Hall Ticket Number	O.D.N.	LONER
	Q.B. No.	100557

Booklet Code :

A

Marks : 100

4.

DL-314-PHY

Time: 120 Minutes

Paper-II

Signature of the Candidate

Signature of the Invigilator

INSTRUCTIONS TO THE CANDIDATE (Read the Instructions carefully before Answering)

 Separate Optical Mark Reader (OMR) Answer Sheet is supplied to you along with Question Paper Booklet. Please read and follow the instructions on the OMR Answer Sheet for marking the responses and the required data.

The candidate should ensure that the Booklet Code printed on OMR Answer

Sheet and Booklet Code supplied are same.

3. Immediately on opening the Question Paper Booklet by tearing off the paper seal, please check for (i) The same booklet code (A/B/C/D) on each page. (ii) Serial Number of the questions (1-100), (iii) The number of pages and (iv) Correct Printing. In case of any defect, please report to the invigilator and ask for replacement of booklet with same code within five minutes from the commencement of the test.

Electronic gadgets like Cell Phone, Calculator, Watches and Mathematical/Log

Tables are not permitted into the examination hall.

 There will be 1/4 negative mark for every wrong answer. However, if the response to the question is left blank without answering, there will be no penalty

of negative mark for that question.

6. Record your answer on the OMR answer sheet by using Blue/Black ball point pen to darken the appropriate circles of (1), (2), (3) or (4) corresponding to the concerned question number in the OMR answer sheet. Darkening of more than one circle against any question automatically gets invalidated and will be treated as wrong answer.

Change of an answer is NOT allowed.

8. Rough work should be done only in the space provided in the Question Paper Booklet.

 Return the OMR Answer Sheet and Question Paper Booklet to the invigilator before leaving the examination hall. Failure to return the OMR sheet and Question Paper Booklet is liable for criminal action.

1.	The curl of the vector $\overrightarrow{B} = x \hat{j}$	ie ·		
700	(1) Unit vector along r svis	(9) TInit		ati
	(1) Unit vector along x axis (3) Unit vector along z axis If a force F is derivable from a from the origin of the coordinates.	(4) Unit	vector along y axi	S
2.	If a force F is derivable from a	potential function V	(r), where r is the	distance
	mom the origin of the contain	te system, it follow	s that :	Castarie
	$(1) \mathbf{V} \times \mathbf{F} = 0$	(2) ∇,F = (4) ∇×V	. 0	
	$(3) \qquad V.V = 0$	(4) ∇× V	= 0	
3.	The value of $\int_{-1}^{1} p_n(x)p_n(x)dx$,	where p_n is Legend	re Polynomial, is e	equal to
	(1) Zero	(2) 1 (4) $\frac{2}{4n^2}$		
	$(3) \qquad \frac{2}{2n+1}$	(4)		
		10000	1	
4.	The value of Bessel function ,	(π) is	74	
		$\frac{3}{2}(2)$		
	(1) 0	$(2) \qquad \frac{2}{\pi}$		
		(2) — π		
	(3) 1	(4) -1		
õ.	The Fourier transformation of t	ne function $f(x)$ is F	(k), then Fourier t	ransform
	of $\frac{df}{dx}$ is:			
	$\frac{d\mathbf{F}(k)}{dk}$	(2) − <i>ik</i> F(<i>k</i>	:)	
	(3) $ik\mathbf{F}(k)$	(4) ∫ F(k	\db	
6.		e) then I calc. to	run	en over one can
٠	If f(s) is Laplace transform of j constant, is:	x), then haptace tr	ansiorm of flax), w	nen a 1
		8.70		
	$(1) \qquad \frac{1}{s}f(s)$	(2) $\frac{1}{f}(s)$	À	
	8	(2) a' (a)	
	200	(2) $\frac{1}{a}f\left(\frac{s}{a}\right)$ (4) $af\left(\frac{s}{a}\right)$	í.	
	(3) $sf(s)$	(4) $af \begin{bmatrix} -1 \\ 1 \end{bmatrix}$		
7.	Radioactive decay in a materia	follows the following	no statistical distr	bution
	(1) Poisson (3) Binomial A particle is acted upon by two	(2) Norm.	al .	
8.	A particle is acted upon by two	(4) Maxw	ell	. Av
	$y = A \sin (\omega t)$. The resultant p	ath of the particle	when $A = \pi/2$ is	+ 0) and
	(1) Straight line of slope A	(2) Circle	of radius A	
	(3) Ellipse	(4) Parab	ala	
9.	If a relativistic particle of rest m	ss m_0 moves with m	omentum P, then it	s energ
	18 .			1000
	(1) $\sqrt{(p^2c^2-m_0^2c^4)}$	(2) $p^2c^2 +$	$m_0^2 c^4$	
	(3) $m_0 c^2$	(4) $\sqrt{p^2}$		
10.	ŭ	o Cololier to C	+ m ₀ c·)	
STATE .	Lorentz transformations reduce of light, $c = \text{velocity of light}$:	o Galenan transfor	nations when $(v =$	velocity
	(1) $v >> c$	(2) $v > c$		
	(3) $v < c$	(4) v <<		
DL-31	14-РНУ—А	2		
	to de la calabilità de la calabilità del calabilità	Zr.		

