u is equal to
i 1
(1) X 2 03
f } f‘d
1
T (4) oF
54, If v = e and Yo = xe™ are two independent solutions of a differential equation

¥+ Qxh + Rixly = 0 and Wiyq, ¥o) is the Wronskian of ¥1 and yg, then
Wiy, y2)Q0 (0) =

(11 4 2y
(3) 1 (4 0
8o, I ye™dr + (xe™ + 2y)dy = difix, v)), then flx, ¥} =
(1) &* * ¥ 4 42 3
(30 & + & 4 42 (4] 3% 4 oF _ ¥
i ) CET L ’
85, The general solution of , =¢ L 1
il 5a ol
(1) Fix + ¢t) + Gix — et) {2) Fla + ¢t) + Gix + ot}
(3) Fix — ct) + Fix — ¢f) (4) Fir + c¢t) + Fix - ct)
, , R -
87.  The vne-dimensional heat equation — = —aiae
ot
(1) elliptic (2) hyperbolic
(3 parabolic (4} mixed

JL-413-MAT—A 16



] 2%y 9%u
88, Solution of the problem dt_‘“' = 43 2t sk £ satisfying the conditions
K

ulx; 0 = x, —u{x, 0 = 013
ot

i
2
x
i1 (2 —
) X ) 2
(3 s (4) At
A 3
B9, When x < [k H_Z,_xﬁlz_: =} 39 !
ke dy
(1) elliptic (2) parabolic
{3} hyperbolic i4) spherical

] otz &z
90, The particular integral of the partial differential equation ﬁxE - ? =18(x + ¥)
1

18
(17 2+ 3 (2 3% + 2xy)
30 2t o+ ¥y (4 27 + 3xey
91.  The complete integral of pg = 1 15
(1} ax + by = 2 (2) ﬂ2x+y2—az=u
i3] a2x+}-+ﬂz=:" (4) alx +y - az =¢
; : . et : Sy [ oz ;e
92, The particular integral of (D° — e = ¢ is [ D==,D'=— |
Lo thy )
(1] aet*Y ' () gyt Y
(30  xye™ T (4) Ee": ik

g3 The complete solution of the equation z = plx + 2) + giy + 3) is @

(1) z=x 4y (2) 7 =% + 2] f}"l'S]
(3) z=xv + kR {4) z = alx + 2) + bly + 3
g4.  The direction cosines ol the normal to the plane Hx — y + 3z = 27 are :
5 L a b 1 3
i l_ri _HF = [ b 15 =+:—;-- ,"tl.—_
T Y TN T N T YT AT
i 3 1
] F=y Ll F = { ﬁ'ﬂ"[}
S J35" " J35' T V35 W 55

JL-413-MAT—A 17 P



95,

2y

94,

£9.

100.

The perpendicular distance of the point (1, 1, 1) from the line through the point

(-3, =1, 1) whose directional ratios are 48 P [ 1

1 8 2y 45
o 4
(3) 5 4 2=
! W 1|III 3

The condition for the lines ¥ = gz + b, ¥y =cz + d and r = a2 + by,

¥ =042 + d| to be perpendicular is ;

(1) aay + bby + 1 =10 (2} @ay + ey +1 =0
(3)  aop + 86y -1=140 4 ab+ad;+1=0
£ il mel

If the point of intersection of the line and the sphere

4 -h
w2+ v 4 22 4 2¢ _ 10y — 23 = 0 are (04, By, v1) and (ay, Pa, ¥al, then
oy + o) + (B + Byl + frp + ) =
(9 2 8

(3] 6 (4) 10

2 2 2 8 3
b 4w . - 5"
(y, Ay ¥ F ) S
T g 7 "7t %
- 2 Z 2 2 2
. £ g€ ¢ oyt
@y ELX L E 5 I o .
5 3 3 YO et

Il the lines of intersection of the plane x + ¥+ 2 =0 and the cone

ayz + bzx + exy = () are at right angles, then a + & + ¢ =

Gl 1 (2 -1

(3 2 4y 0

The vertex ol the cone
x2—2_3'2+322—4x}'+&pz—ﬁzx+8.r-l‘!:iy—22—2[}:{]is:
1) 2,2 1) 7 S

3 (1,8, 8) (4] 1, =2, 3
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