Hall Ticket Number	O.P. No.	100045	
	Q.B. No.		

Booklet Code:

Marks: 100

JL-413-MAT

Time: 120 Minutes

Paper-III

Signature of the Candidate

Signature of the Invigilator

INSTRUCTIONS TO THE CANDIDATE (Read the Instructions carefully before Answering)

 Separate Optical Mark Reader (OMR) Answer Sheet is supplied to you along with Question Paper Booklet. Please read and follow the instructions on the OMR Answer Sheet for marking the responses and the required data.

2. The candidate should ensure that the Booklet Code printed on OMR Answer

Sheet and Booklet Code supplied are same.

3. Immediately on opening the Question Paper Booklet by tearing off the paper seal, please check for (i) The same booklet code (A/B/C/D) on each page. (ii) Serial Number of the questions (1-100), (iii) The number of pages and (iv) Correct Printing. In case of any defect, please report to the invigilator and ask for replacement of booklet with same code within five minutes from the commencement of the test.

4. Electronic gadgets like Cell Phone, Calculator, Watches and Mathematical/Log

Tables are not permitted into the examination hall.

There will be 1/4 negative mark for every wrong answer. However, if the
response to the question is left blank without answering, there will be no penalty

of negative mark for that question.

6. Record your answer on the OMR answer sheet by using Blue/Black ball point pen to darken the appropriate circles of (1), (2), (3) or (4) corresponding to the concerned question number in the OMR answer sheet. Darkening of more than one circle against any question automatically gets invalidated and will be treated as wrong answer.

Change of an answer is NOT allowed.

- Rough work should be done only in the space provided in the Question Paper Booklet.
- Return the OMR Answer Sheet and Question Paper Booklet to the invigilator before leaving the examination hall. Failure to return the OMR sheet and Question Paper Booklet is liable for criminal action.

This Booklet consists of 17 Pages for 100 Questions +2 pages of Rough Work +1 Title Page i.e. Total 20 pages 1. If $\{a_n\}$ is a bounded sequence of real numbers, then the sequence $\left\{\frac{a_n}{n^3}\right\}$ is :

- (1) divergent
- (2) converges to one
- (3) converges to zero
- (4) a Cauchy sequence but not convergent

2. The series $\sum_{n=1}^{\infty} (-1)^n \frac{(n+1)}{n^2}$ is :

- (1) absolutely convergent
- (2) conditionally convergent
- (3) converges but not conditionally
- (4) divergent

3. If [x] and [x] denote the greatest integer value and fractional value of x respectively, then $f(x) = [x]^2 - [x]^2$ is :

- continuous on [-1 1]
- (2) continuous on [-1 1)
- (3) continuous on (-1 1]
- (4) continuous on $(-1 \ 1)$
- 4. Let $f: \mathbf{R} \to \mathbf{R}$ defined as:

$$f(x) = \begin{cases} \frac{1}{n}, & \text{if } x = \frac{m}{n} \text{ is rational and g.c.d. of } (m, n) = 1\\ 0, & \text{if } x \text{ is irrational} \end{cases}$$

Then f(x) is:

- (1) continuous at x = 1 but not at $x = \sqrt{3}$
- (2) continuous at x = 1 and $x = \sqrt{3}$
- (3) continuous at $x = \sqrt{3}$ but not at x = 1
- (4) discontinuous at x = 1 and $x = \sqrt{3}$

5. The sequence of functions $\{f_n(x)\}\$ is defined by $f_n(x) = \frac{x}{n}$. Then $\{f_n(x)\}\$:

- (1) converges uniformly to zero on R
- (2) converges pointwise to zero but not uniformly on [0, 1]
- (3) converges uniformly to zero on [0, 1]
- (4) does not converge on [0, 1]
- 6. Define $f: [0, 1] \rightarrow \mathbf{R}$ by

$$f(x) = \begin{cases} 2, & \text{if } x \text{ is rational} \\ 0, & \text{if } x \text{ is irrational} \end{cases}$$

Then:

(1)
$$f$$
 is Riemann integrable and $\int_{0}^{\overline{1}} f(x)dx = \int_{0}^{1} f(x)dx = 2$

(2)
$$f$$
 is not Riemann integrable and $\int_{0}^{1} f(x)dx = 2$, $\int_{0}^{1} f(x)dx = 0$

(3)
$$f$$
 is Riemann integrable and $\int_{0}^{\overline{1}} f(x)dx = \int_{0}^{1} f(x)dx = 0$