11.			ntesimal ci	nange, then the change in enthalpy		
	1021/12/12	e system is :	(6)	III mio Vin		
	(1)	dH = TdS - VdP		dH = TdS + VdP		
+00		dH = SdT + pdV				
12.			rsible adiai	batic change, the physical quantity		
		h will not change, is :	700	1001		
	(1)	pressure		volume		
10		temperature		entropy		
13.	of 10		osphere. W	am as water boils at a temperature. Thich one of the following quantities assistion?		
	(1)	The Gibbs free energy		The internal energy		
	(3)	The entropy	(4)	The specific volume		
14.	If th		electron ga	s in three dimensions is increased		
	eight	times, its Fermi temperatu	re will :			
	(1)	increase by a factor of 4 increase by a factor of 8	(2)	decrease by a factor of 4		
	(3)	increase by a factor of 8	(4)	decrease by a factor of 8		
15.	Ten	grams of ice at 0°C is added	to a beake	er containing 30 grams of water at		
				system when it comes to thermal		
	equil	ibrium? (The specific heat of	water is 1	cal/gm/°C and latent heat of melting		
		e is 80 cal/gm) :				
		0°C		7.5°C		
	(3)	12.5°C		−1.25°C		
16.				distributed in two non-degenerate		
	disti	nct energy levels. The numb	er of ways	this can be done is:		
	(1)	8	(2)			
	(3)	3	(4)	2		
17.	until	their temperatures become e	qual. If the	een two bodies of equal heat capacity e initial temperatures of the bodies en their common final temperature		
	(1)	$T_{\mathbf{I}}$	(2)	T_1T_2		
	(3)	$\sqrt{T_1T_2}$	(4)	$\sqrt{T_1/T_2}$		
10				The second secon		
18.	the surface temperature of the black body in degree kelvin is :					
	(1)	5080	(2)	6040		
	(3)	7020	(4)	8080		
19.	The order of error in the Simpson rule for numerical integration with step size					
	h is	į.				
	(1)	h	(2)	h^2		
	(3)	h^3	(2) (4)	h^4		
20.	New	ton-Raphson formula of Succe		oximation to find the approximate		
E.7%	valu	e of a root of the equation f	(x) = 0 is	•		
	243	$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$	700	$x_{n+1} = x_n - \frac{f'(x_n)}{f(x_n)}$		
	(1)	$x_{n+1} = x_n = \frac{f'(x_n)}{f'(x_n)}$	(2)	$f(x_n)$		
	///	$x_{n-1} = x_n + \frac{f(x_n)}{f'(x_n)}$	7.45	$x_{n+1} = x_n - \frac{f'(x_n)}{f(x_n)}$		
	(3)	$f'(x_n)$	(4)	$f(x_n)$		
TAT (n n		2 (B)		
DL	314-PE	11—A	3	P.T.O		

21.	Mate	ch the following :		
	(A)		(1)	Solution of simultaneous equation
		Euler's method	(2)	Solution of polynomial equations
		Simpson rule	(3)	Solution of differential equation
		Gauss-Jordon method	(4)	Numerical integration
		(A-2), (B-3), (C-4), (D-1)	(2)	(A-1), (B-2), (C-3), (D-4)
		(A-2), (B-1), (C-4), (D-3)	(4)	(A-2), (B-4), (C-3), (D-1)
22.		mB ^m ; is a tensor of rank :	10.52	5-1-11 (10 1/1 (10 0/1 (10 1/1
	(1)	3	(2)	5
	(0)	7	(2) (4)	6
	0.000	S.I.	22 23	
23.	The	partial differential equation	$\frac{\partial^2 y}{\partial x^2} = a^2 \frac{\partial^2 y}{\partial x^2}$	$\frac{y}{2}$ is:
	(1)	Bessel's equation	α (2)	Fourier equation
	100,000,000	Wave equation	(4)	Laplace equation
24.		ier law of heat conduction i		
			- 2	
	(1)	$Q = -k A \frac{dt}{dx}$	(2)	$Q = k A \frac{dx}{x}$
		dx	3000	$Q = k A \frac{dx}{dt}$
	/95	Q = -k A	110	$Q = k \frac{dt}{dr}$
	(3)	Q = -RA	(4)	$Q = \kappa \frac{1}{dx}$
25.	Tens	or of rank zero is ;		
	(1)	scalar	(2)	column vector
	(3)	matrix	(4)	
26.	The	Hamilton's canonical equation	n of motion	in terms of Poisson Brackets are
	(1)	$\dot{q} = \{q, H\}; \dot{P} = \{p, H\}$	(2)	$\dot{q} = \{H, q\}; \dot{P} = \{H, p\}$
	(3)	$\dot{q} = \{\dot{\mathbf{H}}, p\}; \dot{\mathbf{P}} = \{\dot{\mathbf{H}}, p\}$	(4)	$\dot{q} = \{p, H\}; \dot{P} = \{q, H\}$
27.				nical variables. The transformation
	Q =	$q^{\alpha} \operatorname{Cos} (\beta p), P = q^{\alpha} \operatorname{Sin} (\beta p)$), is canon	ical, if :
	(1)			$\alpha = 2$, $\beta = 2$
	(3)	$\alpha = 1, \beta = 1$	(4)	$\alpha = 1/2, \beta = 2$
28.				space variables (coordinates and
). The Pois	son bracket $\{A,\{B,C\}\} - \{\{A,B\},C\}$, is
	equa	l to:		
	(1)	0	(2)	(B{C, A})
	(3)	(A,{C, B})	(4)	{{C, A},B}
29.	A pa	rticle of unit mass moves alor	ig the x-axi	s under the influence of a potential,
				in stable equilibrium at the point
	x =	The time period of oscilla	ation of the	e particle is :
	(1)	π/2	(2)	π
	(3)	$2\pi/3$	(4)	2π
30.	corre			generalized coordinate q and the q = q + 2 p is canonical, the value
	(1)	0	(2)	0.5
	(3)	1	(4)	2
	(30)	/ ** :	(4)	**

31.	First	order phase transition is an		
	(1)	isothermal and isochoric pro	cess	
	(2)	isothermal and adiabatic pro	cess	
	(3)	adiabatic process		
	(4)	isothermal and isobaric proc	ess	
32.	Whic	h of the following is not a pr	operty o	f Bose-Einstein condensate ?
	(1)	zero viscosity	(2)	superfluidity
	(3)	superconductivity	(4)	high density
33.	Whic	h of the following is a Boson	?	
	(1)	electron	(2)	proton
	(3)	meson	(4)	$_2\mathrm{He^3}$
34.	Whic	h of the following experimental	techniqu	es measures the changes in volume
	of th	e sample ?		
	(1)	TGA	(2)	DSC
	(3)	DTA	(4)	Dialatometry
35.	Lagr	angian of a particle of mass m	attache	d to a spring of constant K moving
	alon	g x-axis is :		
	(1)	$\frac{1}{2}m\dot{x}^2 + Kx^2$	(2)	$\frac{1}{2}mx^2 + \frac{1}{2}Kx^2$
	(3)	$\frac{1}{2}m\dot{x}^2 - \frac{1}{2}Kx^2$	(4)	$\frac{1}{2}mx^2 - Kx^2$
36.	A pa	rticle of mass m and charge q is	moving	in an electromagnetic field of scalar
				city v . Then the Hamiltonian of the
	part	icle is:		
	(1)	$rac{1}{2}mv^2-q(\phi-rac{1}{c}v,\mathbf{A})$	(2)	$\frac{1}{2}mv^2+q(\phi-\frac{1}{c}v.\mathbf{A})$
	(3)	$\frac{1}{2}mv^2-q(\phi+\frac{1}{c}v.\mathbf{A})$	(4)	$\frac{1}{2}mv^2-q(\phi+\frac{1}{c}v,\mathbf{A})$
37.	If th	e state of a particle is specified	in a spa	ce by six coordinates (three position
				dinates p_x , p_y , p_z), then the space
	is ca	alled :		**
	(1)	coordinate space	(2)	point space
	(3)	phase space	(4)	volume space
DI.	314.PF	TV_A	5	P.T.O