(4)
$$f$$
 is not Riemann integrable and $\int_{0}^{\overline{1}} f(x)dx = 0$, $\int_{0}^{1} f(x)dx = 2$

7. If k and l are respectively the supremum and infimum of the set $\mathbf{E} = \left\{ \frac{(-1)^n}{n^2} \middle/ n \in \mathbf{N} \right\}, \text{ then length of the interval } [l, \ k] \text{ is } :$

(1) 1

(2) $\frac{1}{4}$

(3) $\frac{5}{4}$

(4) $\frac{3}{4}$

8. $f: [0, 1] \rightarrow \mathbf{R}$ defined as

$$f(x) = \begin{cases} x^2 \sin \frac{\pi}{2x^2}, & x \in (0, 1] \\ 0, & x = 0 \end{cases}$$

is :

(1) discontinuous at x = 0

(2) continuous but not differentiable on [0, 1]

(3) differentiable on [0, 1] but not of bounded variation

(4) bounded variation on [0, 1] and differentiable

9. $\{S_n\}$ is a sequence of real numbers such that $\{S_{n+1} - S_n\} < \frac{1}{2^n}$ for all $n \in \mathbb{N}$. Then $\{S_n\}$ is :

- (1) a Cauchy Sequence and is divergent
- (2) a Cauchy Sequence
- (3) monotonically increasing and not bounded
- (4) monotonically decreasing

10. $f: [1, 2] \to \mathbf{R}$ and $g: [1, 2] \to \mathbf{R}$ are defined by $f(x) = \sqrt{x}$ and $g(x) = \frac{1}{\sqrt{x}}$.

Consider the following statements:

- (a) The slope of the tangent to the curve y = f(x) parallel to the line joining (1, 1) and $(2, \sqrt{2})$ is at $\frac{1}{\sqrt{2}} + h(h > 0)$
- (b) The slope of the tangent to the curve y = g(x) parallel to the line joining (1, 1) and $\left(2, \frac{1}{\sqrt{2}}\right)$ is at c where $c^3 = \sqrt{2} + 2h(h > 0)$

Which of the above statement(s) is(are) true ?

(1) Only (a) is true

- (2) Only (b) is true
- (3) Both (a) and (b) are false
- (4) Both (a) and (b) are true

11. $f: [-1, 1] \rightarrow \mathbf{R}$ defined by

$$f(x) = \begin{cases} x^{P} \sin(x^{-a}), & \text{if } x \neq 0 \\ 0, & \text{if } x = 0 \end{cases}$$

where P and a are real numbers, a > 0. Consider the series $\sum_{n=1}^{\infty} \frac{1}{n^{p}}$.

Then:

(1)f'(x) is bounded for every P and Σu_n is divergent

(2)f'(x) is continuous for every P and Σu_n is divergent

(3) f'(0) exists if Σu_n is convergent

f(x) is continuous for every P

12.
$$t_n = (-1)^n \left(1 + \frac{1}{n}\right)$$
, then $\lim_{n \to \infty} \sup t_n$ is:

(1)

does not exist

(4)

Which of the following is a connected subset of R, where a, b, c are real numbers 13. and a < b < c?

(1) Z

(3) $|a, b\rangle$ (2) **Q**(4) $[a, b) \cup (b, c]$

14. The real line R with the metric

$$d(x, y) = \begin{cases} 4, & \text{if } x \neq y \\ 0, & \text{if } x = y \end{cases}$$

is :

(1)complete (2) separable

(3) compact (4) connected

15. If $M_n(\mathbf{R})$ denotes the metric space of all $n \times n$ square matrices with real entries,

the metric induced by the norm $\|\mathbf{A}\| = \left(\sum_{ij} |a_{ij}|^2\right)^2$ where $\mathbf{A} = |a_{ij}|_{n \times n}$ and

if $S_n(\mathbf{R})$ and $T_n(\mathbf{R})$ denote the sets of singular and non-singular matrices respectively, then :

both $S_n(\mathbf{R})$ and $T_n(\mathbf{R})$ are open

 $S_n(\mathbf{R})$ is open and $T_n(\mathbf{R})$ is closed (2)

 $S_n(\mathbf{R})$ is closed and $T_n(\mathbf{R})$ is open (3)

(4)Both $S_n(\mathbf{R})$ and $T_n(\mathbf{R})$ are closed

16.	Which	of	the	following	is	not	a	normal	space	?	

- R with usual topology (1)
- (2)R with discrete topology
- RL, (R with Lower limit topology) (3)
- $R_L \times R_L$ (4)

Which of the following subsets of R × R is connected ? 17.