38.	The f	orce, which is always directed awa	y or to	wards a fixed centre and magnitude
	of wh	nich is a function only of the dist	ance f	rom the fixed centre, is known as
	(1)	Coriolis force	(2)	Centripetal force
	(3)	Centrifugal force	(4)	Central force
39.	Gaus	s's law can be applied to :		
	(1)	Plane surface	(2)	Curved surface
	(3)	Any surface	(4)	Closed surface
40.	The	work done in moving a charge	along a	an equipotential surface is :
	(1)	Depends on the path taken	(2)	Greater than zero
	(3)	Equal to zero	(4)	Negative
41.	The	potential inside a charged hollow	w sphe	ere is :
	(1)	zero	(2)	same as that on the surface
	(3)	less than that on the surface	(4)	none of these
42.	Whic	h of the following equation is a	form	of Ohm's law :
	(1)	$J = \sigma E$	(2)	$\nabla V = E$
	(3)	$D = \in E$	(4)	$\nabla \cdot \mathbf{D} = \rho$
43.	Equa	tion $\nabla^2 V = -\rho/\epsilon$ is called the :		
	(1)	Poisson's equation	(2)	Laplace equation
	(3)	Continuity equation	(4)	Stokes equation
44.	Kirch	nhoff's current law for direct curre	nts is	implicit in the following expression
	(1)	∇ , D = ρ	(2)	$\int J. n ds = 0$
	(3)	$\nabla \cdot \mathbf{B} = 0$	(4)	$\int J_{*} n ds = 0$ $\nabla \times H = J - \frac{\partial D}{\partial t}$
45.	The	inconsistency of continuity equat	ion for	time varying fields was corrected
	by M	faxwell and the correction applied	l was	to law as
	(1)	Ampere's law, $\frac{\partial \mathbf{D}}{\partial t}$	(2)	Gauss's law, J
	(3)	Faraday's law, $\frac{\partial \mathbf{B}}{\partial t}$	(4)	Ampere's law, $\frac{\partial \rho}{\partial t}$
DL	314-PH	Y—A 6		

46.	"No t	two electrons in the same a	tom can have	all its quantum numbers the same."			
	This	statement is based on th	ne work of :				
	(1)	Louis de Broglie	(2)	Werner von Heisenberg			
	(3)	Albert Einstein	(4)	Wolfgang Pauli			
17.	The r	momentum of a photon of e	nergy h_V (here	c is velocity of light) and wavelength			
	λis	0					
	(1)	h/λ	(2)	hv/c			
	(3)	hvľi	(4)	hλν			
48.	The	number of orbitals in a s	hell with $n =$	3 is			
	(1)	3	(2)	6			
	(3)	9	(4)	18			
49.	Part	icles in degenerate energ	y levels all ha	ive the same :			
	(1)	momentum	(2)	quantum numbers			
	(3)	energy	(4)	velocity			
50.	The	The ground state energy of a harmonic oscillator is:					
	(1)	Ε - ħω	(2)	$E = h\omega/2$			
	(3)	$\mathbf{E} = (2/3)\hbar\omega$	(4)	E = 0			
51.	The	wave function for a par	ticle in a one	-dimensional box is $\psi(x) = A \sin x$			
	$(n\pi x)$	/L). Which statement is a	correct ?				
	(1)	$\psi(x)$ gives the probabil	ity of finding	the particle at x.			
	(2)	$\psi^2(x)$ gives the probabi	lity of finding	the particle at x.			
	(3)	$\psi^2(x) dx$ gives the proba	bility of finding	the particle between x and $x + dx$			
	(4)	$\int \psi(x) ^2 dx$ gives the pro-	bability of find	ing the particle at a particular value			
		of x.					
52.	If th	ne commutator [A, B] = 1	, then the con	mmutator $[A, B^2]$ is equal to :			
	(1)	A	(2)	В			
	(3)	2A	(4)	2B			
DI.	314-PF	IV_A	7	P.T.C			

53.	Spin	angular momentum of an e	electron is :			
	(1)	Always the same, $h/2$				
	(2)	Integral multiples of \hbar				
	(3)	Always the same, ħ				
	(4)	half integral multiples of	(n + 1/2)h,	where n is an integer		
54.	Whie	ch of the following questions	s is Lorentz	invariant?		
	(1)	$(\mathbf{E} \times \mathbf{B})^2$	(2)	$E^2 + B^2$		
	(3)	$E^2 - B^2$	(4)	$\mathbf{E^2}$, $\mathbf{B^2}$		
55.	The	magnetic field corresponding	to vector pe	otential $\overrightarrow{A} = ix + jy + kx$ (where i,j,k		
		unit vectors) is :				
	(1)	Zero	(2)	infinity		
	(3)	ix + jy + kz	(4)	ix + jy		
56.	A fr	ee particle described by a pla	ne wave an	d moving in the positive z-direction		
	undergoes scattering by a potential :					
		$V = V_0$ if $r \le R$				
		V = 0 if $r > R$				
i.	If V	o is changed to 2V ₀ , keeping	R fixed, th	en the differential scattering cross-		
		ion, in the Born approximat				
	(1) increases to four times the original value					
	(2)	(2) increases to twice the original value				
	(3) decreases to half the original value					
	(4)	decreases to one-fourth th	ne original	value		
57.	For TE10 mode, if the wave guide is filled with air and the broader dimension					
	of the wave guide is 2 cm, then the cutoff frequency is :					
	(1)	5 MHz	(2)	7.5 MHz		
t	(3)	7.5 GHz	(4)	5 GHz		
58.	The	skin effect in waves guides	causes a c	urrent to flow :		
	(1)	At the center of wave gu	ide			
	(2)	Near the surface of the c	onductor			
	(3)	At the outer surface of th	ie wave gu	ide		
	(4)	Uniformly through the wa	ive guide			

8

DL-314-PHY-A

	(1)	Spin-orbit coupling	(2)	Isotope effect
	(3)	Relativistic effect	(4)	Electric field interaction
60.	Ifα	and β are the matrices of relat	ivistic Di	rac equation, which of the following
	is fa	ilse :		
	(1)	α and β anti-commute in pa	airs	
	(2)	trace of α and β is zero		
	(3)	eigen values of α and β are	± 1	
	(4)	dimensions of α and β are	always o	dd
61.	Whic	ch of the following equations is	a first	order differential equation is space
	and	time ?		
	(1)	Klein-Gordon equation	(2)	Dirac equation
	(3)	Schrodinger's equation	(4)	de Broglie equation
62.	Tran	sition of anomalous Zeeman is	nto norm	al Zeeman effect is called :
	(1)	Stark effect	(2)	Lamb shift
	(3)	Raman Effect	(4)	Paschen-Back effect
63.	Fine	structure of hydrogen spectra	can be	explained by considering :
	(1)	relativistic effect	(2)	spin orbit interaction
	(3)	spin-spin interaction	(4)	spin lattice interaction
64.	Obse	erve the following solids and t	heir ener	rgy gap (Eg) :
		Solid		Eg (in eV)
		a		1.2
		b		5.6
		c		2.9
		d		0.7
		e		3.2
	All t	hese solids are irradiated with	light of	400 nm. Which of the above solids
	exhil	bit photoconductivity ?		
	(1)	a, b, c	(2)	a, d, e
	(3)	a, c, d	(4)	c, d, e

Fine structure of the spectral lines is due to :

59.