(1)
$$\{(x, y)/x^2 + y^2 = 1\}$$

$$\{(x, y)/x^2 + y^2 = 1\}$$
 (2) $\{(x, y)/x^2 - y^2 - 1\}$

$$(3) \qquad \left\{ (x, y)/xy \neq 0 \right\}$$

(4)
$$\{(x, y)/x \notin \mathbf{Q}, y \notin \mathbf{Q}\}$$

If A is any connected subset of an infinite metric space (X, d) with at least two 18. distinct points, then A is :

- a set with exactly two points (1)
- (2)a finite set with at least two points
- (3)a countably infinite set
- (4) an uncountable set

If the function $f: \mathbf{Q} \to \mathbf{Q}$ is defined by 19.

$$f(x) = \begin{cases} -1, & \text{if } x^2 < 2\\ 1, & \text{otherwise} \end{cases}$$

on the set Q of all rational numbers with usual metric, then f is :

- Continuous on Q (1)
- Discontinuous at $x = \sqrt{2}$ (2)
- (3) Darboux continuous
- Continuous but not differentiable (4)

The set $x = \{(x, y) \in \mathbf{R} \times \mathbf{R}/x > 0\}$ with the co-finite topology is : 20.

- both second countable and separable (1)
- (2)separable but not second countable
- (3)neither second countable nor separable
- second countable but not separable

21.	In th	he topological space ${f Q}$ of ration	al num	bers with usual	topology, the set		
	E = ($\left(-\sqrt{2},\sqrt{2}\right)\cap\mathbf{Q}$ is :					
	(1)	compact but not closed					
		closed but not bounded					
		closed and bounded but not co	omnact				
		compact, closed and bounded	ompace				
22.	C. 1270.00	denotes the Euler's phi function	thon	0(1000) =			
	(1)	500					
	(3)	100	(2) (4)	400	#		
23,	If n^1	A	108200	40	.a. e.n		
20,	(1)	0 + 1 is divisible by 10, then a 10			the following is:		
	(3)	12	(2) (4)	11 13			
24.		is an even number with $n > 6$, t	The second second		see a sand a such		
ωI.	that		men me	sie exist two prin	ies p and q such		
		g.c.d. (np, nq) = 1	(9)	and (u = u	a) = 1		
	(1)			g.c.d. $(n - p, n)$			
	(3)			g.c.d. (n^2p, n^2q)	= 1		
25.		equation $25x = 4 \pmod{11}$ has					
	(1) infinitely many solutions for x modulo 11						
	(2)	only two solutions for x modu	lo 11				
		only one solution for x module	11				
	(4)	no solution for x modulo 11					
26.	If \bar{a}	and \bar{b} denote residue classes in	modulo	n and if $\bar{a} = \bar{b}$	then		
	(1)	p divides ab		p divides $a + b$			
				(E)			
	(3)	p divides $a - b$	(4)	p divides $\frac{a}{b}$			
27.	If a	$\equiv b \pmod{k}$ and $0 \le a - b <$					
		g.c.d. $(a, b) = 1$		a > b			
		a < b	(4)	a = b			
28.		is prime, which of the following					
		$(P-1)! = -1 \pmod{P}$		P! = 1(mod P)			
		$(P-1)! = 1 \pmod{P}$					
29.		h of the following is not true ?	(4)	$P! = -1 \pmod{P}$			
20.	(1)	$(12)^{P} = 12 \pmod{P}$ (P is Prime					
	(1)	(12) = 12(mod r) (r is rrime	1)				
	(2)	$\sum_{d/125} \phi(d) = 125 (\phi \text{ is Euler's })$	phi fun	ction)			
	(3)	$12x \equiv 48 \pmod{18}$ has no solut	ion				
	(4)	r^5 + 1 is divisible by 5, $0 \le r$		r = 4.9			
2012							
30.	It o	is the Euler totient function, th	en $\sum_{d/12}$				
	(1)	125	(2)	25			
	(3)	115	(4)	5			
JL-41	3-MA	T—A 7			P.T.O		

31.	Let a be prime to		group G	with $O(a) = n$ and m is relatively				
	(1) O(a	n < m	(2)	$O(a^m) = n^m$				
	(3) O(a	m) < n	(4)	$O(a^m) = n$				
32		denote the index number roup G such that $H \subseteq F$	_	B, and H, K are two subgroups of				
	(1) [G	: H] = [G : K][G : H]	(2)	[G : H] = [G : K][K : H]				
	(3) H	∪ K is not a subgroup	(4)	$[G:H\cup K]=[G:H]$				
33.	If C is a	finite non abelian group	of order 2	7 and if Z(G) is center of G, then:				
	(1) Z(C	$\{e\}$	(2)	Z(G) = G				
	(3) O(7	%(G)) = 3	(4)	O(Z(G)) = 9				
34.	If G is a finite group and $O(G) = 28$, then the number of 7-Sylow subgroups of G are :							
	(1) two)	(2)	one				
	(3) thr	ee	(4)	infinite				
35.	In the group $Z_4 \times Z_4$, the number of subgroups of order 4 is :							
	(1) 16		(2)	8				
	(3) 6		(4)	1				
36.	A subgroup of order 9 of the group $Z_3 \times Z_{15}$ is :							
	(1) Z ₉		(2)	$Z_3 \times Z_3$				
	(3) Z ₃	× Z ₆	(4)	Z_5				
37.	In a grou	p of order 4, if $a = a^{-1}$	$\forall a \in G$,	then number of subgroups of G is:				
	(1) 2		(2)	3				
	(3) 4		(4)	5				
38.	If (Z, +)	is a group, then $O\left(\frac{Z}{4Z}\right)$	is :					
	(1) inf	inite	(2)	1				
	(3) 4		(4)	8				
39.	If order of		the numb	er of elements of order 11 in that				
	(1) 0		(2)	21				
	(3) 11		(4)	10				
JL-4	13-MAT—.	1	8					

40.		and R are the rings of rational multiplication. $S = \{(x, y, (x, y), (x, y)$			usual addition				
	(1) an integral domain but not a field								
	(2) field								
	(3)								
	(4)	The Control of the Co							
41.	The	The number of non-zero nilpotent elements in an integral domain is :							
	(1)	0							
	(2)	1							
	(3)	(3) 2							
	(4)	the order of the integral	domain						
42.	The	number of ideals of order	25 in the ri	ng Z ₁₀₀ is :					
	(1)	5	(2)	4					
	(3)	2	(4)	1					
43.	The	The number of prime ideals in the ring (Q, +, .) of rational numbers is :							
	(1)	0	(2)	2					
	(3)	infinite	(4)	1					
44.	If ${\bf Z}$ denotes the ring of integers, then the number of non-zero ring homomorphisms from ${\bf Z}$ to ${\bf Z}$ is :								
	(1)	1	(2)	2					
	(3)	3	(4)	5					
45.	The characteristic of a Boolean ring is :								
	(1)	0	(2)	1					
	(3)	2	(4)	4					
46.	In Z_6 , the number of idempotent elements and nilpotent elements are denoted by x and y respectively, then :								
	(1)	x < y	(2)	x > y					
	(3)	x = y	(4)	x + y = 8					
47.	If Z_n denotes the ring of integers modulo n and $\psi: Z \to Z_2 \times Z_3$ defined by $\psi(n) = (\hat{n}, \hat{n})$, then the kernel of ψ is :								
	(1)	(0)	(2)	6Z					
	(3)	3Z	(4)	2Z	9				
48.	In the ring of Gaussian integers if U is an ideal, then it is a:								
	(1)	prime ideal	(2)	principal ideal					
	(3)	maximal ideal	(4)	a field					
JL-4	13-MA	AT—A	9		P.T.O				