65.	IR A	bsorption is due to:				
	(1)	vibrations of atoms in a	molecule			
	(2)	transitions of electrons				
	(3)	rotation of atoms				
	(4)	all of the above				
66.	The	transition $J = 0$ to $J = 1$ in a	HCl molecule	e occurs at 10.68 /cm. The rotational		
	cons	tant B value is :				
	(1)	Zero	(2)	5.34		
	(3)	10.68	(4)	20.36		
67.	In v	ibrational spectra of a diaton	nic molecule	if $AJ = J' - J = 1$, then the resulting		
	tran	sitions belong to :				
	(1)	P branch	(2)	R branch		
	(3)	Q branch	(4)	S branch		
68.	In a	In a Raman experiment excitation line is 18315 cm ⁻¹ and stokes line is 18116				
	cm ⁻¹	l, then the anti-stokes line	is at:			
	(1)	199 cm^{-1}	(2)	18116 cm ⁻¹		
	(3)	18315 cm ⁻¹	(4)	18514 cm^{-1}		
69.	The	The atomic mass number is equivalent to which of the following ?				
	(1) The number of neutrons in the atom					
	(2) The number of protons in the atom					
	(3)	The number of nucleons	in the atom			
	(4)	The number of α-particle	es in the at	om		
70.	How many nucleons are in the 20 Ne atom ?					
	(1)	12	(2)	30		
	(3)	18	(4)	20		
71.	An	isotope with a high Bindin	g Energy pe	r nucleon :		
	(1)	will decay in a short pe	riod of time	•		
	(2)	is very unstable				
	(3)	is very stable				
	(4)	has very few electrons				

72.	Whic	h of the following about th	ne gamma r	ay is true ?	
	(1)	It carries a positive char	ge		
	(2)	It carries a negative cha	rge		
	(3)	It can be deflected by a	magnetic fi	eld	
	(4)	It has zero rest mass an	d a neutral	charge	
73.	What	t is the missing element fr	om the give	en equation $^{226}_{88}$ Ra \rightarrow ? + $^{4}_{2}$ He ;	
	(1)	²³⁰ ₈₆ Rn	(2)	$^{220}_{86}{ m Rn}$	
	(3)	²²⁸ ₈₆ Rn	(4)	²²² 86 Rn	
74.	Semi	-empirical mass formula is	called :		
	(1)	Weizsaecker formula	(2)	Gamow formula	
	(3)	Fermi formula	(4)	Pauli formula	
75.	When	n two light nuclei combine	to form a h	eavy nucleus, the value of bindin	g
	ener	gy per nucleon will :			
	(1)	decrease			
	(2)	increase			
	(3)	remain unchanged			
	(4)	have sum of the binding	energy of i	ndividual nuclei	
76.	The	²³⁸ ₉₂ U decays by the emission	n of eight al	pha particles and six beta particle	s,
	at th	ne end the mass number (7	and atom	ic number (A) of the final produc	et
	is:				
	(1)	82,206	(2)	84,224	
	(3)	88,206	(4)	76,200	
77.	Fund	lamental particles Pions ar	e :		
	(1)	Bosons	(2)	Fermions	
	(3)	Leptons	(4)	Byrons	
78.	Whic	ch of the following is a par	ticle and a	nti-particle pairs :	
	(1)	proton-positron	(2)	proton-neutron	
	(3)	neutron-neutrino	(4)	electron-positron	
DL-	314-PH	ΓY — Λ	11	P.T.O)
					100

79.	In P	'N-junction, the depletion re	gion is dep	leted of :		
	(1)	free holes	(2)	free electrons		
	(3)	immobile ions	(4)	mobile ions		
80.	Diod	e in which current decrease	s (in certa	in voltage range) with increase of		
	volta	ge is :				
	(1)	junction diode	(2)	zener diode		
	(3)	tunnel diode	(4)	light emitting diode		
81.	In C	Common Emitter NPN transis	tor amplifie	r which of the following is correct?		
	(1)	Input junction is forward	biased and	output junction is reverse biased		
	(2)	Both input and output ju	nctions are	reverse biased		
	(3)	Both input and output ju	nctions are	forward biased		
	(4)	All of the above				
82.	In C	E configuration of transisto	r amplifier	h_{fe} is :		
	(1)	forward current gain	(2)	reverse current gain		
	(3)	input impedance	(4)	output admittance		
83.	Which of the following devices is a voltage controlled device ?					
	(1)	diode	(2)	BJT		
	(3)	FET	(4)	UJT		
84.	Emi	tter follower is used for :				
	(1)	amplification	(2)	attenuation		
	(3)	impedance matching	(4)	all of these		
85.	Inductors are used in the feedback circuit of the following oscillator:					
	(1)	Phase shift	(2)	Hartley		
	(3)	Colpitts	(4)	Wien bridge		
86,	Con	dition to be fulfilled for sus	tained osci	llations is:		
	(1)	$A\beta = 1; \theta = 0$	(2)	$A\beta = 1; \theta = 90$		
	(3)	$A\beta = 1; \theta = 180$	(4)	$A\beta = 0; \ \theta = 180$		
DL-	314-PI	HY—A	12			