49.	The F is		polyne	omials of degree $\leq n$ over a field					
	(1)	n + 1	(2)	n					
	(3)	n-1	(4)	infinity					
50.		bspace of the vector space V ₃ (1	R) amoi	ng the following is:					
	(1)	[(x, y, z)/xy < 0]		$\{(x, y, z)/x < 0\}$					
	(3)	$[(x, y, z)/x^2 + y^2 + z^2 \le 1]$	(4)	$\{(x, y, z)/x + z = 0\}$					
51.	A Ve	A Vector in $V_2(\mathbf{R})$, which is not in the linear span of $S = \{(1, 2), (3, 6)\} \subseteq V_2(\mathbf{R})$,							
	is:								
	(1)	(5, 10)	(2)	(-3, -6)					
	(3)	(4, 7)	(4)	(4, 8)					
52.	A ba	asis of $\mathbf{R}^3(\mathbf{R})$ is :							
	(1)	$\{(3, 0, 0), (0, 4, 0), (1, 1, 0)\}$	(2)	$\{(7, 0, 0), (0, 7, 0), (7, 7, 7)\}$					
	(3)	$\{(5, 0, 0), (0, 0, 0), (2, 1, 1)\}$	(4)	$\{(1, 0, 0), (5, 0, 0), (0, 0, 2)\}$					
53.				Transformation $T: \mathbf{R}^3 \to \mathbf{R}^3$ given + 4c) with respect to any basis is:					
	(1)	10	(2)	6					
	(3)	2	(4)	20					
54.	If S	If S and T are subsets of a Vector Space $V(F)$, then $L(S \cup T) =$							
	(1)	L(S)	(2)	L(T) =					
	(3)	L(S) + L(T)	(4)	L(S) U L(T)					
55.		$V_2(\mathbf{C})$ be the inner product space ector in $V_2(\mathbf{C})$ orthogonal to the		espect to the standard inner product. (1-i, 1+i) is :					
	(1)	(1 + i, 1 + i)	(2)	(-1 + i, 1 + i)					
	(3)	(1 + i, 1 - i)	(4)	(-1 - i, 1 - i)					
56.	In a	n inner product space V(F):							
	(1)	$\left \left(\alpha,\beta\right)\right \leq\left\ \alpha\right\ +\left\ \beta\right\ $	(2)	$\ (\alpha, \beta)\ \le \ \alpha\ - \ \beta\ $					
	(3)	$ (\alpha, \beta) \le \alpha \beta $	(4)	$\ (\alpha, \beta)\ \le \ \alpha\ \ \beta\ $					
57.	The	eigenvalues of a 3 × 3 matrix	P are 3	3, 1 and -2 , then $6P^{-1} =$					
	(1)	$5I - 2P + P^2$	(2)	$5I + 2P + P^2$					
	(3)	$5I + 2P - P^2$	(4)	$5I - 2P - P^2$					
JI4	13-MA	AT—A 10	0						

58. If
$$A = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$
, then $A^{50} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$

$$\begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{bmatrix}$$

$$(3) \qquad \begin{bmatrix} 1 & 0 & 0 \\ 24 & 1 & 0 \\ 24 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix}
 1 & 0 & 0 \\
 25 & 0 & 1 \\
 25 & 1 & 0
 \end{bmatrix}$$

- 59. A linear transformation $T: F^2 \to F^3$ is defined as f(x, y) = (x, x + y, y). Then the nullity of T is :
 - (1) 4

(2) 3

(3) 0

- (4) 2
- 60. The possible set of eigenvalues of an orthogonal skew-symmetric matrix of order 4 × 4 is :
 - (1) $\{0, i, -i\}$

(2) $\{1, -1, i, -i\}$

(3) {1, -1}

- (4) $\{i, -i\}$
- 61. The trace and determinant of a matrix $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ are respectively 1 and -3. The trace of $A^4 A^3$ is :
 - (1) 21

(2) 9

(3) 4

- (4) 0
- 62. If an eigenvector of the matrix $\begin{bmatrix} 1 & 1 & 3 \\ 1 & 5 & 1 \\ 3 & 1 & 1 \end{bmatrix}$ is $\begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}$, then its corresponding

eigenvalue is :

(1) 6

(2) 1

(3) -2

(4) -3

JL-413-MAT—A

11

P.T.O

63. $f: \mathbb{R}^3 \to \mathbb{R}^3$ is a linear transformation defined by

 $f(x_1, x_2, x_3) = (x_1 - x_2, x_2 - x_3, x_3 - x_1)$. If $(a, b, c) \in \text{Ker } f$, then :

- $(1) \qquad \alpha + b + c = 0$
- $(2) a \neq b = c$

 $(3) \qquad a = b = c$

 $(4) \quad a = b \neq c$

64. Let $A = \begin{bmatrix} 1 & \alpha & 0 \\ \alpha & 1 & 0 \\ 0 & 1 & \alpha \end{bmatrix}$. Consider the following statements:

- (a) Rank of A is maximum only when a $\alpha \neq 0$
- (b) Rank of A is one when tt = 0 or 1 or -1
- (c) Rank of A is two only when \alpha = 0

Which of the above statements are not correct ?

(1) (a), (c) only

(2) (a), (b) only

(3) (a), (b) and (c)

(4) (b), (c) only

65. 1, ω , ω^2 are cube roots of unity. Each of α , β , γ is either ω or ω^2 . If the

rank of the matrix $\begin{bmatrix} 1 & \alpha & \beta \\ \omega & 1 & \gamma \\ \omega^2 & \omega & 1 \end{bmatrix}$ is three, then one of the possible triplet

 (α, β, γ) is:

(1) $(\omega, \omega, \omega^2)$

(2) (ω, ω², ω)

(3) $(\omega^2, \ \omega^2, \ \omega^2)$

(4) $(\omega^2, \, \omega^2, \, \omega)$

66. Let $f: \mathbb{C} \to \mathbb{C}$ be analytic except for a simple pole at z = 0 and $g: \mathbb{C} \to \mathbb{C}$

be analytic on C. Then the value of $\frac{\operatorname{Res}\{f(z)g(z)\}atz=0}{\operatorname{Res}f(z)atz=0}$ is :

(1) f(0)

(2) g'(0)

(3) f'(0)

(4) g(0)

- Let F(z) be an entire function on C such that $|F(z)| \le 100$ for each z with 67. $|z| \ge 2$. If F(i) = 2i, then F(1) is: 2i(2)any real number (1) (4) (3) 2 The transformation $w = z^2$ transforms the lines x = 0, y = 0 and x + y = 1 into 68. the curves $c_1,\ c_2$ and c_3 respectively. Then at w=0 the angle between c_1 and c_2 is : (2)(1)(4) $\frac{\pi}{3}$ (3)
- 69. The radius of convergence of the series $\sum_{k=1}^{\infty} \frac{z^{2k+1}}{(2k+1)!}$ is :
 - (1) infinity

(2) 1

(3) e

- (4) $\frac{1}{e}$
- 70. The coefficient of $(z \pi)^2$ in the Taylor's Series expansion around π of

$$f(z) = \begin{cases} \frac{\sin z}{z - \pi}, & \text{if } z \neq \pi \\ -1, & \text{if } z = \pi \end{cases}$$

is:

(1) $\frac{1}{6}$

(2) $\frac{-1}{2}$

(3) $\frac{1}{2}$

(4) 0

71. Let $f: \mathbb{C} - \{3i\} \to \mathbb{C}$ be defined as $f(z) = \frac{z-i}{iz+3}$. Which of the following is false ?

- All the fixed points of f are in the region Im(z) > 0
- (2) There is no straight line which is mapped onto a straight line by f
- (3) f is conformal
- (4) f maps circles onto circles

72. The power series $\sum_{n=1}^{\infty} z^n$ is analytic on :

- (1) $\{z \in \mathbb{C}/|z| < 1\}$
- (2) $\{z \in \mathbb{C}/|z| \le 1\}$
- (3) $\{z \in \mathbb{C}/\frac{1}{2} \le |z| < 2\}$
- (4) nowhere

73. For $f(z) = e^z$, z = 0 is:

- (1) a removable singularity
- (2) a pole of order 1
- (3) an essential singularity
- (4) a pole of order 2

74. If w = f(z) = u + iv is an analytic function and $P(\alpha, \beta)$ is a point on the two families of curves u(x, y) = k, v(x, y) = l (k and l are constants), then the reciprocal of the slope of tangent at P to u(x, y) = k is:

- (1) equal to the slope of the tangent at $P(\alpha, \beta)$ to the curve v(x, y) = I
- (2) negative of the slope of the tangent at $P(\alpha, \beta)$ to the curve v(x, y) = l
- (3) reciprocal of the slope of the tangent at $P(\alpha, \beta)$ to the curve v(x, y) = l
- (4) negative of the slope of the tangent at $P(\alpha, \beta)$ to the curve u(x, y) = k

75. $\frac{1}{2\pi i} \int_{c} \frac{3e^{2z}}{(z-1)^4} dz =$

(1) 0

(2) $2e^{-2}$

 $(3) \qquad \frac{8\pi i}{3}e^2$

(4) 4e²

76. If y_1 , y_2 and y_3 are three solutions of $(D^3 + aD^2 + bD + c)y = 0$ and determinant

of
$$\begin{bmatrix} y_1 & y_2 & y_3 \\ y_1' & y_2' & y_3' \\ y_1'' & y_2'' & y_3'' \end{bmatrix} \neq 0 \text{ then } :$$