87.	Astable multivibrator has number of stable states.				
0112	(1) 0				
		(2)	1		
00	(3) 2	(4)	3		
88.	In an ideal op-amp slew rate shoul	d be:			
	(1) zero	(2)	infinity		
	(3) large	(4)	minimum		
89.	Which flip-flop plays a vital role by functioning as the basic building block of				
	a ripple counter ?				
	(1) S-R flip-flop	(2)	J-K flip-flop		
	(3) D flip-flop	(4)	T flip-flop		
90.	If a , b and c are unit cell lattice vectors, then the volume of the unit cell is				
	given by :				
	(1) $a.(b \times c)$	(2)	a(bc)		
	(3) $a \times (b.c)$	(4)	$a \times (b \times c)$		
91.	The Brillouin zone boundary represents the locus of propagation vector K-values				
	that are Bragg reflected, the first order Bragg reflections will be contained in:				
	(1) $K_x = \pm \pi/a$ and $K_y = \pm \pi/a$	(2)	$K_x = \pm 2\pi/a$ and $K_y = \pm 2\pi/a$		
	(3) $K_x = \pm a$ and $K_y = a$	(4)	$K_x = \pm 2a$ and $K_y = \pm 2a$		
92.	The stress associated with the scre	w dislo	ocations is :		
	(1) compression	(2)	tension		
	(3) shear	(4)	elastic		
93.	According to Widerman Franz law, the ratio of thermal conductivity to electrical				
	conductivity is proportional to absolute temperature where the proportionality				
	constant is known as :				
	(1) Reynolds number	(2)	Lorentz number		
	(3) Avogadro number	(4)	Renault number		
	V2-944 (COMP AND SECTOR CONTROL CONTRO	10000	AND ACT OF THE CONTRACT OF THE CONTRACT OF		

13

P.T.O

DL-314-PHY-A

94.	During a superconducting to normal conductor transition, the superconducting					
	sample gradually becomes paramagnetic form diamagnetic nature, then the super-					
	conductor is superconductor					
	(1)	Type I	(2)	Type II		
	(3)	Type I and Type II	(4)	Mixed transition		
95.	According to Mathieison rule :					
	(1) The total resistivity of metal is the difference of resistivities due to phonon					
	and impurity scattering.					
	(2)	(2) The total resistivity of metal is the sum of resistivities due to phonon				
		and impurity scattering				
	(3) The ratio of thermal and electrical conductivity is constant					
	(4) The thermal conductivity of the metals is constant					
96.	Which of the following is a direct semiconductor ?					
	(1)	Silicon	(2)	Germanium		
	(3)	Gallium Arsenide	(4)	Cadmium		
97.	Which of the following are three-dimensional defects?					
	(1)	vacancies	(2)	dislocations		
	(3)	stacking faults	(4)	voids		
98.	Which of the following is an exothermic reaction ?					
	(1)	melting	(2)	crystallization		
	(3)	sublimation	(4)	vaporization		
99.	NMR is the study of resonance at frequencies.					
	(1)	visible light	(2)	UV light		
	(3)	radio	(4)	microwave		
100.	ESR signal sensitivity increases with temperature and					
	magnetic field.					
	(1)	increasing, decreasing	(2)	decreasing, decreasing		
	(3)	decreasing, increasing	(4)	increasing, increasing		
DL-3	314-PF	HY—A	14			

Space for Rough Work

Space for Rough Work