(1)
$$y_1 = ky_2 + ly_3$$

(2)
$$y_1' = 0, y_1'' = 0$$

(3)
$$y_3 = k_1 y_1 + l_1 y_2$$

(4)
$$y_1 \neq 0, y_2 \neq 0, y_3 \neq 0$$

77. The general solution of $x^2 \frac{d^2y}{dx^2} - x \frac{dy}{dx} + y = 0$ is y =

$$(1) \quad Ax + Bx^2$$

(2)
$$Ax + Bx \log x$$

(3)
$$Ax + B \log x$$

$$(4) A + Bx \log x$$

78. The differential equation $\frac{d^2z}{dt^2} + \sin(t+z) = \sin t$ is :

- (1) non-linear and non-homogeneous
- (2) non-linear and homogeneous
- (3) linear and homogeneous
- (4) linear and non-homogeneous

79. All the zeros of the polynomial $a_0x^n + a_1x^{n-1} + a_2x^{n-2} + \dots + a_n$ have negative real parts. If u(t) is any solution of the differential equation

$$(a_0 {\bf D}^n + a_1 {\bf D}^{n-1} + a_2 {\bf D}^{n-2} + \dots + a_n) u = 0, \text{ where } {\bf D} = \frac{d}{dt}, \text{ then } \lim_{t \to \infty} u(t) = 0$$

- (1) a negative real number
- (2) a positive real number
- (3) a non-zero real number
- (4) zero

80. If $y' \neq x$, a solution of the differential equation y'(y' + y) = x(x + y) is y = x(x + y)

(1) $1 - x - e^{-x}$

 $(2) \qquad 1 - x + e^x$

(3) $1 + x + e^{-x}$

 $(4) \qquad 1 + x + e^x$

81. If $y = x \cos 2x$ is a particular solution of $y'' + ay = -4 \sin 2x$, then the constant a takes the value :

(1) -4

(2) 4

(3) -2

(4) 2

JL-413-MAT—A

15

P.T.O

82. Which of the following pair of functions is not a linearly independent pair of solutions of y'' + 9y = 0:

- (1) $\sin 3x$, $5\cos 3x \sin 3x$
- (2) $\cos 3x$, $3\sin x$, $-4\sin^3 x$,
- (3) $\sin 3x + \cos 3x$, $-3\cos x + 4\cos^3 x$
- (4) $\cos 3x$, $5\cos^3 x \frac{15}{4}\cos x$

83. If a transformation y = uv transforms f(x)y'' - 4f'(x)y' + g(x)y = 0 to the form v'' + h(x)v = 0, then u is equal to :

(1) xf

(2) $\frac{1}{f^2}$

(3) f²

(4) $\frac{1}{2f}$

84. If $y_1 = e^{2x}$ and $y_2 = xe^{2x}$ are two independent solutions of a differential equation y'' + Q(x)y' + R(x)y = 0 and $W(y_1, y_2)$ is the Wronskian of y_1 and y_2 , then $[W(y_1, y_2)Q]$ (0) =

(1) 4

(2) -4

(3) 1

(4) 0

85. If $ye^{xy}dx + (xe^{xy} + 2y)dy = d(f(x, y))$, then f(x, y) =

(1) $e^{x+y} + y^2$

 $(2) \qquad e^{xy} + y^2$

(3) $e^x + e^y + y^2$

(4) $y^2 + e^x - e^{yx}$

86. The general solution of $\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2}$ is :

- $(1) \qquad \mathbf{F}(x+ct) + \mathbf{G}(x-ct)$
- $(2) \qquad \mathbf{F}(x + ct) + \mathbf{G}(x + ct)$
- (3) F(x ct) + F'(x ct)
- (4) F(x + ct) + F(x ct)

87. The one-dimensional heat equation $\frac{\partial \mathbf{T}}{\partial t} = \frac{\partial^2 \mathbf{T}}{\partial t^2}$ is :

(1) elliptic

(2) hyperbolic

(3) parabolic

(4) mixed

$$(1) x (2) \frac{x^2}{2}$$

(3)
$$2x$$
 (4) $2t$

89. When
$$x < 0$$
, $\frac{\partial^2 u}{\partial x^2} - x \frac{\partial^2 u}{\partial y^2} = 0$ is :

90. The particular integral of the partial differential equation
$$\frac{\partial^2 z}{\partial x^2} - \frac{\partial^2 z}{\partial y^2} = 18(x + y)$$

is:
(1)
$$x^3 + y^3$$
 (2) $3(x^2 + 2xy)$
(3) $x^3 + 2x^2y$ (4) $3(x^3 + 3x^2y)$

(3)
$$x^3 + 2x^2y$$
 (4) $3(x^3 + 3x^2y)$

91. The complete integral of
$$pq = 1$$
 is:

(1)
$$ax + by = z$$
 (2) $a^2x + y^2 - az = c$
(3) $a^2x + y + az = c$ (4) $a^2x + y - az = c$

92. The particular integral of
$$(D^2 - D')z = e^{x + y}$$
 is $\left(D = \frac{\partial z}{\partial x}, D' = \frac{\partial z}{\partial y}\right)$

(1)
$$x^2e^{x+y}$$
 (2) y^2e^{x+y}

(3)
$$xye^{x+y}$$
 (4) $\frac{x}{2}e^{x+y}$

The complete solution of the equation z = p(x + 2) + q(y + 3) is : 93.

(1)
$$z = x + y$$
 (2) $z = (x + 2)(y + 3)$

(3)
$$z = xy + k$$
 (4) $z = a(x + 2) + b(y + 3)$

The direction cosines of the normal to the plane 5x - y + 3z = 27 are : 94.

(1)
$$\pm \frac{5}{\sqrt{35}}, \pm \frac{1}{\sqrt{35}}, \mp \frac{3}{\sqrt{35}}$$
 (2) $\pm \frac{5}{\sqrt{35}}, \pm \frac{1}{\sqrt{35}}, \pm \frac{3}{\sqrt{35}}$

(3)
$$\mp \frac{5}{\sqrt{35}}, \pm \frac{1}{\sqrt{35}}, \mp \frac{3}{\sqrt{35}}$$
 (4) $\frac{1}{\sqrt{35}}, 0, 0$

95.	The perpendicular distance of t	he point $(1, 1, -1)$ from the line through the point
	(-3, -1, 1) whose directional r	ratios are (1, 1, 1) is :

(1) 8

(2) $\sqrt{5}$

(3) √6

(4) $2\sqrt{\frac{14}{3}}$

96. The condition for the lines x = az + b, y = cz + d and $x = a_1z + b_1$, $y = c_1z + d_1$ to be perpendicular is:

 $(1) \quad aa_1 + bb_1 + 1 = 0$

 $(2) \quad aa_1 + cc_1 + 1 = 0$

 $(3) \quad aa_1 + bb_1 - 1 = 0$

 $(4) \quad ab + a_1b_1 + 1 = 0$

97. If the point of intersection of the line $\frac{x+3}{4} - \frac{y+4}{4} = \frac{z-8}{-5}$ and the sphere $x^2 + y^2 + z^2 + 2x - 10y - 23 = 0$ are $(\alpha_1, \beta_1, \gamma_1)$ and $(\alpha_2, \beta_2, \gamma_2)$, then $(\alpha_1 + \alpha_2) + (\beta_1 + \beta_2) + (\gamma_1 + \gamma_2) =$

(1) 9

(2) 8

(3) 6

(4) 10

98. The equation of reciprocal cone of $5x^2 + 2y^2 + 7z^2 = 0$ is :

(1) $\frac{x^2}{7} + \frac{y^2}{2} + \frac{z^2}{5} = 0$

(2) $\frac{x^2}{2} + \frac{y^2}{7} + \frac{z^2}{5} = 0$

(3) $\frac{x^2}{5} + \frac{y^2}{2} + \frac{z^2}{7} = 0$

(4) $\frac{x^2}{7} + \frac{y^2}{5} + \frac{z^2}{2} = 0$

99. If the lines of intersection of the plane x + y + z = 0 and the cone ayz + bzx + cxy = 0 are at right angles, then a + b + c =

(1) 1

(2) -1

(3) 2

(4) 0

100. The vertex of the cone

 $x^2 - 2y^2 + 3z^2 - 4xy + 5yz - 6zx + 8x - 19y - 2z - 20 = 0$ is:

(1) (2, 2, 1)

(2) (-1, -2, -3)

(3) (1, 2, 3)

(4) (1, -2, 3)

Space for Rough Work

Space for Rough Work